UnitTestSetup() {
      rtol = 1e-4;
      atol = 1e-5;
      crtol = 1e-12;
      catol = 1e-12;
      a = 3.1;
      const OrdinalType d = 2;
      const OrdinalType p = 7;
      
      // Create product basis
      Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<OrdinalType,ValueType> > > bases(d);
      for (OrdinalType i=0; i<d; i++)
	bases[i] = 
	  Teuchos::rcp(new Stokhos::LegendreBasis<OrdinalType,ValueType>(p));
      basis =
	Teuchos::rcp(new Stokhos::CompletePolynomialBasis<OrdinalType,ValueType>(bases));
      
      // Constant expansion
      exp = 
	Teuchos::rcp(new Stokhos::ConstantOrthogPolyExpansion<OrdinalType,ValueType>());
      
      // Create approximation
      cx.reset(basis, 1);
      cx.term(0, 0) = a;
      cu.reset(basis, 1);
      cu2.reset(basis, 1);
    }
示例#2
0
    UnitTestSetup() {
      rtol = 1e-4;
      atol = 1e-5;
      crtol = 1e-12;
      catol = 1e-12;
      a = 3.1;
      const OrdinalType d = 2;
      const OrdinalType p = 7;
      
      // Create product basis
      Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<OrdinalType,ValueType> > > bases(d);
      for (OrdinalType i=0; i<d; i++)
	bases[i] = 
	  Teuchos::rcp(new Stokhos::LegendreBasis<OrdinalType,ValueType>(p));

      basis =
	Teuchos::rcp(new product_basis_type(bases));
      
      // Tensor product quadrature
      quad = 
	Teuchos::rcp(new Stokhos::TensorProductQuadrature<OrdinalType,ValueType>(basis));

      // Tensor product pseudospectral operator
      Teuchos::Array< Stokhos::EvenGrowthRule<OrdinalType> > point_growth(d);
      ps_op = 
	Teuchos::rcp(new Stokhos::QuadraturePseudoSpectralOperator<OrdinalType,ValueType>(*basis, *quad));

      // Triple product tensor
      Cijk = basis->computeTripleProductTensor();
      Cijk_linear = basis->computeLinearTripleProductTensor();
      
      // Quadrature expansion
      exp = 
	Teuchos::rcp(new Stokhos::PseudoSpectralOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk, ps_op));
      exp_linear = 
	Teuchos::rcp(new Stokhos::PseudoSpectralOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk_linear, ps_op));
      
      // Create approximation
      sz = basis->size();
      x.reset(basis);
      y.reset(basis);
      u.reset(basis); 
      u2.reset(basis);
      cx.reset(basis, 1);
      x.term(0, 0) = 1.0;
      cx.term(0, 0) = a;
      cu.reset(basis);
      cu2.reset(basis, 1);
      sx.reset(basis, d+1);
      su.reset(basis, d+1);
      su2.reset(basis, d+1);
      for (OrdinalType i=0; i<d; i++) {
	x.term(i, 1) = 0.1;
	sx.term(i, 1) = 0.0;
      }
      y.term(0, 0) = 2.0;
      for (OrdinalType i=0; i<d; i++)
	y.term(i, 1) = 0.25;
    }
示例#3
0
  Lanczos_PCE_Setup(bool normalize, bool project) : 
    func()
  {
    rtol = 1e-8;
    atol = 1e-12;
    const OrdinalType d = 3;
    const OrdinalType p = 5;
    
    // Create product basis
    Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<OrdinalType,ValueType> > > bases(d);
    for (OrdinalType i=0; i<d; i++)
      bases[i] = 
	Teuchos::rcp(new Stokhos::LegendreBasis<OrdinalType,ValueType>(p));
    basis =
      Teuchos::rcp(new Stokhos::CompletePolynomialBasis<OrdinalType,ValueType>(bases));
    
    // Create approximation
    sz = basis->size();
    Stokhos::OrthogPolyApprox<OrdinalType,ValueType> x(basis);
    for (OrdinalType i=0; i<d; i++)
      x.term(i, 1) = 1.0;
    
    // Tensor product quadrature
    Teuchos::RCP<const Stokhos::Quadrature<OrdinalType,ValueType> > quad = 
      Teuchos::rcp(new Stokhos::TensorProductQuadrature<OrdinalType,ValueType>(basis, 4*p));

    // Triple product tensor
    Teuchos::RCP<Stokhos::Sparse3Tensor<int,double> > Cijk =
      basis->computeTripleProductTensor(basis->size());
    
    // Quadrature expansion
    exp = Teuchos::rcp(new Stokhos::QuadOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk, quad));
    
    // Compute PCE via quadrature expansion
    u.reset(basis);
    v.reset(basis);
    func.eval(*exp, x, u);
    exp->times(v,u,u);
    
    // Compute Lanczos basis
    st_bases.resize(1);
    if (project) {
      st_1d_proj_basis = 
	Teuchos::rcp(new Stokhos::LanczosProjPCEBasis<OrdinalType,ValueType>(
		       p, Teuchos::rcp(&u,false), Cijk, normalize));
      st_bases[0] = st_1d_proj_basis;
    }
    else {
      st_1d_basis = 
	Teuchos::rcp(new Stokhos::LanczosPCEBasis<OrdinalType,ValueType>(
		       p, Teuchos::rcp(&u,false), quad, normalize, false));
      st_bases[0] = st_1d_basis;
    }
    
    st_basis = 
      Teuchos::rcp(new Stokhos::CompletePolynomialBasis<OrdinalType,ValueType>(st_bases, 1e-15));
    st_sz = st_basis->size();
    u_st.reset(st_basis);
    v_st.reset(st_basis);
    if (project) {
      u_st[0] = st_1d_proj_basis->getNewCoeffs(0);
      u_st[1] = st_1d_proj_basis->getNewCoeffs(1);
    }
    else {
      u_st[0] = st_1d_basis->getNewCoeffs(0);
      u_st[1] = st_1d_basis->getNewCoeffs(1);
    }
    
    // Tensor product quadrature
    st_quad = 
      Teuchos::rcp(new Stokhos::TensorProductQuadrature<OrdinalType,ValueType>(st_basis));

    // Triple product tensor
    Teuchos::RCP<Stokhos::Sparse3Tensor<int,double> > st_Cijk =
      st_basis->computeTripleProductTensor(st_basis->size());
    
    // Quadrature expansion
    Stokhos::QuadOrthogPolyExpansion<OrdinalType,ValueType> st_exp(st_basis, 
								   st_Cijk,
								   st_quad);
    
    st_exp.times(v_st, u_st, u_st);
  }
示例#4
0
    UnitTestSetup() {
      rtol = 1e-10;//4
      atol = 1e-10;//5
      crtol = 1e-12;
      catol = 1e-12;
      a = 3.1;
      const OrdinalType d = 2;
      const OrdinalType p = 7;
      
      // Create product basis
      Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<OrdinalType,ValueType> > > bases(d);
      for (OrdinalType i=0; i<d; i++)
	bases[i] = 
	  Teuchos::rcp(new Stokhos::LegendreBasis<OrdinalType,ValueType>(p));
      basis =
	Teuchos::rcp(new Stokhos::CompletePolynomialBasis<OrdinalType,ValueType>(bases));

      // Tensor product quadrature
      quad = 
	Teuchos::rcp(new Stokhos::TensorProductQuadrature<OrdinalType,ValueType>(basis));

      // Triple product tensor
      Cijk = basis->computeTripleProductTensor(basis->size());
      Cijk_linear = basis->computeTripleProductTensor(basis->dimension()+1);
      
      // Algebraic expansion
      exp = 
	Teuchos::rcp(new Stokhos::QuadOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk, quad));
      exp_linear = 
	Teuchos::rcp(new Stokhos::QuadOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk_linear, quad));

      // Quadrature expansion
      qexp = 
	Teuchos::rcp(new Stokhos::QuadOrthogPolyExpansion<OrdinalType,ValueType>(basis, Cijk, quad));
      //Dense Direct Division Operator
      direct_division_strategy =
         Teuchos::rcp(new Stokhos::DenseDirectDivisionExpansionStrategy<int,double,Stokhos::StandardStorage<int, double> >(basis, Cijk));

      
      // Create approximation
//      sz = basis->size();
      x.reset(basis);
      y.reset(basis);
      u.reset(basis); 
      u2.reset(basis);
      cx.reset(basis, 1);
      x.term(0, 0) = 1.0;
//      y.term(0, 0) = 1.0:
      cx.term(0, 0) = a;
      cu.reset(basis);
//      cu2.reset(basis, 1);
//      sx.reset(basis, d+1);
//      su.reset(basis, d+1);
//      su2.reset(basis, d+1);
      for (OrdinalType i=0; i<d; i++) {
	x.term(i, 1) = 1.0;
//	y.term(i, 1) = 0.1;
      }
//      y.term(0, 0) = 2.0;
//      for (OrdinalType i=0; i<d; i++)
//	y.term(i, 1) = 0.25;
      
      c1.reset(basis);
      c1.term(0,0)=1;
      exp->exp(cu, x);

     }