SearchFilterSP SearchFilterByModule::CreateFromStructuredData( Target &target, const StructuredData::Dictionary &data_dict, Status &error) { StructuredData::Array *modules_array; bool success = data_dict.GetValueForKeyAsArray(GetKey(OptionNames::ModList), modules_array); if (!success) { error.SetErrorString("SFBM::CFSD: Could not find the module list key."); return nullptr; } size_t num_modules = modules_array->GetSize(); if (num_modules > 1) { error.SetErrorString( "SFBM::CFSD: Only one modules allowed for SearchFilterByModule."); return nullptr; } llvm::StringRef module; success = modules_array->GetItemAtIndexAsString(0, module); if (!success) { error.SetErrorString("SFBM::CFSD: filter module item not a string."); return nullptr; } FileSpec module_spec(module); return std::make_shared<SearchFilterByModule>(target.shared_from_this(), module_spec); }
lldb::SearchFilterSP SearchFilterByModuleListAndCU::CreateFromStructuredData( Target &target, const StructuredData::Dictionary &data_dict, Status &error) { StructuredData::Array *modules_array = nullptr; SearchFilterSP result_sp; bool success = data_dict.GetValueForKeyAsArray(GetKey(OptionNames::ModList), modules_array); FileSpecList modules; if (success) { size_t num_modules = modules_array->GetSize(); for (size_t i = 0; i < num_modules; i++) { llvm::StringRef module; success = modules_array->GetItemAtIndexAsString(i, module); if (!success) { error.SetErrorStringWithFormat( "SFBM::CFSD: filter module item %zu not a string.", i); return result_sp; } modules.Append(FileSpec(module)); } } StructuredData::Array *cus_array = nullptr; success = data_dict.GetValueForKeyAsArray(GetKey(OptionNames::CUList), cus_array); if (!success) { error.SetErrorString("SFBM::CFSD: Could not find the CU list key."); return result_sp; } size_t num_cus = cus_array->GetSize(); FileSpecList cus; for (size_t i = 0; i < num_cus; i++) { llvm::StringRef cu; success = cus_array->GetItemAtIndexAsString(i, cu); if (!success) { error.SetErrorStringWithFormat( "SFBM::CFSD: filter cu item %zu not a string.", i); return nullptr; } cus.Append(FileSpec(cu)); } return std::make_shared<SearchFilterByModuleListAndCU>( target.shared_from_this(), modules, cus); }
SearchFilterSP SearchFilterByModuleList::CreateFromStructuredData( Target &target, const StructuredData::Dictionary &data_dict, Status &error) { StructuredData::Array *modules_array; bool success = data_dict.GetValueForKeyAsArray(GetKey(OptionNames::ModList), modules_array); FileSpecList modules; if (success) { size_t num_modules = modules_array->GetSize(); for (size_t i = 0; i < num_modules; i++) { llvm::StringRef module; success = modules_array->GetItemAtIndexAsString(i, module); if (!success) { error.SetErrorStringWithFormat( "SFBM::CFSD: filter module item %zu not a string.", i); return nullptr; } modules.Append(FileSpec(module)); } } return std::make_shared<SearchFilterByModuleList>(target.shared_from_this(), modules); }
size_t DynamicRegisterInfo::SetRegisterInfo(const StructuredData::Dictionary &dict, ByteOrder byte_order) { assert(!m_finalized); StructuredData::Array *sets = nullptr; if (dict.GetValueForKeyAsArray("sets", sets)) { const uint32_t num_sets = sets->GetSize(); for (uint32_t i=0; i<num_sets; ++i) { std::string set_name_str; ConstString set_name; if (sets->GetItemAtIndexAsString(i, set_name_str)) set_name.SetCString(set_name_str.c_str()); if (set_name) { RegisterSet new_set = { set_name.AsCString(), NULL, 0, NULL }; m_sets.push_back (new_set); } else { Clear(); printf("error: register sets must have valid names\n"); return 0; } } m_set_reg_nums.resize(m_sets.size()); } StructuredData::Array *regs = nullptr; if (!dict.GetValueForKeyAsArray("registers", regs)) return 0; const uint32_t num_regs = regs->GetSize(); // typedef std::map<std::string, std::vector<std::string> > InvalidateNameMap; // InvalidateNameMap invalidate_map; for (uint32_t i = 0; i < num_regs; ++i) { StructuredData::Dictionary *reg_info_dict = nullptr; if (!regs->GetItemAtIndexAsDictionary(i, reg_info_dict)) { Clear(); printf("error: items in the 'registers' array must be dictionaries\n"); regs->DumpToStdout(); return 0; } // { 'name':'rcx' , 'bitsize' : 64, 'offset' : 16, 'encoding':'uint' , 'format':'hex' , 'set': 0, 'gcc' : 2, // 'dwarf' : 2, 'generic':'arg4', 'alt-name':'arg4', }, RegisterInfo reg_info; std::vector<uint32_t> value_regs; std::vector<uint32_t> invalidate_regs; memset(®_info, 0, sizeof(reg_info)); ConstString name_val; ConstString alt_name_val; if (!reg_info_dict->GetValueForKeyAsString("name", name_val, nullptr)) { Clear(); printf("error: registers must have valid names and offsets\n"); reg_info_dict->DumpToStdout(); return 0; } reg_info.name = name_val.GetCString(); reg_info_dict->GetValueForKeyAsString("alt-name", alt_name_val, nullptr); reg_info.alt_name = alt_name_val.GetCString(); reg_info_dict->GetValueForKeyAsInteger("offset", reg_info.byte_offset, UINT32_MAX); if (reg_info.byte_offset == UINT32_MAX) { // No offset for this register, see if the register has a value expression // which indicates this register is part of another register. Value expressions // are things like "rax[31:0]" which state that the current register's value // is in a concrete register "rax" in bits 31:0. If there is a value expression // we can calculate the offset bool success = false; std::string slice_str; if (reg_info_dict->GetValueForKeyAsString("slice", slice_str, nullptr)) { // Slices use the following format: // REGNAME[MSBIT:LSBIT] // REGNAME - name of the register to grab a slice of // MSBIT - the most significant bit at which the current register value starts at // LSBIT - the least significant bit at which the current register value ends at static RegularExpression g_bitfield_regex("([A-Za-z_][A-Za-z0-9_]*)\\[([0-9]+):([0-9]+)\\]"); RegularExpression::Match regex_match(3); if (g_bitfield_regex.Execute(slice_str.c_str(), ®ex_match)) { llvm::StringRef reg_name_str; std::string msbit_str; std::string lsbit_str; if (regex_match.GetMatchAtIndex(slice_str.c_str(), 1, reg_name_str) && regex_match.GetMatchAtIndex(slice_str.c_str(), 2, msbit_str) && regex_match.GetMatchAtIndex(slice_str.c_str(), 3, lsbit_str)) { const uint32_t msbit = StringConvert::ToUInt32(msbit_str.c_str(), UINT32_MAX); const uint32_t lsbit = StringConvert::ToUInt32(lsbit_str.c_str(), UINT32_MAX); if (msbit != UINT32_MAX && lsbit != UINT32_MAX) { if (msbit > lsbit) { const uint32_t msbyte = msbit / 8; const uint32_t lsbyte = lsbit / 8; ConstString containing_reg_name(reg_name_str); RegisterInfo *containing_reg_info = GetRegisterInfo(containing_reg_name); if (containing_reg_info) { const uint32_t max_bit = containing_reg_info->byte_size * 8; if (msbit < max_bit && lsbit < max_bit) { m_invalidate_regs_map[containing_reg_info->kinds[eRegisterKindLLDB]].push_back(i); m_value_regs_map[i].push_back(containing_reg_info->kinds[eRegisterKindLLDB]); m_invalidate_regs_map[i].push_back(containing_reg_info->kinds[eRegisterKindLLDB]); if (byte_order == eByteOrderLittle) { success = true; reg_info.byte_offset = containing_reg_info->byte_offset + lsbyte; } else if (byte_order == eByteOrderBig) { success = true; reg_info.byte_offset = containing_reg_info->byte_offset + msbyte; } else { assert(!"Invalid byte order"); } } else { if (msbit > max_bit) printf("error: msbit (%u) must be less than the bitsize of the register (%u)\n", msbit, max_bit); else printf("error: lsbit (%u) must be less than the bitsize of the register (%u)\n", lsbit, max_bit); } } else { printf("error: invalid concrete register \"%s\"\n", containing_reg_name.GetCString()); } } else { printf("error: msbit (%u) must be greater than lsbit (%u)\n", msbit, lsbit); } } else { printf("error: msbit (%u) and lsbit (%u) must be valid\n", msbit, lsbit); } } else { // TODO: print error invalid slice string that doesn't follow the format printf("error: failed to extract regex matches for parsing the register bitfield regex\n"); } } else { // TODO: print error invalid slice string that doesn't follow the format printf("error: failed to match against register bitfield regex\n"); } } else { StructuredData::Array *composite_reg_list = nullptr; if (reg_info_dict->GetValueForKeyAsArray("composite", composite_reg_list)) { const size_t num_composite_regs = composite_reg_list->GetSize(); if (num_composite_regs > 0) { uint32_t composite_offset = UINT32_MAX; for (uint32_t composite_idx = 0; composite_idx < num_composite_regs; ++composite_idx) { ConstString composite_reg_name; if (composite_reg_list->GetItemAtIndexAsString(composite_idx, composite_reg_name, nullptr)) { RegisterInfo *composite_reg_info = GetRegisterInfo(composite_reg_name); if (composite_reg_info) { composite_offset = std::min(composite_offset, composite_reg_info->byte_offset); m_value_regs_map[i].push_back(composite_reg_info->kinds[eRegisterKindLLDB]); m_invalidate_regs_map[composite_reg_info->kinds[eRegisterKindLLDB]].push_back(i); m_invalidate_regs_map[i].push_back(composite_reg_info->kinds[eRegisterKindLLDB]); } else { // TODO: print error invalid slice string that doesn't follow the format printf("error: failed to find composite register by name: \"%s\"\n", composite_reg_name.GetCString()); } } else { printf("error: 'composite' list value wasn't a python string\n"); } } if (composite_offset != UINT32_MAX) { reg_info.byte_offset = composite_offset; success = m_value_regs_map.find(i) != m_value_regs_map.end(); } else { printf("error: 'composite' registers must specify at least one real register\n"); } } else { printf("error: 'composite' list was empty\n"); } } } if (!success) { Clear(); reg_info_dict->DumpToStdout(); return 0; } } int64_t bitsize = 0; if (!reg_info_dict->GetValueForKeyAsInteger("bitsize", bitsize)) { Clear(); printf("error: invalid or missing 'bitsize' key/value pair in register dictionary\n"); reg_info_dict->DumpToStdout(); return 0; } reg_info.byte_size = bitsize / 8; std::string format_str; if (reg_info_dict->GetValueForKeyAsString("format", format_str, nullptr)) { if (Args::StringToFormat(format_str.c_str(), reg_info.format, NULL).Fail()) { Clear(); printf("error: invalid 'format' value in register dictionary\n"); reg_info_dict->DumpToStdout(); return 0; } } else { reg_info_dict->GetValueForKeyAsInteger("format", reg_info.format, eFormatHex); } std::string encoding_str; if (reg_info_dict->GetValueForKeyAsString("encoding", encoding_str)) reg_info.encoding = Args::StringToEncoding(encoding_str.c_str(), eEncodingUint); else reg_info_dict->GetValueForKeyAsInteger("encoding", reg_info.encoding, eEncodingUint); size_t set = 0; if (!reg_info_dict->GetValueForKeyAsInteger<size_t>("set", set, -1) || set >= m_sets.size()) { Clear(); printf("error: invalid 'set' value in register dictionary, valid values are 0 - %i\n", (int)set); reg_info_dict->DumpToStdout(); return 0; } // Fill in the register numbers reg_info.kinds[lldb::eRegisterKindLLDB] = i; reg_info.kinds[lldb::eRegisterKindGDB] = i; reg_info_dict->GetValueForKeyAsInteger("gcc", reg_info.kinds[lldb::eRegisterKindGCC], LLDB_INVALID_REGNUM); reg_info_dict->GetValueForKeyAsInteger("dwarf", reg_info.kinds[lldb::eRegisterKindDWARF], LLDB_INVALID_REGNUM); std::string generic_str; if (reg_info_dict->GetValueForKeyAsString("generic", generic_str)) reg_info.kinds[lldb::eRegisterKindGeneric] = Args::StringToGenericRegister(generic_str.c_str()); else reg_info_dict->GetValueForKeyAsInteger("generic", reg_info.kinds[lldb::eRegisterKindGeneric], LLDB_INVALID_REGNUM); // Check if this register invalidates any other register values when it is modified StructuredData::Array *invalidate_reg_list = nullptr; if (reg_info_dict->GetValueForKeyAsArray("invalidate-regs", invalidate_reg_list)) { const size_t num_regs = invalidate_reg_list->GetSize(); if (num_regs > 0) { for (uint32_t idx = 0; idx < num_regs; ++idx) { ConstString invalidate_reg_name; uint64_t invalidate_reg_num; if (invalidate_reg_list->GetItemAtIndexAsString(idx, invalidate_reg_name)) { RegisterInfo *invalidate_reg_info = GetRegisterInfo(invalidate_reg_name); if (invalidate_reg_info) { m_invalidate_regs_map[i].push_back(invalidate_reg_info->kinds[eRegisterKindLLDB]); } else { // TODO: print error invalid slice string that doesn't follow the format printf("error: failed to find a 'invalidate-regs' register for \"%s\" while parsing register \"%s\"\n", invalidate_reg_name.GetCString(), reg_info.name); } } else if (invalidate_reg_list->GetItemAtIndexAsInteger(idx, invalidate_reg_num)) { if (invalidate_reg_num != UINT64_MAX) m_invalidate_regs_map[i].push_back(invalidate_reg_num); else printf("error: 'invalidate-regs' list value wasn't a valid integer\n"); } else { printf("error: 'invalidate-regs' list value wasn't a python string or integer\n"); } } } else { printf("error: 'invalidate-regs' contained an empty list\n"); } } // Calculate the register offset const size_t end_reg_offset = reg_info.byte_offset + reg_info.byte_size; if (m_reg_data_byte_size < end_reg_offset) m_reg_data_byte_size = end_reg_offset; m_regs.push_back(reg_info); m_set_reg_nums[set].push_back(i); } Finalize(); return m_regs.size(); }