int exampleImplicitlyComposedLinearOperators( const int n0, const int n1, const int n2, Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel, typename Teuchos::ScalarTraits<Scalar>::magnitudeType errorTol, const bool testAdjoint ) { // Using and other declarations typedef Teuchos::ScalarTraits<Scalar> ST; using Teuchos::as; using Teuchos::RCP; using Teuchos::OSTab; using Thyra::VectorSpaceBase; using Thyra::VectorBase; using Thyra::MultiVectorBase; using Thyra::LinearOpBase; using Thyra::defaultSpmdVectorSpace; using Thyra::randomize; using Thyra::identity; using Thyra::diagonal; using Thyra::multiply; using Thyra::add; using Thyra::subtract; using Thyra::scale; using Thyra::adjoint; using Thyra::block1x2; using Thyra::block2x2; using Thyra::block2x2; out << "\n***" << "\n*** Demonstrating building linear operators for scalar type " << ST::name() << "\n***\n"; OSTab tab(out); // // A) Set up the basic objects and other inputs to build the implicitly // composed linear operators. // // Create serial vector spaces in this case const RCP<const VectorSpaceBase<Scalar> > space0 = defaultSpmdVectorSpace<Scalar>(n0), space1 = defaultSpmdVectorSpace<Scalar>(n1), space2 = defaultSpmdVectorSpace<Scalar>(n2); // Create the component linear operators first as multi-vectors const RCP<MultiVectorBase<Scalar> > mvA = createMembers(space2, n0, "A"), mvB = createMembers(space0, n2, "B"), mvC = createMembers(space0, n0, "C"), mvE = createMembers(space0, n1, "E"), mvF = createMembers(space0, n1, "F"), mvJ = createMembers(space2, n1, "J"), mvK = createMembers(space1, n2, "K"), mvL = createMembers(space2, n1, "L"), mvN = createMembers(space0, n1, "N"), mvP = createMembers(space2, n1, "P"), mvQ = createMembers(space0, n2, "Q"); // Create the vector diagonal for D const RCP<VectorBase<Scalar> > d = createMember(space2); // Get the constants const Scalar one = 1.0, beta = 2.0, gamma = 3.0, eta = 4.0; // Randomize the values in the Multi-Vector randomize( -one, +one, mvA.ptr() ); randomize( -one, +one, mvB.ptr() ); randomize( -one, +one, mvC.ptr() ); randomize( -one, +one, d.ptr() ); randomize( -one, +one, mvE.ptr() ); randomize( -one, +one, mvF.ptr() ); randomize( -one, +one, mvJ.ptr() ); randomize( -one, +one, mvK.ptr() ); randomize( -one, +one, mvL.ptr() ); randomize( -one, +one, mvN.ptr() ); randomize( -one, +one, mvP.ptr() ); randomize( -one, +one, mvQ.ptr() ); // Get the linear operator forms of the basic component linear operators const RCP<const LinearOpBase<Scalar> > A = mvA, B = mvB, C = mvC, E = mvE, F = mvF, J = mvJ, K = mvK, L = mvL, N = mvN, P = mvP, Q = mvQ; out << describe(*A, verbLevel); out << describe(*B, verbLevel); out << describe(*C, verbLevel); out << describe(*E, verbLevel); out << describe(*F, verbLevel); out << describe(*J, verbLevel); out << describe(*K, verbLevel); out << describe(*L, verbLevel); out << describe(*N, verbLevel); out << describe(*P, verbLevel); out << describe(*Q, verbLevel); // // B) Create the composed linear operators // // I const RCP<const LinearOpBase<Scalar> > I = identity(space1, "I"); // D = diag(d) const RCP<const LinearOpBase<Scalar> > D = diagonal(d, "D"); // M00 = [ gama*B*A + C, E + F ] ^H // [ J^H * A, I ] const RCP<const LinearOpBase<Scalar> > M00 = adjoint( block2x2( add( scale(gamma,multiply(B,A)), C ), add( E, F ), multiply(adjoint(J),A), I ), "M00" ); out << "\nM00 = " << describe(*M00, verbLevel); // M01 = beta * [ Q ] // [ K ] const RCP<const LinearOpBase<Scalar> > M01 = scale( beta, block2x1( Q, K ), "M01" ); out << "\nM01 = " << describe(*M01, verbLevel); // M10 = [ L * N^H, eta*P ] const RCP<const LinearOpBase<Scalar> > M10 = block1x2( multiply(L,adjoint(N)), scale(eta,P), "M10" ); out << "\nM10 = " << describe(*M10, verbLevel); // M11 = D - Q^H*Q const RCP<const LinearOpBase<Scalar> > M11 = subtract( D, multiply(adjoint(Q),Q), "M11" ); out << "\nM11 = " << describe(*M11, verbLevel); // M = [ M00, M01 ] // [ M10, M11 ] const RCP<const LinearOpBase<Scalar> > M = block2x2( M00, M01, M10, M11, "M" ); out << "\nM = " << describe(*M, verbLevel); // // C) Test the final composed operator // Thyra::LinearOpTester<Scalar> linearOpTester; linearOpTester.set_all_error_tol(errorTol); linearOpTester.check_adjoint(testAdjoint); if (as<int>(verbLevel) >= as<int>(Teuchos::VERB_HIGH)) linearOpTester.show_all_tests(true); if (as<int>(verbLevel) >= as<int>(Teuchos::VERB_EXTREME)) linearOpTester.dump_all(true); const bool result = linearOpTester.check(*M,&out); return result; }
int main(int argc, char* argv[]) { using Teuchos::describe; using Teuchos::rcp; using Teuchos::rcp_dynamic_cast; using Teuchos::rcp_const_cast; using Teuchos::RCP; using Teuchos::CommandLineProcessor; using Teuchos::ParameterList; using Teuchos::sublist; using Teuchos::getParametersFromXmlFile; typedef ParameterList::PrintOptions PLPrintOptions; using Thyra::inverse; using Thyra::initializePreconditionedOp; using Thyra::initializeOp; using Thyra::unspecifiedPrec; using Thyra::solve; typedef RCP<const Thyra::LinearOpBase<double> > LinearOpPtr; typedef RCP<Thyra::VectorBase<double> > VectorPtr; bool success = true; bool verbose = true; Teuchos::GlobalMPISession mpiSession(&argc,&argv); Teuchos::RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream(); try { // // Read in options from the command line // CommandLineProcessor clp(false); // Don't throw exceptions const int numVerbLevels = 6; Teuchos::EVerbosityLevel verbLevelValues[] = { Teuchos::VERB_DEFAULT, Teuchos::VERB_NONE, Teuchos::VERB_LOW, Teuchos::VERB_MEDIUM, Teuchos::VERB_HIGH, Teuchos::VERB_EXTREME }; const char* verbLevelNames[] = { "default", "none", "low", "medium", "high", "extreme" }; Teuchos::EVerbosityLevel verbLevel = Teuchos::VERB_MEDIUM; clp.setOption( "verb-level", &verbLevel, numVerbLevels, verbLevelValues, verbLevelNames, "Verbosity level used for all objects." ); std::string matrixFile = "."; clp.setOption( "matrix-file", &matrixFile, "Matrix file." ); std::string paramListFile = ""; clp.setOption( "param-list-file", ¶mListFile, "Parameter list for preconditioner and solver blocks." ); bool showParams = false; clp.setOption( "show-params", "no-show-params", &showParams, "Show the parameter list or not." ); bool testPrecIsLinearOp = true; clp.setOption( "test-prec-is-linear-op", "test-prec-is-linear-op", &testPrecIsLinearOp, "Test if the preconditioner is a linear operator or not." ); double solveTol = 1e-8; clp.setOption( "solve-tol", &solveTol, "Tolerance for the solution to determine success or failure!" ); clp.setDocString( "This example program shows how to use one linear solver (e.g. AztecOO)\n" "as a preconditioner for another iterative solver (e.g. Belos).\n" ); // Note: Use --help on the command line to see the above documentation CommandLineProcessor::EParseCommandLineReturn parse_return = clp.parse(argc,argv); if( parse_return != CommandLineProcessor::PARSE_SUCCESSFUL ) return parse_return; // *out << "\nA) Reading in the matrix ...\n"; // #ifdef HAVE_MPI Epetra_MpiComm comm(MPI_COMM_WORLD); #else Epetra_SerialComm comm; #endif const LinearOpPtr A = readEpetraCrsMatrixFromMatrixMarketAsLinearOp( matrixFile, comm, "A"); *out << "\nA = " << describe(*A,verbLevel) << "\n"; const RCP<ParameterList> paramList = getParametersFromXmlFile(paramListFile); if (showParams) { *out << "\nRead in parameter list:\n\n"; paramList->print(*out, PLPrintOptions().indent(2).showTypes(true)); } // *out << "\nB) Get the preconditioner as a forward solver\n"; // const RCP<ParameterList> precParamList = sublist(paramList, "Preconditioner Solver"); Stratimikos::DefaultLinearSolverBuilder precSolverBuilder; precSolverBuilder.setParameterList(precParamList); const RCP<const Thyra::LinearOpWithSolveFactoryBase<double> > precSolverStrategy = createLinearSolveStrategy(precSolverBuilder); //precSolverStrategy->setVerbLevel(verbLevel); const LinearOpPtr A_inv_prec = inverse<double>(*precSolverStrategy, A, Thyra::SUPPORT_SOLVE_FORWARD_ONLY, Teuchos::null, // Use internal solve criteria Thyra::IGNORE_SOLVE_FAILURE // Ignore solve failures since this is just a prec ); *out << "\nA_inv_prec = " << describe(*A_inv_prec, verbLevel) << "\n"; if (testPrecIsLinearOp) { *out << "\nTest that the preconditioner A_inv_prec is indeed a linear operator.\n"; Thyra::LinearOpTester<double> linearOpTester; linearOpTester.check_adjoint(false); const bool linearOpCheck = linearOpTester.check(*A_inv_prec, out.ptr()); if (!linearOpCheck) { success = false; } } // *out << "\nC) Create the forward solver using the created preconditioner ...\n"; // const RCP<ParameterList> fwdSolverParamList = sublist(paramList, "Forward Solver"); Stratimikos::DefaultLinearSolverBuilder fwdSolverSolverBuilder; fwdSolverSolverBuilder.setParameterList(fwdSolverParamList); const RCP<const Thyra::LinearOpWithSolveFactoryBase<double> > fwdSolverSolverStrategy = createLinearSolveStrategy(fwdSolverSolverBuilder); const RCP<Thyra::LinearOpWithSolveBase<double> > A_lows = fwdSolverSolverStrategy->createOp(); initializePreconditionedOp<double>( *fwdSolverSolverStrategy, A, unspecifiedPrec(A_inv_prec), A_lows.ptr()); //A_lows->setVerbLevel(verbLevel); *out << "\nA_lows = " << describe(*A_lows, verbLevel) << "\n"; // *out << "\nD) Solve the linear system for a random RHS ...\n"; // VectorPtr x = createMember(A->domain()); VectorPtr b = createMember(A->range()); Thyra::randomize(-1.0, +1.0, b.ptr()); Thyra::assign(x.ptr(), 0.0); // Must give an initial guess! Thyra::SolveStatus<double> solveStatus = solve<double>( *A_lows, Thyra::NOTRANS, *b, x.ptr() ); *out << "\nSolve status:\n" << solveStatus; *out << "\nSolution ||x|| = " << Thyra::norm(*x) << "\n"; if(showParams) { *out << "\nParameter list after use:\n\n"; paramList->print(*out, PLPrintOptions().indent(2).showTypes(true)); } // *out << "\nF) Checking the error in the solution of r=b-A*x ...\n"; // VectorPtr Ax = Thyra::createMember(b->space()); Thyra::apply( *A, Thyra::NOTRANS, *x, Ax.ptr() ); VectorPtr r = Thyra::createMember(b->space()); Thyra::V_VmV<double>(r.ptr(), *b, *Ax); double Ax_nrm = Thyra::norm(*Ax), r_nrm = Thyra::norm(*r), b_nrm = Thyra::norm(*b), r_nrm_over_b_nrm = r_nrm / b_nrm; bool resid_tol_check = ( r_nrm_over_b_nrm <= solveTol ); if(!resid_tol_check) success = false; *out << "\n||A*x|| = " << Ax_nrm << "\n"; *out << "\n||A*x-b||/||b|| = " << r_nrm << "/" << b_nrm << " = " << r_nrm_over_b_nrm << " <= " << solveTol << " : " << Thyra::passfail(resid_tol_check) << "\n"; Teuchos::TimeMonitor::summarize(*out<<"\n"); } TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success) if (verbose) { if(success) *out << "\nCongratulations! All of the tests checked out!\n"; else *out << "\nOh no! At least one of the tests failed!\n"; } return ( success ? EXIT_SUCCESS : EXIT_FAILURE ); }