mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize( other.GetPixelType(), other.GetDimension(), other.GetDimensions()); //Since the above called "Initialize" method doesn't take the geometry into account we need to set it //here manually TimeGeometry::Pointer cloned = other.GetTimeGeometry()->Clone(); this->SetTimeGeometry(cloned.GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = const_cast<Image&>(other).GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = const_cast<Image&>(other).GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } }
void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::TimeGeometry& geometry, unsigned int channels, int tDim ) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2)+0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); } else Superclass::SetGeometry(geometry.GetGeometryForTimeStep(0)); /* //Old //TODO_GOETZ Really necessary? mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); }*/ }
void mitk::SurfaceGLMapper2D::SetDataNode( mitk::DataNode* node ) { Superclass::SetDataNode( node ); bool useCellData; if (dynamic_cast<BoolProperty *>(node->GetProperty("deprecated useCellDataForColouring")) == NULL) useCellData = false; else useCellData = dynamic_cast<BoolProperty *>(node->GetProperty("deprecated useCellDataForColouring"))->GetValue(); if (!useCellData) { // search min/max point scalars over all time steps double dataRange[2] = {0,0}; double range[2]; Surface::Pointer input = const_cast< Surface* >(dynamic_cast<const Surface*>( this->GetDataNode()->GetData() )); if(input.IsNull()) return; const TimeGeometry::Pointer inputTimeGeometry = input->GetTimeGeometry(); if(( inputTimeGeometry.IsNull() ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) return; for (unsigned int timestep=0; timestep<inputTimeGeometry->CountTimeSteps(); timestep++) { vtkPolyData * vtkpolydata = input->GetVtkPolyData( timestep ); if((vtkpolydata==NULL) || (vtkpolydata->GetNumberOfPoints() < 1 )) continue; vtkDataArray *vpointscalars = vtkpolydata->GetPointData()->GetScalars(); if (vpointscalars) { vpointscalars->GetRange( range, 0 ); if (dataRange[0]==0 && dataRange[1]==0) { dataRange[0] = range[0]; dataRange[1] = range[1]; } else { if (range[0] < dataRange[0]) dataRange[0] = range[0]; if (range[1] > dataRange[1]) dataRange[1] = range[1]; } } } if (dataRange[1] - dataRange[0] > 0) { m_LUT->SetTableRange( dataRange ); m_LUT->Build(); } } }
std::vector<BaseData::Pointer> ItkImageIO::Read() { std::vector<BaseData::Pointer> result; mitk::LocaleSwitch localeSwitch("C"); Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. m_ImageIO->SetFileName(path); m_ImageIO->ReadImageInformation(); unsigned int ndim = m_ImageIO->GetNumberOfDimensions(); if (ndim < MINDIM || ndim > MAXDIM) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion(ndim); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[MAXDIM]; dimensions[0] = 0; dimensions[1] = 0; dimensions[2] = 0; dimensions[3] = 0; ScalarType spacing[MAXDIM]; spacing[0] = 1.0f; spacing[1] = 1.0f; spacing[2] = 1.0f; spacing[3] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for (i = 0; i < ndim; ++i) { ioStart[i] = 0; ioSize[i] = m_ImageIO->GetDimensions(i); if (i < MAXDIM) { dimensions[i] = m_ImageIO->GetDimensions(i); spacing[i] = m_ImageIO->GetSpacing(i); if (spacing[i] <= 0) spacing[i] = 1.0f; } if (i < 3) { origin[i] = m_ImageIO->GetOrigin(i); } } ioRegion.SetSize(ioSize); ioRegion.SetIndex(ioStart); MITK_INFO << "ioRegion: " << ioRegion << std::endl; m_ImageIO->SetIORegion(ioRegion); void *buffer = new unsigned char[m_ImageIO->GetImageSizeInBytes()]; m_ImageIO->Read(buffer); image->Initialize(MakePixelType(m_ImageIO), ndim, dimensions); image->SetImportChannel(buffer, 0, Image::ManageMemory); const itk::MetaDataDictionary &dictionary = m_ImageIO->GetMetaDataDictionary(); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3 ? 3 : ndim); for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = m_ImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry *planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D *slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false, false, false); MITK_INFO << slicedGeometry->GetCornerPoint(true, true, true); // re-initialize TimeGeometry TimeGeometry::Pointer timeGeometry; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE) || dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TYPE)) { // also check for the name because of backwards compatibility. Past code version stored with the name and not with // the key itk::MetaDataObject<std::string>::ConstPointer timeGeometryTypeData = nullptr; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE)) { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TYPE)); } else { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TYPE)); } if (timeGeometryTypeData->GetMetaDataObjectValue() == ArbitraryTimeGeometry::GetStaticNameOfClass()) { MITK_INFO << "used time geometry: " << ArbitraryTimeGeometry::GetStaticNameOfClass() << std::endl; typedef std::vector<TimePointType> TimePointVector; TimePointVector timePoints; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)); } else if (dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)); } if (timePoints.size() - 1 != image->GetDimension(3)) { MITK_ERROR << "Stored timepoints (" << timePoints.size() - 1 << ") and size of image time dimension (" << image->GetDimension(3) << ") do not match. Switch to ProportionalTimeGeometry fallback" << std::endl; } else { ArbitraryTimeGeometry::Pointer arbitraryTimeGeometry = ArbitraryTimeGeometry::New(); TimePointVector::const_iterator pos = timePoints.begin(); TimePointVector::const_iterator prePos = pos++; for (; pos != timePoints.end(); ++prePos, ++pos) { arbitraryTimeGeometry->AppendTimeStepClone(slicedGeometry, *pos, *prePos); } timeGeometry = arbitraryTimeGeometry; } } } if (timeGeometry.IsNull()) { // Fallback. If no other valid time geometry has been created, create a ProportionalTimeGeometry MITK_INFO << "used time geometry: " << ProportionalTimeGeometry::GetStaticNameOfClass() << std::endl; ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); timeGeometry = propTimeGeometry; } image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: " << image->GetPixelType().GetNumberOfComponents() << std::endl; for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { const std::string &key = iter->first; std::string assumedPropertyName = key; std::replace(assumedPropertyName.begin(), assumedPropertyName.end(), '_', '.'); std::string mimeTypeName = GetMimeType()->GetName(); // Check if there is already a info for the key and our mime type. IPropertyPersistence::InfoResultType infoList = mitk::CoreServices::GetPropertyPersistence()->GetInfoByKey(key); auto predicate = [mimeTypeName](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == mimeTypeName; }; auto finding = std::find_if(infoList.begin(), infoList.end(), predicate); if (finding == infoList.end()) { auto predicateWild = [](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == PropertyPersistenceInfo::ANY_MIMETYPE_NAME(); }; finding = std::find_if(infoList.begin(), infoList.end(), predicateWild); } PropertyPersistenceInfo::ConstPointer info; if (finding != infoList.end()) { assumedPropertyName = (*finding)->GetName(); info = *finding; } else { // we have not found anything suitable so we generate our own info PropertyPersistenceInfo::Pointer newInfo = PropertyPersistenceInfo::New(); newInfo->SetNameAndKey(assumedPropertyName, key); newInfo->SetMimeTypeName(PropertyPersistenceInfo::ANY_MIMETYPE_NAME()); info = newInfo; } std::string value = dynamic_cast<itk::MetaDataObject<std::string> *>(iter->second.GetPointer())->GetMetaDataObjectValue(); mitk::BaseProperty::Pointer loadedProp = info->GetDeserializationFunction()(value); image->SetProperty(assumedPropertyName.c_str(), loadedProp); // Read properties should be persisted unless they are default properties // which are written anyway bool isDefaultKey(false); for (const auto &defaultKey : m_DefaultMetaDataKeys) { if (defaultKey.length() <= assumedPropertyName.length()) { // does the start match the default key if (assumedPropertyName.substr(0, defaultKey.length()).find(defaultKey) != std::string::npos) { isDefaultKey = true; break; } } } if (!isDefaultKey) { mitk::CoreServices::GetPropertyPersistence()->AddInfo(info); } } } MITK_INFO << "...finished!" << std::endl; result.push_back(image.GetPointer()); return result; }
void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::TimeGeometry& geometry, unsigned int channels, int tDim ) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2)+0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); // make sure the image geometry flag is properly set for all time steps for (TimeStepType step = 0; step < cloned->CountTimeSteps(); ++step) { if( ! cloned->GetGeometryCloneForTimeStep(step)->GetImageGeometry() ) { MITK_WARN("Image.3DnT.Initialize") << " Attempt to initialize an image with a non-image geometry. Re-interpretting the initialization geometry for timestep " << step << " as image geometry, the original geometry remains unchanged."; cloned->GetGeometryForTimeStep(step)->ImageGeometryOn(); } } } else { // make sure the image geometry coming from outside has proper value of the image geometry flag BaseGeometry::Pointer cloned = geometry.GetGeometryCloneForTimeStep(0)->Clone(); if( ! cloned->GetImageGeometry() ) { MITK_WARN("Image.Initialize") << " Attempt to initialize an image with a non-image geometry. Re-interpretting the initialization geometry as image geometry, the original geometry remains unchanged."; cloned->ImageGeometryOn(); } Superclass::SetGeometry( cloned ); } /* //Old //TODO_GOETZ Really necessary? mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); }*/ }
bool RenderingManager ::InitializeViews(const TimeGeometry * dataGeometry, RequestType type, bool /*preserveRoughOrientationInWorldSpace*/) { MITK_DEBUG << "initializing views"; bool boundingBoxInitialized = false; TimeGeometry::ConstPointer timeGeometry = dataGeometry; TimeGeometry::Pointer modifiedGeometry = NULL; if (dataGeometry != NULL) { modifiedGeometry = dataGeometry->Clone(); } int warningLevel = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); if ((timeGeometry.IsNotNull()) && (const_cast<mitk::BoundingBox *>( timeGeometry->GetBoundingBoxInWorld())->GetDiagonalLength2() > mitk::eps)) { boundingBoxInitialized = true; } if (timeGeometry.IsNotNull()) {// make sure bounding box has an extent bigger than zero in any direction // clone the input geometry //Old Geometry3D::Pointer modifiedGeometry = dynamic_cast<Geometry3D*>( dataGeometry->Clone().GetPointer() ); assert(modifiedGeometry.IsNotNull()); for (TimeStepType step = 0; step < modifiedGeometry->CountTimeSteps(); ++step) { BaseGeometry::BoundsArrayType newBounds = modifiedGeometry->GetGeometryForTimeStep(step)->GetBounds(); for (unsigned int dimension = 0; (2 * dimension) < newBounds.Size(); dimension++) { //check for equality but for an epsilon if (Equal(newBounds[2 * dimension], newBounds[2 * dimension + 1])) { newBounds[2 * dimension + 1] += 1; if( Equal( newBounds[ 2 * dimension ], newBounds[ 2 * dimension + 1 ] ) ) // newBounds will still be equal if values are beyond double precision { mitkThrow()<< "One dimension of object data has zero length, please make sure you're not using numbers beyond double precision as coordinates."; } } } modifiedGeometry->GetGeometryForTimeStep(step)->SetBounds(newBounds); } } timeGeometry = modifiedGeometry; RenderWindowList::const_iterator it; for (it = m_RenderWindowList.cbegin(); it != m_RenderWindowList.cend(); ++it) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance(it->first); baseRenderer->SetConstrainZoomingAndPanning(m_ConstrainedPanningZooming); int id = baseRenderer->GetMapperID(); if (((type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2))) ) { this->InternalViewInitialization(baseRenderer, timeGeometry, boundingBoxInitialized, id); } } if (boundingBoxInitialized) { m_TimeNavigationController->SetInputWorldTimeGeometry(timeGeometry); } m_TimeNavigationController->Update(); this->RequestUpdateAll(type); vtkObject::SetGlobalWarningDisplay(warningLevel); // Inform listeners that views have been initialized this->InvokeEvent(mitk::RenderingManagerViewsInitializedEvent()); return boundingBoxInitialized; }