void TR_ReachingDefinitions::initializeGenAndKillSetInfo() { // For each block in the CFG build the gen and kill set for this analysis. // Go in treetop order, which guarantees that we see the correct (i.e. first) // evaluation point for each node. // TR::Block *block; int32_t blockNum = 0; bool seenException = false; TR_BitVector defsKilled(getNumberOfBits(), trMemory()->currentStackRegion()); comp()->incVisitCount(); for (TR::TreeTop *treeTop = comp()->getStartTree(); treeTop; treeTop = treeTop->getNextTreeTop()) { TR::Node *node = treeTop->getNode(); if (node->getOpCodeValue() == TR::BBStart) { block = node->getBlock(); blockNum = block->getNumber(); seenException = false; if (traceRD()) traceMsg(comp(), "\nNow generating gen and kill information for block_%d\n", blockNum); continue; } #if DEBUG if (node->getOpCodeValue() == TR::BBEnd && traceRD()) { traceMsg(comp(), " Block %d:\n", blockNum); traceMsg(comp(), " Gen set "); if (_regularGenSetInfo[blockNum]) _regularGenSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Kill set "); if (_regularKillSetInfo[blockNum]) _regularKillSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Exception Gen set "); if (_exceptionGenSetInfo[blockNum]) _exceptionGenSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Exception Kill set "); if (_exceptionKillSetInfo[blockNum]) _exceptionKillSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); continue; } #endif initializeGenAndKillSetInfoForNode(node, defsKilled, seenException, blockNum, NULL); if (!seenException && treeHasChecks(treeTop)) seenException = true; } }
int32_t TR_AsyncCheckInsertion::insertReturnAsyncChecks(TR::Optimization *opt, const char *counterPrefix) { TR::Compilation * const comp = opt->comp(); if (opt->trace()) traceMsg(comp, "Inserting return asyncchecks (%s)\n", counterPrefix); int numAsyncChecksInserted = 0; for (TR::TreeTop *treeTop = comp->getStartTree(); treeTop; /* nothing */ ) { TR::Block *block = treeTop->getNode()->getBlock(); if (block->getLastRealTreeTop()->getNode()->getOpCode().isReturn() && performTransformation(comp, "%sInserting return asynccheck (%s) in block_%d\n", opt->optDetailString(), counterPrefix, block->getNumber())) { insertAsyncCheck(block, comp, counterPrefix); numAsyncChecksInserted++; } treeTop = block->getExit()->getNextRealTreeTop(); } return numAsyncChecksInserted; }
void TR_ForwardReachabilityWithoutExceptionEdges::propagateInputs(blocknum_t blockNum, int32_t depth, blocknum_t *stack, blocknum_t *depth_map, TR_BitVector *closure) { TR::Block *block = getBlock(blockNum); for (auto edge = block->getPredecessors().begin(); edge != block->getPredecessors().end(); ++edge) { TR::Block *inputBlock = toBlock((*edge)->getFrom()); propagateOneInput(inputBlock->getNumber(), blockNum, depth, stack, depth_map, closure); } }
void TR_LocalAnalysis::initializeBlocks(TR::Block *block, TR::BitVector &blocksSeen) { _info[block->getNumber()]._block = block; blocksSeen[block->getNumber()] = true; TR::Block *next; for (auto nextEdge = block->getSuccessors().begin(); nextEdge != block->getSuccessors().end(); ++nextEdge) { next = toBlock((*nextEdge)->getTo()); if (!blocksSeen.ValueAt(next->getNumber())) initializeBlocks(next, blocksSeen); } for (auto nextEdge = block->getExceptionSuccessors().begin(); nextEdge != block->getExceptionSuccessors().end(); ++nextEdge) { next = toBlock((*nextEdge)->getTo()); if (!blocksSeen.ValueAt(next->getNumber())) initializeBlocks(next, blocksSeen); } }
void TR_BackwardReachability::propagateInputs(blocknum_t blockNum, int32_t depth, blocknum_t *stack, blocknum_t *depth_map, TR_BitVector *closure) { TR::Block *block = getBlock(blockNum); TR_SuccessorIterator bi(block); for (TR::CFGEdge *edge = bi.getFirst(); edge != NULL; edge = bi.getNext()) { TR::Block *inputBlock = toBlock(edge->getTo()); propagateOneInput(inputBlock->getNumber(), blockNum, depth, stack, depth_map, closure); } }
void TR_ExpressionsSimplification::removeUncertainBlocks(TR_RegionStructure* region, List<TR::Block> *candidateBlocksList) { // Examine the top region block first // TR::Block *entryBlock = _currentRegion->getEntryBlock(); ListIterator<TR::Block> blocks; blocks.set(candidateBlocksList); if (trace()) traceMsg(comp(), "Number of blocks %d, entry block number %d\n", candidateBlocksList->getSize(), entryBlock->getNumber()); for (TR::Block *block = blocks.getFirst(); block; block = blocks.getNext()) { TR::CFGNode *cfgNode = block; if (!(cfgNode->getExceptionSuccessors().empty()) || blockHasCalls(block, comp())) { if (trace()) traceMsg(comp(), "An exception can be thrown from block_%d. Removing all the blocks, since we cannot know the number of iterations.\n", block->getNumber()); candidateBlocksList->deleteAll(); break; } } TR_PostDominators postDominators(comp()); if (postDominators.isValid()) { postDominators.findControlDependents(); for (TR::Block *block = blocks.getFirst(); block; block = blocks.getNext()) { if (postDominators.dominates(block, entryBlock) == 0) { candidateBlocksList->remove(block); if (trace()) traceMsg(comp(), "Block_%d is not guaranteed to be executed at least once. Removing it from the list.\n", block->getNumber()); } } } else { if (trace()) traceMsg(comp(), "There is no post dominators information. Removing all the blocks.\n"); for (TR::Block *block = blocks.getFirst(); block; block = blocks.getNext()) { candidateBlocksList->remove(block); if (trace()) traceMsg(comp(), "Block_%d is removed from the list\n", block->getNumber()); } } }
void TR_ReachabilityAnalysis::perform(TR_BitVector *result) { TR::CFG *cfg = comp()->getFlowGraph(); int32_t numBlockIndexes = cfg->getNextNodeNumber(); int32_t numBlocks = cfg->getNumberOfNodes(); _blocks = cfg->createArrayOfBlocks(); blocknum_t *stack = (blocknum_t*)comp()->trMemory()->allocateStackMemory(numBlockIndexes * sizeof(stack[0])); blocknum_t *depthMap = (blocknum_t*)comp()->trMemory()->allocateStackMemory(numBlockIndexes * sizeof(depthMap[0])); memset(depthMap, 0, numBlockIndexes * sizeof(depthMap[0])); bool trace = comp()->getOption(TR_TraceReachability); if (trace) traceMsg(comp(), "BEGIN REACHABILITY: %d blocks\n", numBlocks); for (TR::Block *block = comp()->getStartBlock(); block; block = block->getNextBlock()) { blocknum_t blockNum = block->getNumber(); if (trace) traceMsg(comp(), "Visit block_%d\n", blockNum); if (depthMap[blockNum] == 0) traverse(blockNum, 0, stack, depthMap, result); else traceMsg(comp(), " depth is already %d; skip\n", depthMap[blockNum]); } if (comp()->getOption(TR_TraceReachability)) { traceMsg(comp(), "END REACHABILITY. Result:\n"); result->print(comp(), comp()->getOutFile()); traceMsg(comp(), "\n"); } }
int32_t TR_CatchBlockRemover::perform() { TR::CFG *cfg = comp()->getFlowGraph(); if (cfg == NULL) { if (trace()) traceMsg(comp(), "Can't do Catch Block Removal, no CFG\n"); return 0; } if (trace()) traceMsg(comp(), "Starting Catch Block Removal\n"); bool thereMayBeRemovableCatchBlocks = false; { TR::StackMemoryRegion stackMemoryRegion(*trMemory()); TR::Block *block; ListIterator<TR::CFGEdge> edgeIterator; // Go through all blocks that have exception successors and see if any of them // are not reached. Mark each of these edges with a visit count so they can // be identified later. // vcount_t visitCount = comp()->incOrResetVisitCount(); TR::CFGNode *cfgNode; for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext()) { if (cfgNode->getExceptionSuccessors().empty()) continue; block = toBlock(cfgNode); uint32_t reachedExceptions = 0; TR::TreeTop *treeTop; for (treeTop = block->getEntry(); treeTop != block->getExit(); treeTop = treeTop->getNextTreeTop()) { reachedExceptions |= treeTop->getNode()->exceptionsRaised(); if (treeTop->getNode()->getOpCodeValue() == TR::monexitfence) // for live monitor metadata reachedExceptions |= TR::Block::CanCatchMonitorExit; } if (reachedExceptions & TR::Block::CanCatchUserThrows) continue; for (auto edge = block->getExceptionSuccessors().begin(); edge != block->getExceptionSuccessors().end();) { TR::CFGEdge * current = *(edge++); TR::Block *catchBlock = toBlock(current->getTo()); if (catchBlock->isOSRCodeBlock() || catchBlock->isOSRCatchBlock()) continue; if (!reachedExceptions && performTransformation(comp(), "%sRemove redundant exception edge from block_%d at [%p] to catch block_%d at [%p]\n", optDetailString(), block->getNumber(), block, catchBlock->getNumber(), catchBlock)) { cfg->removeEdge(block, catchBlock); thereMayBeRemovableCatchBlocks = true; } else { if (!catchBlock->canCatchExceptions(reachedExceptions)) { current->setVisitCount(visitCount); thereMayBeRemovableCatchBlocks = true; } } } } bool edgesRemoved = false; // Now look to see if there are any catch blocks for which all exception // predecessors have the visit count set. If so, the block is unreachable and // can be removed. // If only some of the exception predecessors are marked, these edges are // left in place to identify the try/catch structure properly. // while (thereMayBeRemovableCatchBlocks) { thereMayBeRemovableCatchBlocks = false; for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext()) { if (cfgNode->getExceptionPredecessors().empty()) continue; auto edgeIt = cfgNode->getExceptionPredecessors().begin(); for (; edgeIt != cfgNode->getExceptionPredecessors().end(); ++edgeIt) { if ((*edgeIt)->getVisitCount() != visitCount) break; } if (edgeIt == cfgNode->getExceptionPredecessors().end() && performTransformation(comp(), "%sRemove redundant catch block_%d at [%p]\n", optDetailString(), cfgNode->getNumber(), cfgNode)) { while (!cfgNode->getExceptionPredecessors().empty()) { cfg->removeEdge(cfgNode->getExceptionPredecessors().front()); } edgesRemoved = true; thereMayBeRemovableCatchBlocks = true; } } } // Any transformations invalidate use/def and value number information // if (edgesRemoved) { optimizer()->setUseDefInfo(NULL); optimizer()->setValueNumberInfo(NULL); requestOpt(OMR::treeSimplification, true); } } // scope of the stack memory region if (trace()) traceMsg(comp(), "\nEnding Catch Block Removal\n"); return 1; // actual cost }
TR::TreeTop * OMR::Simplifier::simplifyExtendedBlock(TR::TreeTop * treeTop) { TR::Block * block = 0; _containingStructure = NULL; _blockRemoved = false; for (; treeTop; treeTop = treeTop->getNextTreeTop()) { TR::Node * node = treeTop->getNode(); TR_ASSERT(node->getOpCodeValue() == TR::BBStart, "Simplification, expected BBStart treetop"); TR::Block * b = node->getBlock(); if (block && !b->isExtensionOfPreviousBlock()) break; if (b->isOSRCodeBlock() || b->isOSRCatchBlock()) { b->setHasBeenVisited(); treeTop = b->getExit(); continue; } #ifdef DEBUG if (block != b) b->setHasBeenVisited(); #endif if (!block && _reassociate && comp()->getFlowGraph()->getStructure() != NULL // [99391] getStructureOf() only valid if structure isn't invalidated ) { // b is first block in the extended block TR_BlockStructure *blockStructure = b->getStructureOf(); if(blockStructure) { TR_Structure *parent = blockStructure->getParent(); while (parent) { TR_RegionStructure *region = parent->asRegion(); if (region->isNaturalLoop() /* || region->containsInternalCycles() */) { _containingStructure = region; break; } parent = parent->getParent(); } } } block = b; if (trace()) traceMsg(comp(), "simplifying block_%d\n", block->getNumber()); _performLowerTreeSimplifier=NULL; _performLowerTreeNode=NULL; simplify(block); if(_performLowerTreeSimplifier) { _performLowerTreeNode = postWalkLowerTreeSimplifier(_performLowerTreeSimplifier, _performLowerTreeNode, block, (TR::Simplifier *) this); _performLowerTreeSimplifier->setNode(_performLowerTreeNode); } // If the block itself was removed from the CFG during simplification, find // the next 'legitimate' block to be simplified // //if (comp()->getFlowGraph()->getRemovedNodes().find(block)) if(block->nodeIsRemoved()) { TR::TreeTop * tt = findNextLegalTreeTop(comp(), block); // in certain cases the removed block might be the last one we haven't // visited and therefore we won't be able to find a treetop to continue // in such cases we exit the loop // treeTop = tt ? tt->getPrevTreeTop() : 0; if (!treeTop) break; } else { treeTop = block->getExit(); } } // now remove any unreachable blocks // if (_blockRemoved) { // if the next block to be processed has been removed, // find the next valid block to process // if (treeTop) { TR::Block *b = treeTop->getNode()->getBlock(); //if (comp()->getFlowGraph()->getRemovedNodes().find(b)) if(b->nodeIsRemoved()) treeTop = findNextLegalTreeTop(comp(), b); } } return treeTop; }
void TR::RegDepCopyRemoval::makeFreshCopy(TR_GlobalRegisterNumber reg) { RegDepInfo &dep = getRegDepInfo(reg); if (!performTransformation(comp(), "%schange %s in GlRegDeps n%un to an explicit copy of n%un\n", optDetailString(), registerName(reg), _regDeps->getGlobalIndex(), dep.value->getGlobalIndex())) return; // Split the block at fallthrough if necessary to avoid putting copies // between branches and BBEnd. TR::Node *curNode = _treetop->getNode(); if (curNode->getOpCodeValue() == TR::BBEnd) { TR::Block *curBlock = curNode->getBlock(); if (curBlock->getLastRealTreeTop() != curBlock->getLastNonControlFlowTreeTop()) { TR::Block *fallthrough = curBlock->getNextBlock(); fallthrough = curBlock->splitEdge(curBlock, fallthrough, comp()); TR_ASSERT(curBlock->getNextBlock() == fallthrough, "bad block placement from splitEdge\n"); fallthrough->setIsExtensionOfPreviousBlock(); _treetop = fallthrough->getExit(); TR::Node *newNode = _treetop->getNode(); newNode->setChild(0, _regDeps); newNode->setNumChildren(1); curNode->setNumChildren(0); if (trace()) traceMsg(comp(), "\tsplit fallthrough edge to insert copy, created block_%d\n", fallthrough->getNumber()); } } // Make and insert the copy TR::Node *copyNode = NULL; if (dep.value->getOpCode().isLoadConst()) { // No need to depend on the other register. // TODO heuristic for whether this is really better than a reg-reg move? generateRegcopyDebugCounter("const-remat"); copyNode = TR::Node::create(dep.value->getOpCodeValue(), 0); copyNode->setConstValue(dep.value->getConstValue()); } else { generateRegcopyDebugCounter("fresh-copy"); copyNode = TR::Node::create(TR::PassThrough, 1, dep.value); copyNode->setCopyToNewVirtualRegister(); } TR::Node *copyTreetopNode = TR::Node::create(TR::treetop, 1, copyNode); _treetop->insertBefore(TR::TreeTop::create(comp(), copyTreetopNode)); if (trace()) traceMsg(comp(), "\tcopy is n%un\n", copyNode->getGlobalIndex()); updateSingleRegDep(reg, copyNode); }
// This opt tries to reduce merge backs from cold code that are the result of inliner // gnerated nopable virtual guards // It looks for one basic pattern // // guard1 -> cold1 // BBEND // BBSTART // guard2 -> cold2 // if guard1 is the guard for a method which calls the method guard2 protects or cold1 is // a predecessor of cold2 (a situation commonly greated by virtual guard tail splitter) we // can transform the guards as follows when guard1 and guard2 a // guard1 -> cold1 // BBEND // BBSTART // guard2 -> cold1 // This is safe because there are no trees between the guards and calling the caller will // result in the call to the callee if we need to patch guard2. cold2 and its mergebacks // can then be eliminated // // In addition this opt will try to move guard2 up from the end of a block to the // start of the block. We can do this if guard2 is an HCR guard and there is no GC point // between BBSTART and guard2 since HCR is a stop-the-world event. // // Finally, there is a simple tail splitting step run before the analysis of a guard if we // detect that the taken side of the guard merges back in the next block - this happens // for some empty methods and is common for Object.<init> at the top of constructors. int32_t TR_VirtualGuardHeadMerger::perform() { static char *disableVGHeadMergerTailSplitting = feGetEnv("TR_DisableVGHeadMergerTailSplitting"); TR::CFG *cfg = comp()->getFlowGraph(); // Cache the loads for the outer guard's cold path TR_BitVector coldPathLoads(comp()->trMemory()->currentStackRegion()); TR_BitVector privArgSymRefs(comp()->trMemory()->currentStackRegion()); bool evaluatedColdPathLoads = false; for (TR::Block *block = optimizer()->getMethodSymbol()->getFirstTreeTop()->getNode()->getBlock(); block; block = block->getNextBlock()) { TR::Node *guard1 = block->getLastRealTreeTop()->getNode(); if (isMergeableGuard(guard1)) { if (trace()) traceMsg(comp(), "Found mergeable guard in block_%d\n", block->getNumber()); TR::Block *cold1 = guard1->getBranchDestination()->getEnclosingBlock(); // check for an immediate merge back from the cold block and // tail split one block if we can - we only handle splitting a block // ending in a fallthrough, a branch or a goto for now for simplicity if (!disableVGHeadMergerTailSplitting && (cold1->getSuccessors().size() == 1) && cold1->hasSuccessor(block->getNextBlock()) && cold1->getLastRealTreeTop()->getNode()->getOpCode().isGoto()) { // TODO handle moving code earlier in the block down below the guard // tail split if ((block->getNextBlock()->getSuccessors().size() == 1) || ((block->getNextBlock()->getSuccessors().size() == 2) && block->getNextBlock()->getLastRealTreeTop()->getNode()->getOpCode().isBranch()) && performTransformation(comp(), "%sCloning block_%d and placing clone after block_%d to reduce HCR guard nops\n", OPT_DETAILS, block->getNextBlock()->getNumber(), cold1->getNumber())) tailSplitBlock(block, cold1); } // guard motion is fairly complex but what we want to achieve around guard1 is a sequence // of relocated privarg blocks, followed by a sequence of runtime patchable guards going to // guard1's cold block, followed by a sequence of stop-the-world guards going to guard1's // cold block // // The following code is to setup the various insert points based on the following diagrams // of basic blocks: // // start: setup: end result after moving runtime guard' // | | +-------+ <-- privargIns // | | <-- privargIns | // +-------+ <-- runtimeIns +-------+ // | | | | Guard'| // | | V +-------+ <-- runtimeIns // +-------+ +-------+ | // | Guard | | Guard | V // +-------+ +-------+ <-- HCRIns +-------+ // | ===> | ===> | Guard | // V V +-------+ <-- HCRIns // +-------+ +-------+ | // | | | | V // | | | | +-------+ // // Note we always split the block - this may create an empty block but preserves the incoming // control flow we leave the rest to block extension to fix later block = block->split(block->getLastRealTreeTop(), cfg, true, false); TR::Block *privargIns = block->getPrevBlock(); TR::Block *runtimeIns = block->getPrevBlock(); TR::Block *HCRIns = block; // New outer guard so cold paths must be evaluated evaluatedColdPathLoads = false; // scan for candidate guards to merge with guard1 identified above for (TR::Block *nextBlock = block->getNextBlock(); nextBlock; nextBlock = nextBlock->getNextBlock()) { if (!(nextBlock->getPredecessors().size() == 1) || !nextBlock->hasPredecessor(block)) { break; } TR::TreeTop *guard2Tree = NULL; if (isMergeableGuard(nextBlock->getFirstRealTreeTop()->getNode())) { guard2Tree = nextBlock->getFirstRealTreeTop(); } else if (isMergeableGuard(nextBlock->getLastRealTreeTop()->getNode())) { guard2Tree = nextBlock->getLastRealTreeTop(); } else break; TR::Node *guard2 = guard2Tree->getNode(); TR::Block *guard2Block = nextBlock; // It is not possible to shift an OSR guard unless the destination is already an OSR point // as the necessary OSR state will not be available if (guard2->isOSRGuard() && !guard1->isOSRGuard()) break; TR::Block *insertPoint = isStopTheWorldGuard(guard2) ? HCRIns : runtimeIns; if (!safeToMoveGuard(insertPoint, guard2Tree, guard1->getBranchDestination(), privArgSymRefs)) break; // now we figure out if we can redirect guard2 to guard1's cold block // ie can we do the head merge TR::Block *cold2 = guard2->getBranchDestination()->getEnclosingBlock(); if (guard1->getInlinedSiteIndex() == guard2->getInlinedSiteIndex()) { if (trace()) traceMsg(comp(), " Guard1 [%p] is guarding the same call as Guard2 [%p] - proceeding with guard merging\n", guard1, guard2); } else if (guard2->getInlinedSiteIndex() > -1 && guard1->getInlinedSiteIndex() == TR::comp()->getInlinedCallSite(guard2->getInlinedSiteIndex())._byteCodeInfo.getCallerIndex()) { if (trace()) traceMsg(comp(), " Guard1 [%p] is the caller of Guard2 [%p] - proceeding with guard merging\n", guard1, guard2); } else if ((cold1->getSuccessors().size() == 1) && cold1->hasSuccessor(cold2)) { if (trace()) traceMsg(comp(), " Guard1 cold destination block_%d has guard2 cold destination block_%d as its only successor - proceeding with guard merging\n", cold1->getNumber(), cold2->getNumber()); } else { if (trace()) traceMsg(comp(), " Cold1 block_%d and cold2 block_%d of guard2 [%p] in unknown relationship - abandon the merge attempt\n", cold1->getNumber(), cold2->getNumber(), guard2); break; } // Runtime guards will shift their privargs, so it is necessary to check such a move is safe // This is possible if a privarg temp was recycled for the inner call site, with a prior use as an // argument for the outer call site. As the privargs for the inner call site must be evaluated before // both guards, this would result in the recycled temp holding the incorrect value if the guard is ever // taken. if (!isStopTheWorldGuard(guard2)) { if (!evaluatedColdPathLoads) { collectColdPathLoads(cold1, coldPathLoads); evaluatedColdPathLoads = true; } if (coldPathLoads.intersects(privArgSymRefs)) { if (trace()) traceMsg(comp(), " Recycled temp live in cold1 block_%d and used as privarg before guard2 [%p] - stop guard merging", cold1->getNumber(), guard2); break; } } if (!performTransformation(comp(), "%sRedirecting %s guard [%p] in block_%d to parent guard cold block_%d\n", OPT_DETAILS, isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", guard2, guard2Block->getNumber(), cold1->getNumber())) continue; if (guard2->getBranchDestination() != guard1->getBranchDestination()) guard2Block->changeBranchDestination(guard1->getBranchDestination(), cfg); if (guard2Tree != guard2Block->getFirstRealTreeTop()) { cfg->setStructure(NULL); // We should leave code ahead of an HCR guard in place because: // 1, it might have side effect to runtime guards after it, moving it up might cause us to falsely merge // the subsequent runtime guards // 2, it might contain live monitor, moving it up above a guard can affect the monitor's live range if (!isStopTheWorldGuard(guard2)) { // the block created above guard2 contains only privarg treetops or monitor stores if // guard2 is a runtime-patchable guard and is safe to merge. We need to move the priv // args up to the runtime insert point and leave the monitor stores in place // It's safe to do so because there is no data dependency between the monitor store and // the priv arg store, because the priv arg store does not load the value from the temp // holding the monitored object // Split priv arg stores from monitor stores // Monitor store is generated for the caller of the method guard2 protects, so should appear before // priv arg stores for the method guard2 protects TR::Block *privargBlock = guard2Block; guard2Block = splitRuntimeGuardBlock(comp(), guard2Block, cfg); if (privargBlock != guard2Block) { if (trace()) traceMsg(comp(), " Moving privarg block_%d after block_%d\n", privargBlock->getNumber(), privargIns->getNumber()); moveBlockAfterDest(cfg, privargBlock, privargIns); if (HCRIns == privargIns) HCRIns = privargBlock; if (runtimeIns == privargIns) runtimeIns = privargBlock; privargIns = privargBlock; // refresh the insertPoint since it could be stale after the above updates insertPoint = runtimeIns; } } guard2Block = guard2Block->split(guard2Tree, cfg, true, false); if (trace()) traceMsg(comp(), " Created new block_%d to hold guard [%p] from block_%d\n", guard2Block->getNumber(), guard2, guard2Block->getNumber()); } if (insertPoint != guard2Block->getPrevBlock()) { TR::DebugCounter::incStaticDebugCounter(comp(), TR::DebugCounter::debugCounterName(comp(), "headMerger/%s_%s/(%s)", isStopTheWorldGuard(guard1) ? "stop the world" : "runtime", isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", comp()->signature())); cfg->setStructure(NULL); block = nextBlock = guard2Block->getPrevBlock(); if (trace()) traceMsg(comp(), " Moving guard2 block block_%d after block_%d\n", guard2Block->getNumber(), insertPoint->getNumber()); moveBlockAfterDest(cfg, guard2Block, insertPoint); if (HCRIns == insertPoint) HCRIns = guard2Block; if (runtimeIns == insertPoint) runtimeIns = guard2Block; } else { block = guard2Block; } guard1 = guard2; } } } return 1; }
TR_ExpressionsSimplification::LoopInfo* TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region) { ListIterator<TR::CFGEdge> exitEdges(®ion->getExitEdges()); if (region->getExitEdges().getSize() != 1) { if (trace()) traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n"); return 0; } TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom()); if (!exitNode->getStructure()->asBlock()) { if (trace()) traceMsg(comp(), "The exit block can't be found\n"); return 0; } TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock(); TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode(); if (trace()) { traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber()); traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock); } if (!lastTreeInExitBlock->getOpCode().isBranch()) { if (trace()) traceMsg(comp(), "The branch node couldn't be found\n"); return 0; } if (lastTreeInExitBlock->getNumChildren() < 2) { if (trace()) traceMsg(comp(), "The branch node has less than 2 children\n"); return 0; } TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild(); TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild(); if (!firstChildOfLastTree->getOpCode().hasSymbolReference()) { if (trace()) traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree); return 0; } TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference(); if (trace()) traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol()); // Locate the induction variable that matches with the exit node symbol // TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef); if (!indVar) return 0; if (!indVar->getIncr()->asIntConst()) { if (trace()) traceMsg(comp(), "Increment is not a constant\n"); return 0; } int32_t increment = indVar->getIncr()->getLowInt(); _visitCount = comp()->incVisitCount(); bool indVarWrittenAndUsedUnexpectedly = false; if (firstChildOfLastTree->getReferenceCount() > 1) { TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry(); TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit(); bool loadSeen = false; while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock) { TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode(); if (checkForLoad(cursorNode, firstChildOfLastTree)) loadSeen = true; if (!cursorNode->getOpCode().isStore() && (cursorNode->getNumChildren() > 0)) cursorNode = cursorNode->getFirstChild(); if (cursorNode->getOpCode().isStore() && (cursorNode->getSymbolReference() == firstChildSymRef)) { indVarWrittenAndUsedUnexpectedly = true; if ((cursorNode->getFirstChild() == firstChildOfLastTree) || !loadSeen) indVarWrittenAndUsedUnexpectedly = false; else break; } cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop(); } } if (indVarWrittenAndUsedUnexpectedly) { return 0; } int32_t lowerBound; int32_t upperBound = 0; TR::Node *bound = 0; bool equals = false; switch(lastTreeInExitBlock->getOpCodeValue()) { case TR::ificmplt: case TR::ificmpgt: equals = true; case TR::ificmple: case TR::ificmpge: if (!(indVar->getEntry() && indVar->getEntry()->asIntConst())) { if (trace()) traceMsg(comp(), "Entry value is not a constant\n"); return 0; } lowerBound = indVar->getEntry()->getLowInt(); if (secondChildOfLastTree->getOpCode().isLoadConst()) { upperBound = secondChildOfLastTree->getInt(); } else if (secondChildOfLastTree->getOpCode().isLoadVar()) { bound = secondChildOfLastTree; } else { if (trace()) traceMsg(comp(), "Second child is not a const or a load\n"); return 0; } return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals); default: if (trace()) traceMsg(comp(), "The condition has not been implemeted\n"); return 0; } return 0; }
void TR_ExpressionsSimplification::tranformStoreMotionCandidate(TR::TreeTop *treeTop, bool *isPreheaderBlockInvalid) { TR::Node *node = treeTop->getNode(); TR_ASSERT(node->getOpCode().isStore() && !node->getSymbol()->isStatic() && !node->getSymbol()->holdsMonitoredObject(), "node %p was expected to be a non-static non-monitored object store and was not.", node); // this candidate should be valid, either direct or indirect if (trace()) comp()->getDebug()->print(comp()->getOutFile(), node, 0, true); TR::Block *entryBlock = _currentRegion->getEntryBlock(); TR::Block *preheaderBlock = findPredecessorBlock(entryBlock); if (!preheaderBlock) { if (trace()) traceMsg(comp(), "Fail to find a place to put the hoist code in\n"); *isPreheaderBlockInvalid = true; return; } // Earlier post-dominance test ensures that the loop is executed as least once, or is canonicalized. // but to be safe we still perform on canonicalized loops only. if (_currentRegion->isCanonicalizedLoop()) // make sure that the loop is canonicalized, in which case the preheader is { // executed in its first iteration and is protected. if (performTransformation(comp(), "%sMove out loop-invariant store [%p] to block_%d\n", OPT_DETAILS, node, preheaderBlock->getNumber())) { TR::Node *newNode = node->duplicateTree(); transformNode(newNode, preheaderBlock); TR::TransformUtil::removeTree(comp(), treeTop); } } else { if (trace()) traceMsg(comp(), "No canonicalized loop for this candidate\n"); } }
bool TR_ExpressionsSimplification::tranformSummationReductionCandidate(TR::TreeTop *treeTop, LoopInfo *loopInfo, bool *isPreheaderBlockInvalid) { TR::Node *node = treeTop->getNode(); TR::Node *opNode = node->getFirstChild(); TR::Node *expNode = NULL; int32_t expChildNumber = 0; bool removeOnly = false; bool replaceWithNewNode = false; if (opNode->getOpCodeValue() == TR::iadd || opNode->getOpCodeValue() == TR::isub) { if (opNode->getSecondChild()->getOpCode().hasSymbolReference() && node->getSymbolReference() == opNode->getSecondChild()->getSymbolReference()) { expChildNumber = 0; expNode = opNode->getFirstChild(); } else { expChildNumber = 1; expNode = opNode->getSecondChild(); } expNode = iaddisubSimplifier(expNode, loopInfo); replaceWithNewNode = true; } else if (opNode->getOpCodeValue() == TR::ixor || opNode->getOpCodeValue() == TR::ineg) { expNode = ixorinegSimplifier(opNode, loopInfo, &removeOnly); } if (expNode) { if (trace()) comp()->getDebug()->print(comp()->getOutFile(), expNode, 0, true); TR::Block *entryBlock = _currentRegion->getEntryBlock(); TR::Block *preheaderBlock = findPredecessorBlock(entryBlock); if (!preheaderBlock) { if (trace()) traceMsg(comp(), "Fail to find a place to put the hoist code in\n"); *isPreheaderBlockInvalid = true; return true; } if (loopInfo->getNumIterations() > 0 || // make sure that the loop is going to be executed at least once _currentRegion->isCanonicalizedLoop()) // or that the loop is canonicalized, in which case the preheader is { // executed in its first iteration and is protected. if (performTransformation(comp(), "%sMove out loop-invariant node [%p] to block_%d\n", OPT_DETAILS, node, preheaderBlock->getNumber())) { if (!(removeOnly)) { TR::Node *newNode = node->duplicateTree(); if (replaceWithNewNode) newNode->getFirstChild()->setAndIncChild(expChildNumber, expNode); transformNode(newNode, preheaderBlock); } TR::TransformUtil::removeTree(comp(), treeTop); } } } return (expNode != NULL); }
void TR_ExpressionsSimplification::simplifyInvariantLoopExpressions(ListIterator<TR::Block> &blocks) { // Need to locate the induction variable of the loop // LoopInfo *loopInfo = findLoopInfo(_currentRegion); if (trace()) { if (!loopInfo) { traceMsg(comp(), "Accurate loop info is not found, cannot carry out summation reduction\n"); } else { traceMsg(comp(), "Accurate loop info has been found, will try to carry out summation reduction\n"); if (loopInfo->getBoundaryNode()) { traceMsg(comp(), "Variable iterations from node %p has not been handled\n",loopInfo->getBoundaryNode()); } else { traceMsg(comp(), "Natural Loop %p will run %d times\n", _currentRegion, loopInfo->getNumIterations()); } } } // Initialize the list of candidates // _candidateTTs = new (trStackMemory()) TR_ScratchList<TR::TreeTop>(trMemory()); for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock = blocks.getNext()) { if (trace()) traceMsg(comp(), "Analyzing block #%d, which must be executed once per iteration\n", currentBlock->getNumber()); // Scan through each node in the block // TR::TreeTop *tt = currentBlock->getEntry(); TR::TreeTop *exitTreeTop = currentBlock->getExit(); while (tt != exitTreeTop) { TR::Node *currentNode = tt->getNode(); if (trace()) traceMsg(comp(), "Analyzing tree top node %p\n", currentNode); if (loopInfo) { // requires loop info for the number of iterations setSummationReductionCandidates(currentNode, tt); } setStoreMotionCandidates(currentNode, tt); tt = tt->getNextTreeTop(); } } // New code: without using any UDI // walk through the trees in the loop // to invalidate the candidates // if (!_supportedExpressions) { _supportedExpressions = new (trStackMemory()) TR_BitVector(comp()->getNodeCount(), trMemory(), stackAlloc, growable); } invalidateCandidates(); ListIterator<TR::TreeTop> treeTops(_candidateTTs); for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext()) { if (trace()) traceMsg(comp(), "Candidate TreeTop: %p, Node:%p\n", treeTop, treeTop->getNode()); bool usedCandidate = false; bool isPreheaderBlockInvalid = false; if (loopInfo) { usedCandidate = tranformSummationReductionCandidate(treeTop, loopInfo, &isPreheaderBlockInvalid); } if (isPreheaderBlockInvalid) { break; } if (!usedCandidate) { tranformStoreMotionCandidate(treeTop, &isPreheaderBlockInvalid); } if (isPreheaderBlockInvalid) { break; } } }