void ODUFinderModule::configure(tue::Configuration config) { if (!config.value("database_path", database_path_, tue::OPTIONAL)) std::cout << "[" << module_name_ << "] " << "Parameter 'database_path' not found. Using default: " << database_path_ << std::endl; if (!config.value("debug_mode", debug_mode_, tue::OPTIONAL)) std::cout << "[" << module_name_ << "] " << "Parameter 'debug_mode' not found. Using default: " << debug_mode_ << std::endl; if (!config.value("score_factor", score_factor_, tue::OPTIONAL)) std::cout << "[" << module_name_ << "] " << "Parameter 'score_factor' not found. Using default: " << score_factor_ << std::endl; if (!config.value("debug_folder", debug_folder_, tue::OPTIONAL)) std::cout << "[" << module_name_ << "] " << "Parameter 'debug_folder' not found. Using default: " << debug_folder_ << std::endl; database_path_ = module_path_ + database_path_; if (debug_mode_){ std::cout << "[" << module_name_ << "] " << "Debug mode enabled. Debug folder: " << debug_folder_ << std::endl; ed::perception::cleanDebugFolder(debug_folder_); } // creat odu finder instance odu_finder_ = new odu_finder::ODUFinder(database_path_, debug_mode_); if (odu_finder_->get_n_models_loaded() == 0) std::cout << "[" << module_name_ << "] " << "No models were loaded!" << std::endl; else std::cout << "[" << module_name_ << "] " << "Loaded information for " << odu_finder_->get_n_models_loaded() << " models" << std::endl; initialized_ = true; std::cout << "[" << module_name_ << "] " << "Ready!" << std::endl; }
void TFPublisherPlugin::configure(tue::Configuration config) { config.value("root_frame_id", root_frame_id_); config.value("exclude", exclude_, tue::config::OPTIONAL); // Remove possible beginning slash if (!exclude_.empty() && exclude_[0] == '/') exclude_ = exclude_.substr(1); }
bool Associator::configure(tue::Configuration config) { if ( config.readGroup("association") ) { if ( config.readArray("association_modules",tue::REQUIRED) ) { while ( config.nextArrayItem() ) { std::string module_type; config.value("type", module_type ); if ( module_type == "nearest_neighbor" ) { boost::shared_ptr<NearestNeighborCC> costCalculator(new NearestNeighborCC); costCalculators_.push_back(costCalculator); double max_no_std_devs; if ( !config.value("max_no_std_devs", max_no_std_devs) ) std::cout << "[ASSOCIATOR] Configure: Warning! No max_no_std_devs defined for " << module_type << " cost calculator module" << std::endl; max_assoc_dists_.push_back(max_no_std_devs); } else if ( module_type == "edge_tension" ) { boost::shared_ptr<EdgeTensionCC> costCalculator(new EdgeTensionCC); costCalculators_.push_back(costCalculator); double max_no_std_devs; if ( !config.value("max_no_std_devs", max_no_std_devs) ) std::cout << "[ASSOCIATOR] Configure: Warning! No max_no_std_devs defined for " << module_type << " cost calculator module" << std::endl; max_assoc_dists_.push_back(max_no_std_devs); } else { std::cout << "[ASSOCIATOR] Configure: Warning! Unknown association cost module type given in config" << std::endl; } } config.endArray(); if ( !costCalculators_.size() ) { std::cout << "\033[31m" << "[ASSOCIATOR] Configure: No cost calculator modules available!" << "\033[0m" << std::endl; return false; } } config.endGroup(); } else { std::cout << "\033[31m" << "[ASSOCIATOR] Configure: No configuration for association found!" << "\033[0m" << std::endl; return false; } return true; }
void LocalizationPlugin::configure(tue::Configuration config) { std::string laser_topic; config.value("laser_topic", laser_topic); if (config.hasError()) return; ros::NodeHandle nh; // Subscribe to laser topic ros::SubscribeOptions sub_options = ros::SubscribeOptions::create<sensor_msgs::LaserScan>( laser_topic, 1, boost::bind(&LocalizationPlugin::laserCallback, this, _1), ros::VoidPtr(), &cb_queue_); sub_laser_ = nh.subscribe(sub_options); a_current_ = 0; laser_pose_ = geo::Pose3D::identity(); laser_pose_.t.z = 0.3; }
std::shared_ptr<SupervisedController> ControllerFactory::createController(tue::Configuration& config, double dt) const { std::shared_ptr<SupervisedController> supervised_controller; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Get controller name and type std::string name, type; if (!config.value("name", name) | !config.value("type", type)) return supervised_controller; config.setShortErrorContext(name); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Create controller core from given type std::map<std::string, t_controller_creator>::const_iterator it = controller_types_.find(type); if (it == controller_types_.end()) { config.addError("Unknown controller type: '" + type + "'"); return supervised_controller; } std::shared_ptr<Controller> c = it->second(); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Configure controller core c->configure(config, dt); c->setName(name); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Wrap controller in supervised controller, and configure it supervised_controller.reset(new SupervisedController); supervised_controller->setController(c); supervised_controller->configure(config, dt); return supervised_controller; }
void FaceDetector::configureClassification(tue::Configuration config) { // default values in case configure(...) is not called! debug_mode_ = false; classifier_front_scale_factor_ = 1.2; classifier_front_min_neighbours_ = 3; classif_front_min_size_ = cv::Size(20,20); classifier_profile_scale_factor_= 1.2; classifier_profile_min_neighbours_ = 3; classif_profile_min_size_ = cv::Size(20,20); debug_folder_ = "/tmp/face_detector/"; // load training files for frontal classifier std::string cascade_front_files_path_; if (config.value("cascade_front_files_path", cascade_front_files_path_)) { if (!classifier_front_.load(cascade_front_files_path_)) config.addError("Unable to load front haar cascade files (" + cascade_front_files_path_ + ")"); } // load training files for profile classifier std::string cascade_profile_files_path_; if (config.value("cascade_profile_front_path", cascade_profile_files_path_)) { if (!classifier_profile_.load(cascade_profile_files_path_)) config.addError("Unable to load profile haar cascade files (" + cascade_profile_files_path_ + ")"); } if (config.hasError()) return; if (!config.value("debug_mode", debug_mode_, tue::OPTIONAL)) ed::log::info() << "Parameter 'debug_mode' not found. Using default: " << debug_mode_ << std::endl; if (!config.value("debug_folder", debug_folder_, tue::OPTIONAL)) ed::log::info() << "Parameter 'debug_folder' not found. Using default: " << debug_folder_ << std::endl; if (!config.value("classifier_front_scale_factor", classifier_front_scale_factor_, tue::OPTIONAL)) ed::log::info() << "Parameter 'classifier_front_scale_factor' not found. Using default: " << classifier_front_scale_factor_ << std::endl; if (!config.value("classifier_front_min_neighbours", classifier_front_min_neighbours_, tue::OPTIONAL)) ed::log::info() << "Parameter 'classifier_front_min_neighbours' not found. Using default: " << classifier_front_min_neighbours_ << std::endl; if (!config.value("classifier_profile_scale_factor", classifier_profile_scale_factor_, tue::OPTIONAL)) ed::log::info() << "Parameter 'classifier_profile_scale_factor' not found. Using default: " << classifier_profile_scale_factor_ << std::endl; if (!config.value("classifier_profile_min_neighbours", classifier_profile_min_neighbours_, tue::OPTIONAL)) ed::log::info() << "Parameter 'classifier_profile_min_neighbours' not found. Using default: " << classifier_profile_min_neighbours_ << std::endl; if (debug_mode_) { // clean the debug folder if debugging is active try { boost::filesystem::path dir(debug_folder_); boost::filesystem::remove_all(dir); boost::filesystem::create_directories(dir); } catch(const boost::filesystem::filesystem_error& e) { if(e.code() == boost::system::errc::permission_denied) ed::log::error() << "boost::filesystem permission denied" << std::endl; else ed::log::error() << "boost::filesystem failed with error: " << e.code().message() << std::endl; } // create debug window cv::namedWindow("Face Detector Output", CV_WINDOW_AUTOSIZE); } }
void FaceDetector::writeFaceDetectionResult(const ed::Measurement& msr, const cv::Rect& rgb_roi, const std::vector<cv::Rect>& rgb_face_rois, int& face_counter, tue::Configuration& result) const { // get color image const cv::Mat& color_image = msr.image()->getRGBImage(); // get color image const cv::Mat& depth_image = msr.image()->getDepthImage(); // Calculate size factor between depth and rgb images double f_depth_rgb = (double)depth_image.cols / color_image.cols; // Create depth view rgbd::View depth_view(*msr.image(), depth_image.cols); for (uint j = 0; j < rgb_face_rois.size(); j++) { cv::Rect rgb_face_roi = rgb_face_rois[j]; rgb_face_roi.x += rgb_roi.x; rgb_face_roi.y += rgb_roi.y; if (debug_mode_) ed::perception::saveDebugImage("face_detector-rgb", color_image(rgb_face_roi)); result.addArrayItem(); result.setValue("index", face_counter); // add 2D location of the face result.setValue("x", rgb_face_roi.x); result.setValue("y", rgb_face_roi.y); result.setValue("width", rgb_face_roi.width); result.setValue("height", rgb_face_roi.height); // Compute face roi for depth image cv::Rect depth_face_roi(f_depth_rgb * rgb_face_roi.x, f_depth_rgb * rgb_face_roi.y, f_depth_rgb * rgb_face_roi.width, f_depth_rgb * rgb_face_roi.height); if (debug_mode_) ed::perception::saveDebugImage("face_detector-depth", depth_image(depth_face_roi)); cv::Mat face_area = depth_image(depth_face_roi); float avg_depth = ed::perception::getMedianDepth(face_area); if (avg_depth > 0) { // calculate the center point of the face cv::Point2i p_2d(depth_face_roi.x + depth_face_roi.width/2, depth_face_roi.y + depth_face_roi.height/2); geo::Vector3 projection = depth_view.getRasterizer().project2Dto3D(p_2d.x, p_2d.y) * avg_depth; geo::Vector3 point_map = msr.sensorPose() * projection; // add 3D location of the face result.setValue("map_x", point_map.x); result.setValue("map_y", point_map.y); result.setValue("map_z", point_map.z); } else { std::cout << "[ED FACE DETECTOR] Could not calculate face's average depth. Map coordinates might be incorrect!" << std::endl; } result.endArrayItem(); face_counter++; } }
void GUIPlugin::configure(tue::Configuration config) { std::string srv_get_measurements, srv_set_label, srv_raise_event, srv_get_command, map_image_topic; config.value("srv_get_measurements", srv_get_measurements); config.value("srv_set_label", srv_set_label); config.value("srv_raise_event", srv_raise_event); config.value("srv_get_command", srv_get_command); config.value("map_image_topic", map_image_topic); // TODO: make configurable trigger_map_publish_ = ed::EventClock(10); int image_width, image_height; config.value("map_image_width", image_width); config.value("map_image_height", image_height); double world_width, world_height; config.value("world_width", world_width); config.value("world_height", world_height); double cam_x, cam_y, cam_z; config.value("cam_x", cam_x); config.value("cam_y", cam_y); config.value("cam_z", cam_z); if (config.hasError()) return; ros::NodeHandle nh; if (srv_get_measurements_.getService() != srv_get_measurements) { ros::AdvertiseServiceOptions opt_get_measurements = ros::AdvertiseServiceOptions::create<ed_msgs::GetMeasurements>( srv_get_measurements, boost::bind(&GUIPlugin::srvGetMeasurements, this, _1, _2), ros::VoidPtr(), &cb_queue_); srv_get_measurements_ = nh.advertiseService(opt_get_measurements); } if (srv_set_label_.getService() != srv_set_label) { ros::AdvertiseServiceOptions opt_set_label = ros::AdvertiseServiceOptions::create<ed_msgs::SetLabel>( srv_set_label, boost::bind(&GUIPlugin::srvSetLabel, this, _1, _2), ros::VoidPtr(), &cb_queue_); srv_set_label_ = nh.advertiseService(opt_set_label); } if (srv_raise_event_.getService() != srv_raise_event) { ros::AdvertiseServiceOptions opt_raise_event = ros::AdvertiseServiceOptions::create<ed_msgs::RaiseEvent>( srv_raise_event, boost::bind(&GUIPlugin::srvRaiseEvent, this, _1, _2), ros::VoidPtr(), &cb_queue_); srv_raise_event_ = nh.advertiseService(opt_raise_event); } if (srv_get_command_.getService() != srv_get_command) { ros::AdvertiseServiceOptions opt_get_command = ros::AdvertiseServiceOptions::create<ed_msgs::GetGUICommand>( srv_get_command, boost::bind(&GUIPlugin::srvGetCommand, this, _1, _2), ros::VoidPtr(), &cb_queue_); srv_get_command_ = nh.advertiseService(opt_get_command); } if (pub_image_map_.getTopic() != map_image_topic) pub_image_map_ = nh.advertise<tue_serialization::Binary>("/ed/gui/map_image", 1); map_image_ = cv::Mat(image_width, image_height, CV_8UC3, cv::Scalar(50, 50, 50)); projector_pose_.setOrigin(geo::Vector3(cam_x, cam_y, cam_z)); projector_pose_.setBasis(geo::Matrix3::identity()); projector_.setFocalLengths(image_width / (world_width / cam_z), image_height / (world_height / cam_z)); projector_.setOpticalCenter(image_width / 2, image_height / 2); projector_.setOpticalTranslation(0, 0); }
void HumanContourMatcher::process(ed::EntityConstPtr e, tue::Configuration& result) const { // if initialization failed, return if (!init_success_) return; // Get the best measurement from the entity ed::MeasurementConstPtr msr = e->lastMeasurement(); if (!msr) return; float depth_sum = 0; float avg_depht; float classification_error = 0; float classification_deviation = 0; std::string classification_stance; uint point_counter = 0; bool is_human = false; // Get the depth image from the measurement const cv::Mat& depth_image = msr->image()->getDepthImage(); const cv::Mat& color_image = msr->image()->getRGBImage(); cv::Mat mask_cv = cv::Mat::zeros(depth_image.rows, depth_image.cols, CV_8UC1); // Iterate over all points in the mask. You must specify the width of the image on which you // want to apply the mask (see the begin(...) method). for(ed::ImageMask::const_iterator it = msr->imageMask().begin(depth_image.cols); it != msr->imageMask().end(); ++it) { // mask's (x, y) coordinate in the depth image const cv::Point2i& p_2d = *it; // TODO dont creat a Mat mask, just give human_classifier_.Classify a vector of 2D points! // paint a mask mask_cv.at<unsigned char>(p_2d) = 255; // calculate measurement average depth depth_sum += depth_image.at<float>(p_2d); point_counter++; } avg_depht = depth_sum/(float)point_counter; is_human = human_classifier_.Classify(depth_image, color_image, mask_cv, avg_depht, classification_error, classification_deviation, classification_stance); // ----------------------- assert results ----------------------- // create group if it doesnt exist if (!result.readGroup("perception_result", tue::OPTIONAL)) { result.writeGroup("perception_result"); } // assert the results to the entity result.writeGroup(kModuleName); result.setValue("label", "Human Shape"); if (classification_error > 0){ result.setValue("stance", classification_stance); result.setValue("error", classification_error); result.setValue("deviation", classification_deviation); } if(is_human) { result.setValue("score", 1.0); }else{ result.setValue("score", 0.0); } result.endGroup(); // close human_contour_matcher group result.endGroup(); // close perception_result group }
void TFPublisherPlugin::configure(tue::Configuration config) { config.value("root_frame_id", root_frame_id_); }
void ColorMatcher::configureClassification(tue::Configuration config) { config.value("color_margin", color_margin_); initialize(); }