void DicomDiffusionImageReader<TPixelType, TDimension> ::GenerateOutputInformation(void) { typename OutputImageType::Pointer output = this->GetOutput(); typedef itk::ImageSeriesReader<InputImageType> ReaderType; // Read the first (or last) volume and use its size. if (m_Headers.size() > 0) { typename ReaderType::Pointer reader = ReaderType::New(); try { // Read the image reader->SetFileNames (m_Headers[0]->m_DicomFilenames); reader->UpdateOutputInformation(); output->SetSpacing( reader->GetOutput()->GetSpacing() ); // Set the image spacing output->SetOrigin( reader->GetOutput()->GetOrigin() ); // Set the image origin output->SetDirection( reader->GetOutput()->GetDirection() ); // Set the image direction output->SetLargestPossibleRegion( reader->GetOutput()->GetLargestPossibleRegion() ); output->SetVectorLength( m_Headers.size() ); } catch (itk::ExceptionObject &e) { throw e; } } else { itkExceptionMacro(<< "At least one filename is required." ); } }
DwiPhantomGenerationFilter< TOutputScalarType > ::DwiPhantomGenerationFilter() : m_BValue(1000) , m_SignalScale(1000) , m_BaselineImages(0) , m_MaxBaseline(0) , m_MeanBaseline(0) , m_NoiseVariance(0.004) , m_GreyMatterAdc(0.01) , m_SimulateBaseline(true) , m_DefaultBaseline(1000) { this->SetNumberOfRequiredOutputs (1); m_Spacing.Fill(2.5); m_Origin.Fill(0.0); m_DirectionMatrix.SetIdentity(); m_ImageRegion.SetSize(0, 10); m_ImageRegion.SetSize(1, 10); m_ImageRegion.SetSize(2, 10); typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); // Set the image spacing outImage->SetOrigin( m_Origin ); // Set the image origin outImage->SetDirection( m_DirectionMatrix ); // Set the image direction outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->SetVectorLength(QBALL_ODFSIZE); outImage->Allocate(); outImage->FillBuffer(0); this->SetNthOutput (0, outImage); }
void FieldmapGeneratorFilter< OutputImageType >::BeforeThreadedGenerateData() { typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); outImage->SetOrigin( m_Origin ); outImage->SetDirection( m_DirectionMatrix ); outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->Allocate(); outImage->FillBuffer(0); this->SetNthOutput(0, outImage); }
void DwiPhantomGenerationFilter< TOutputScalarType > ::GenerateData() { if (m_NoiseVariance < 0) m_NoiseVariance = 0.001; if (!m_SimulateBaseline) { MITK_INFO << "Baseline image values are set to default. Noise variance value is treated as SNR!"; if (m_NoiseVariance <= 0) m_NoiseVariance = 0.0001; if (m_NoiseVariance>99) m_NoiseVariance = 0; else { m_NoiseVariance = m_DefaultBaseline/(m_NoiseVariance*m_SignalScale); m_NoiseVariance *= m_NoiseVariance; } } m_RandGen = Statistics::MersenneTwisterRandomVariateGenerator::New(); m_RandGen->SetSeed(); typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); outImage->SetOrigin( m_Origin ); outImage->SetDirection( m_DirectionMatrix ); outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->SetVectorLength(m_GradientList.size()); outImage->Allocate(); typename OutputImageType::PixelType pix; pix.SetSize(m_GradientList.size()); pix.Fill(0.0); outImage->FillBuffer(pix); this->SetNthOutput (0, outImage); double minSpacing = m_Spacing[0]; if (m_Spacing[1]<minSpacing) minSpacing = m_Spacing[1]; if (m_Spacing[2]<minSpacing) minSpacing = m_Spacing[2]; m_DirectionImageContainer = ItkDirectionImageContainer::New(); for (int i=0; i<m_SignalRegions.size(); i++) { itk::Vector< float, 3 > nullVec; nullVec.Fill(0.0); ItkDirectionImage::Pointer img = ItkDirectionImage::New(); img->SetSpacing( m_Spacing ); img->SetOrigin( m_Origin ); img->SetDirection( m_DirectionMatrix ); img->SetRegions( m_ImageRegion ); img->Allocate(); img->FillBuffer(nullVec); m_DirectionImageContainer->InsertElement(m_DirectionImageContainer->Size(), img); } m_NumDirectionsImage = ItkUcharImgType::New(); m_NumDirectionsImage->SetSpacing( m_Spacing ); m_NumDirectionsImage->SetOrigin( m_Origin ); m_NumDirectionsImage->SetDirection( m_DirectionMatrix ); m_NumDirectionsImage->SetRegions( m_ImageRegion ); m_NumDirectionsImage->Allocate(); m_NumDirectionsImage->FillBuffer(0); m_SNRImage = ItkFloatImgType::New(); m_SNRImage->SetSpacing( m_Spacing ); m_SNRImage->SetOrigin( m_Origin ); m_SNRImage->SetDirection( m_DirectionMatrix ); m_SNRImage->SetRegions( m_ImageRegion ); m_SNRImage->Allocate(); m_SNRImage->FillBuffer(0); vtkSmartPointer<vtkCellArray> m_VtkCellArray = vtkSmartPointer<vtkCellArray>::New(); vtkSmartPointer<vtkPoints> m_VtkPoints = vtkSmartPointer<vtkPoints>::New(); m_BaselineImages = 0; for( unsigned int i=0; i<m_GradientList.size(); i++) if (m_GradientList[i].GetNorm()<=0.0001) m_BaselineImages++; typedef ImageRegionIterator<OutputImageType> IteratorOutputType; IteratorOutputType it (outImage, m_ImageRegion); // isotropic tensor itk::DiffusionTensor3D<float> isoTensor; isoTensor.Fill(0); float e1 = m_GreyMatterAdc; float e2 = m_GreyMatterAdc; float e3 = m_GreyMatterAdc; isoTensor.SetElement(0,e1); isoTensor.SetElement(3,e2); isoTensor.SetElement(5,e3); m_MaxBaseline = GetTensorL2Norm(isoTensor); GenerateTensors(); // simulate measurement m_MeanBaseline = 0; double noiseStdev = sqrt(m_NoiseVariance); while(!it.IsAtEnd()) { pix = it.Get(); typename OutputImageType::IndexType index = it.GetIndex(); int numDirs = 0; for (int i=0; i<m_SignalRegions.size(); i++) { ItkUcharImgType::Pointer region = m_SignalRegions.at(i); if (region->GetPixel(index)!=0) { numDirs++; pix += SimulateMeasurement(m_TensorList[i], m_TensorWeight[i]); // set direction image pixel ItkDirectionImage::Pointer img = m_DirectionImageContainer->GetElement(i); itk::Vector< float, 3 > pixel = img->GetPixel(index); vnl_vector_fixed<double, 3> dir = m_TensorDirection.at(i); dir.normalize(); dir *= m_TensorWeight.at(i); pixel.SetElement(0, dir[0]); pixel.SetElement(1, dir[1]); pixel.SetElement(2, dir[2]); img->SetPixel(index, pixel); vtkSmartPointer<vtkPolyLine> container = vtkSmartPointer<vtkPolyLine>::New(); itk::ContinuousIndex<double, 3> center; center[0] = index[0]; center[1] = index[1]; center[2] = index[2]; itk::Point<double> worldCenter; outImage->TransformContinuousIndexToPhysicalPoint( center, worldCenter ); itk::Point<double> worldStart; worldStart[0] = worldCenter[0]-dir[0]/2 * minSpacing; worldStart[1] = worldCenter[1]-dir[1]/2 * minSpacing; worldStart[2] = worldCenter[2]-dir[2]/2 * minSpacing; vtkIdType id = m_VtkPoints->InsertNextPoint(worldStart.GetDataPointer()); container->GetPointIds()->InsertNextId(id); itk::Point<double> worldEnd; worldEnd[0] = worldCenter[0]+dir[0]/2 * minSpacing; worldEnd[1] = worldCenter[1]+dir[1]/2 * minSpacing; worldEnd[2] = worldCenter[2]+dir[2]/2 * minSpacing; id = m_VtkPoints->InsertNextPoint(worldEnd.GetDataPointer()); container->GetPointIds()->InsertNextId(id); m_VtkCellArray->InsertNextCell(container); } } if (numDirs>1) { for (int i=0; i<m_GradientList.size(); i++) pix[i] /= numDirs; } else if (numDirs==0) { if (m_SimulateBaseline) pix = SimulateMeasurement(isoTensor, 1.0); else pix.Fill(0.0); } m_MeanBaseline += pix[0]; it.Set(pix); m_NumDirectionsImage->SetPixel(index, numDirs); if (m_NoiseVariance>0) m_SNRImage->SetPixel(index, pix[0]/(noiseStdev*m_SignalScale)); ++it; } m_MeanBaseline /= m_ImageRegion.GetNumberOfPixels(); if (m_NoiseVariance>0) MITK_INFO << "Mean SNR: " << m_MeanBaseline/(noiseStdev*m_SignalScale); else MITK_INFO << "No noise added"; // add rician noise it.GoToBegin(); while(!it.IsAtEnd()) { pix = it.Get(); AddNoise(pix); it.Set(pix); ++it; } // generate fiber bundle vtkSmartPointer<vtkPolyData> directionsPolyData = vtkSmartPointer<vtkPolyData>::New(); directionsPolyData->SetPoints(m_VtkPoints); directionsPolyData->SetLines(m_VtkCellArray); m_OutputFiberBundle = mitk::FiberBundleX::New(directionsPolyData); }