// MEG patches positions are reported line by line in the positions Matrix (same for positions) // mat is supposed to be filled with zeros // mat is the linear application which maps x (the unknown vector in symmetric system) -> bFerguson (contrib to MEG response) void assemble_Head2MEG(Matrix& mat, const Geometry& geo, const Sensors& sensors) { Matrix positions = sensors.getPositions(); Matrix orientations = sensors.getOrientations(); const unsigned nbIntegrationPoints = sensors.getNumberOfPositions(); unsigned p0_p1_size = (geo.size() - geo.outermost_interface().nb_triangles()); Matrix FergusonMat(3*nbIntegrationPoints, geo.nb_vertices()); assemble_ferguson(geo, FergusonMat, positions); mat = Matrix(nbIntegrationPoints, p0_p1_size); mat.set(0.0); for ( unsigned i = 0; i < nbIntegrationPoints; ++i) { PROGRESSBAR(i, nbIntegrationPoints); for ( Vertices::const_iterator vit = geo.vertex_begin(); vit != geo.vertex_end(); ++vit) { Vect3 fergusonField(FergusonMat(3*i, vit->index()), FergusonMat(3*i+1, vit->index()), FergusonMat(3*i+2, vit->index())); Vect3 normalizedDirection(orientations(i, 0), orientations(i, 1), orientations(i, 2)); normalizedDirection.normalize(); mat(i, vit->index()) = fergusonField * normalizedDirection; } } mat = sensors.getWeightsMatrix() * mat; // Apply weights }
void operatorSinternal(const Mesh& m, Matrix& mat, const Vertices& points, const double& coeff) { std::cout << "INTERNAL OPERATOR S..." << std::endl; for ( Vertices::const_iterator vit = points.begin(); vit != points.end(); ++vit) { for ( Mesh::const_iterator tit = m.begin(); tit != m.end(); ++tit) { mat(vit->index(), tit->index()) = _operatorSinternal(*tit, *vit) * coeff; } } }
void assemble_cortical(const Geometry& geo, Matrix& mat, const Head2EEGMat& M, const std::string& domain_name, const unsigned gauss_order, double alpha, double beta, const std::string &filename) { // Following the article: M. Clerc, J. Kybic "Cortical mapping by Laplace–Cauchy transmission using a boundary element method". // Assumptions: // - domain_name: the domain containing the sources is an innermost domain (defined as the interior of only one interface (called Cortex) // - Cortex interface is composed of one mesh only (no shared vertices) // TODO check orders of MxM products for efficiency ... delete intermediate matrices const Domain& SourceDomain = geo.domain(domain_name); const Interface& Cortex = SourceDomain.begin()->interface(); const Mesh& cortex = Cortex.begin()->mesh(); // test the assumption assert(SourceDomain.size() == 1); assert(Cortex.size() == 1); // shape of the new matrix: unsigned Nl = geo.size()-geo.outermost_interface().nb_triangles()-Cortex.nb_vertices()-Cortex.nb_triangles(); unsigned Nc = geo.size()-geo.outermost_interface().nb_triangles(); std::fstream f(filename.c_str()); Matrix P; if ( !f ) { // build the HeadMat: // The following is the same as assemble_HM except N_11, D_11 and S_11 are not computed. SymMatrix mat_temp(Nc); mat_temp.set(0.0); double K = 1.0 / (4.0 * M_PI); // We iterate over the meshes (or pair of domains) to fill the lower half of the HeadMat (since its symmetry) for ( Geometry::const_iterator mit1 = geo.begin(); mit1 != geo.end(); ++mit1) { for ( Geometry::const_iterator mit2 = geo.begin(); (mit2 != (mit1+1)); ++mit2) { // if mit1 and mit2 communicate, i.e they are used for the definition of a common domain const int orientation = geo.oriented(*mit1, *mit2); // equals 0, if they don't have any domains in common // equals 1, if they are both oriented toward the same domain // equals -1, if they are not if ( orientation != 0) { double Scoeff = orientation * geo.sigma_inv(*mit1, *mit2) * K; double Dcoeff = - orientation * geo.indicator(*mit1, *mit2) * K; double Ncoeff; if ( !(mit1->outermost() || mit2->outermost()) && ( (*mit1 != *mit2)||( *mit1 != cortex) ) ) { // Computing S block first because it's needed for the corresponding N block operatorS(*mit1, *mit2, mat_temp, Scoeff, gauss_order); Ncoeff = geo.sigma(*mit1, *mit2)/geo.sigma_inv(*mit1, *mit2); } else { Ncoeff = orientation * geo.sigma(*mit1, *mit2) * K; } if ( !mit1->outermost() && (( (*mit1 != *mit2)||( *mit1 != cortex) )) ) { // Computing D block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order); } if ( ( *mit1 != *mit2 ) && ( !mit2->outermost() ) ) { // Computing D* block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order, true); } // Computing N block if ( (*mit1 != *mit2)||( *mit1 != cortex) ) { operatorN(*mit1, *mit2, mat_temp, Ncoeff, gauss_order); } } } } // Deflate the diagonal block (N33) of 'mat' : (in order to have a zero-mean potential for the outermost interface) const Interface i = geo.outermost_interface(); unsigned i_first = (*i.begin()->mesh().vertex_begin())->index(); deflat(mat_temp, i, mat_temp(i_first, i_first) / (geo.outermost_interface().nb_vertices())); mat = Matrix(Nl, Nc); mat.set(0.0); // copy mat_temp into mat except the lines for cortex vertices [i_vb_c, i_ve_c] and cortex triangles [i_tb_c, i_te_c]. unsigned iNl = 0; unsigned i_vb_c = (*cortex.vertex_begin())->index(); unsigned i_ve_c = (*cortex.vertex_rbegin())->index(); unsigned i_tb_c = cortex.begin()->index(); unsigned i_te_c = cortex.rbegin()->index(); for ( unsigned i = 0; i < Nc; ++i) { if ( !(i_vb_c<=i && i<=i_ve_c) && !(i_tb_c<=i && i<=i_te_c) ) { mat.setlin(iNl, mat_temp.getlin(i)); ++iNl; } } // ** Construct P: the null-space projector ** Matrix W; { Matrix U, s; mat.svd(U, s, W); } SparseMatrix S(Nc,Nc); // we set S to 0 everywhere, except in the last part of the diag: for ( unsigned i = Nl; i < Nc; ++i) { S(i, i) = 1.0; } P = (W * S) * W.transpose(); // P is a projector: P^2 = P and mat*P*X = 0 if ( filename.length() != 0 ) { std::cout << "Saving projector P (" << filename << ")." << std::endl; P.save(filename); } } else { std::cout << "Loading projector P (" << filename << ")." << std::endl; P.load(filename); } // ** Get the gradient of P1&P0 elements on the meshes ** Matrix MM(M.transpose() * M); SymMatrix RR(Nc, Nc); RR.set(0.); for ( Geometry::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { mit->gradient_norm2(RR); } // ** Choose Regularization parameter ** SparseMatrix alphas(Nc,Nc); // diagonal matrix Matrix Z; if ( alpha < 0 ) { // try an automatic method... TODO find better estimation double nRR_v = RR.submat(0, geo.nb_vertices(), 0, geo.nb_vertices()).frobenius_norm(); alphas.set(0.); alpha = MM.frobenius_norm() / (1.e3*nRR_v); beta = alpha * 50000.; for ( Vertices::const_iterator vit = geo.vertex_begin(); vit != geo.vertex_end(); ++vit) { alphas(vit->index(), vit->index()) = alpha; } for ( Meshes::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( !mit->outermost() ) { for ( Mesh::const_iterator tit = mit->begin(); tit != mit->end(); ++tit) { alphas(tit->index(), tit->index()) = beta; } } } std::cout << "AUTOMATIC alphas = " << alpha << "\tbeta = " << beta << std::endl; } else { for ( Vertices::const_iterator vit = geo.vertex_begin(); vit != geo.vertex_end(); ++vit) { alphas(vit->index(), vit->index()) = alpha; } for ( Meshes::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( !mit->outermost() ) { for ( Mesh::const_iterator tit = mit->begin(); tit != mit->end(); ++tit) { alphas(tit->index(), tit->index()) = beta; } } } std::cout << "alphas = " << alpha << "\tbeta = " << beta << std::endl; } Z = P.transpose() * (MM + alphas*RR) * P; // ** PseudoInverse and return ** // X = P * { (M*P)' * (M*P) + (R*P)' * (R*P) }¡(-1) * (M*P)'m // X = P * { P'*M'*M*P + P'*R'*R*P }¡(-1) * P'*M'm // X = P * { P'*(MM + a*RR)*P }¡(-1) * P'*M'm // X = P * Z¡(-1) * P' * M'm Matrix rhs = P.transpose() * M.transpose(); mat = P * Z.pinverse() * rhs; }