Beispiel #1
0
PRIVATE void estimate_cpu_freq(void)
{
	u64_t tsc_delta;
	u64_t cpu_freq;

	irq_hook_t calib_cpu;

	/* set the probe, we use the legacy timer, IRQ 0 */
	put_irq_handler(&calib_cpu, CLOCK_IRQ, calib_cpu_handler);

	/* just in case we are in an SMP single cpu fallback mode */
	BKL_UNLOCK();
	/* set the PIC timer to get some time */
	intr_enable();

	/* loop for some time to get a sample */
	while(probe_ticks < PROBE_TICKS) {
		intr_enable();
	}

	intr_disable();
	/* just in case we are in an SMP single cpu fallback mode */
	BKL_LOCK();

	/* remove the probe */
	rm_irq_handler(&calib_cpu);

	tsc_delta = sub64(tsc1, tsc0);

	cpu_freq = mul64(div64u64(tsc_delta, PROBE_TICKS - 1), make64(system_hz, 0));
	cpu_set_freq(cpuid, cpu_freq);
	cpu_info[cpuid].freq = div64u(cpu_freq, 1000000);
	BOOT_VERBOSE(cpu_print_freq(cpuid));
}
Beispiel #2
0
/*
 * tell another cpu about a task to do and return only after the cpu acks that
 * the task is finished. Also wait before it finishes task sent by another cpu
 * to the same one.
 */
static void smp_schedule_sync(struct proc * p, unsigned task)
{
	unsigned cpu = p->p_cpu;
	unsigned mycpu = cpuid;

	assert(cpu != mycpu);
	/*
	 * if some other cpu made a request to the same cpu, wait until it is
	 * done before proceeding
	 */
	if (sched_ipi_data[cpu].flags != 0) {
		BKL_UNLOCK();
		while (sched_ipi_data[cpu].flags != 0) {
			if (sched_ipi_data[mycpu].flags) {
				BKL_LOCK();
				smp_sched_handler();
				BKL_UNLOCK();
			}
		}
		BKL_LOCK();
	}

	sched_ipi_data[cpu].data = (u32_t) p;
	sched_ipi_data[cpu].flags |= task;
	__insn_barrier();
	arch_send_smp_schedule_ipi(cpu);

	/* wait until the destination cpu finishes its job */
	BKL_UNLOCK();
	while (sched_ipi_data[cpu].flags != 0) {
		if (sched_ipi_data[mycpu].flags) {
			BKL_LOCK();
			smp_sched_handler();
			BKL_UNLOCK();
		}
	}
	BKL_LOCK();
}
Beispiel #3
0
void wait_for_APs_to_finish_booting(void)
{
	unsigned n = 0;
	int i;

	/* check how many cpus are actually alive */
	for (i = 0 ; i < ncpus ; i++) {
		if (cpu_test_flag(i, CPU_IS_READY))
			n++;
	}
	if (n != ncpus)
		printf("WARNING only %d out of %d cpus booted\n", n, ncpus);

	/* we must let the other CPUs to run in kernel mode first */
	BKL_UNLOCK();
	while (ap_cpus_booted != (n - 1))
		arch_pause();
	/* now we have to take the lock again as we continue execution */
	BKL_LOCK();
}
Beispiel #4
0
PUBLIC void context_stop(struct proc * p)
{
	u64_t tsc, tsc_delta;
	u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch);
#ifdef CONFIG_SMP
	unsigned cpu = cpuid;

	/*
	 * This function is called only if we switch from kernel to user or idle
	 * or back. Therefore this is a perfect location to place the big kernel
	 * lock which will hopefully disappear soon.
	 *
	 * If we stop accounting for KERNEL we must unlock the BKL. If account
	 * for IDLE we must not hold the lock
	 */
	if (p == proc_addr(KERNEL)) {
		u64_t tmp;

		read_tsc_64(&tsc);
		tmp = sub64(tsc, *__tsc_ctr_switch);
		kernel_ticks[cpu] = add64(kernel_ticks[cpu], tmp);
		p->p_cycles = add64(p->p_cycles, tmp);
		BKL_UNLOCK();
	} else {
		u64_t bkl_tsc;
		atomic_t succ;
		
		read_tsc_64(&bkl_tsc);
		/* this only gives a good estimate */
		succ = big_kernel_lock.val;
		
		BKL_LOCK();
		
		read_tsc_64(&tsc);

		bkl_ticks[cpu] = add64(bkl_ticks[cpu], sub64(tsc, bkl_tsc));
		bkl_tries[cpu]++;
		bkl_succ[cpu] += !(!(succ == 0));

		p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch));

#ifdef CONFIG_SMP
		/*
		 * Since at the time we got a scheduling IPI we might have been
		 * waiting for BKL already, we may miss it due to a similar IPI to
		 * the cpu which is already waiting for us to handle its. This
		 * results in a live-lock of these two cpus.
		 *
		 * Therefore we always check if there is one pending and if so,
		 * we handle it straight away so the other cpu can continue and
		 * we do not deadlock.
		 */
		smp_sched_handler();
#endif
	}
#else
	read_tsc_64(&tsc);
	p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch));
#endif
	
	tsc_delta = sub64(tsc, *__tsc_ctr_switch);

	if(kbill_ipc) {
		kbill_ipc->p_kipc_cycles =
			add64(kbill_ipc->p_kipc_cycles, tsc_delta);
		kbill_ipc = NULL;
	}

	if(kbill_kcall) {
		kbill_kcall->p_kcall_cycles =
			add64(kbill_kcall->p_kcall_cycles, tsc_delta);
		kbill_kcall = NULL;
	}

	/*
	 * deduct the just consumed cpu cycles from the cpu time left for this
	 * process during its current quantum. Skip IDLE and other pseudo kernel
	 * tasks
	 */
	if (p->p_endpoint >= 0) {
#if DEBUG_RACE
		make_zero64(p->p_cpu_time_left);
#else
		/* if (tsc_delta < p->p_cpu_time_left) in 64bit */
		if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) ||
				(ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) &&
				 ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left)))
			p->p_cpu_time_left = sub64(p->p_cpu_time_left, tsc_delta);
		else {
			make_zero64(p->p_cpu_time_left);
		}
#endif
	}

	*__tsc_ctr_switch = tsc;
}
Beispiel #5
0
/*===========================================================================*
 *			kmain 	                             		*
 *===========================================================================*/
void kmain(kinfo_t *local_cbi)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;

  /* save a global copy of the boot parameters */
  memcpy(&kinfo, local_cbi, sizeof(kinfo));
  memcpy(&kmess, kinfo.kmess, sizeof(kmess));

#ifdef __arm__
  /* We want to initialize serial before we do any output */
  omap3_ser_init();
#endif
  /* We can talk now */
  printf("MINIX booting\n");

  /* Kernel may use bits of main memory before VM is started */
  kernel_may_alloc = 1;

  assert(sizeof(kinfo.boot_procs) == sizeof(image));
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

  cstart();

  BKL_LOCK();
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

   if(NR_BOOT_MODULES != kinfo.mbi.mods_count)
   	panic("expecting %d boot processes/modules, found %d",
		NR_BOOT_MODULES, kinfo.mbi.mods_count);

  /* Set up proc table entries for processes in boot image. */
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	if(i < NR_TASKS)			/* name (tasks only) */
		strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name));

	if(i >= NR_TASKS) {
		/* Remember this so it can be passed to VM */
		multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS];
		ip->start_addr = mb_mod->mod_start;
		ip->len = mb_mod->mod_end - mb_mod->mod_start;
	}
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) ||
		proc_nr == VM_PROC_NR);
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
	    if(proc_nr == VM_PROC_NR) {
                priv(rp)->s_flags = VM_F;
                priv(rp)->s_trap_mask = SRV_T;
		ipc_to_m = SRV_M;
		kcalls = SRV_KC;
                priv(rp)->s_sig_mgr = SELF;
                rp->p_priority = SRV_Q;
                rp->p_quantum_size_ms = SRV_QT;
	    }
	    else if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else {
	    	assert(isrootsysn(proc_nr));
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}

	/* Arch-specific state initialization. */
	arch_boot_proc(ip, rp);

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* Process isn't scheduled until VM has set up a pagetable for it. */
	if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) {
		rp->p_rts_flags |= RTS_VMINHIBIT;
		rp->p_rts_flags |= RTS_BOOTINHIBIT;
	}

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	DEBUGEXTRA(("done\n"));
  }

  /* update boot procs info for VM */
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  arch_post_init();

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* System and processes initialization */
  memory_init();
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

  /* The bootstrap phase is over, so we can add the physical
   * memory used for it to the free list.
   */
  add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len);

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
}
Beispiel #6
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC int main(void)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;
  size_t argsz;			/* size of arguments passed to crtso on stack */

  BKL_LOCK();
   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

  /* Set up proc table entries for processes in boot image.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.
   */

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr));
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
            if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else if(isrootsysn(proc_nr)) {
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }
            /* Priviliges for ordinary process. */
            else {
		NOT_REACHABLE;
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}
	rp->p_memmap[T].mem_vir  = ABS2CLICK(ip->memmap.text_vaddr);
	rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr);
	rp->p_memmap[T].mem_len  = ABS2CLICK(ip->memmap.text_bytes);
	rp->p_memmap[D].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr);
	rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr);
	rp->p_memmap[D].mem_len  = ABS2CLICK(ip->memmap.data_bytes);
	rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = ip->memmap.entry;
	rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down three words
	 * to give crtso.s something to use as "argc", "argv" and "envp".
	 */
	if (isusern(proc_nr)) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		argsz = 3 * sizeof(reg_t);
		rp->p_reg.sp -= argsz;
		phys_memset(rp->p_reg.sp - 
			(rp->p_memmap[S].mem_vir << CLICK_SHIFT) +
			(rp->p_memmap[S].mem_phys << CLICK_SHIFT), 
			0, argsz);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(ip->flags & PROC_FULLVM)
		rp->p_rts_flags |= RTS_VMINHIBIT;

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	alloc_segments(rp);
	DEBUGEXTRA(("done\n"));
  }

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* Architecture-dependent initialization. */
  DEBUGEXTRA(("arch_init()... "));
  arch_init();
  DEBUGEXTRA(("done\n"));

  /* System and processes initialization */
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
  return 1;
}
Beispiel #7
0
PUBLIC void context_stop(struct proc * p)
{
	u64_t tsc, tsc_delta;
	u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch);
#ifdef CONFIG_SMP
	unsigned cpu = cpuid;

	/*
	 * This function is called only if we switch from kernel to user or idle
	 * or back. Therefore this is a perfect location to place the big kernel
	 * lock which will hopefully disappear soon.
	 *
	 * If we stop accounting for KERNEL we must unlock the BKL. If account
	 * for IDLE we must not hold the lock
	 */
	if (p == proc_addr(KERNEL)) {
		u64_t tmp;

		read_tsc_64(&tsc);
		tmp = sub64(tsc, *__tsc_ctr_switch);
		kernel_ticks[cpu] = add64(kernel_ticks[cpu], tmp);
		p->p_cycles = add64(p->p_cycles, tmp);
		BKL_UNLOCK();
	} else {
		u64_t bkl_tsc;
		atomic_t succ;
		
		read_tsc_64(&bkl_tsc);
		/* this only gives a good estimate */
		succ = big_kernel_lock.val;
		
		BKL_LOCK();
		
		read_tsc_64(&tsc);

		bkl_ticks[cpu] = add64(bkl_ticks[cpu], sub64(tsc, bkl_tsc));
		bkl_tries[cpu]++;
		bkl_succ[cpu] += !(!(succ == 0));

		p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch));
	}
#else
	read_tsc_64(&tsc);
	p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch));
#endif
	
	tsc_delta = sub64(tsc, *__tsc_ctr_switch);

	if(kbill_ipc) {
		kbill_ipc->p_kipc_cycles =
			add64(kbill_ipc->p_kipc_cycles, tsc_delta);
		kbill_ipc = NULL;
	}

	if(kbill_kcall) {
		kbill_kcall->p_kcall_cycles =
			add64(kbill_kcall->p_kcall_cycles, tsc_delta);
		kbill_kcall = NULL;
	}

	/*
	 * deduct the just consumed cpu cycles from the cpu time left for this
	 * process during its current quantum. Skip IDLE and other pseudo kernel
	 * tasks
	 */
	if (p->p_endpoint >= 0) {
#if DEBUG_RACE
		make_zero64(p->p_cpu_time_left);
#else
		/* if (tsc_delta < p->p_cpu_time_left) in 64bit */
		if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) ||
				(ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) &&
				 ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left)))
			p->p_cpu_time_left = sub64(p->p_cpu_time_left, tsc_delta);
		else {
			make_zero64(p->p_cpu_time_left);
		}
#endif
	}

	*__tsc_ctr_switch = tsc;
}