PRIVATE void estimate_cpu_freq(void) { u64_t tsc_delta; u64_t cpu_freq; irq_hook_t calib_cpu; /* set the probe, we use the legacy timer, IRQ 0 */ put_irq_handler(&calib_cpu, CLOCK_IRQ, calib_cpu_handler); /* just in case we are in an SMP single cpu fallback mode */ BKL_UNLOCK(); /* set the PIC timer to get some time */ intr_enable(); /* loop for some time to get a sample */ while(probe_ticks < PROBE_TICKS) { intr_enable(); } intr_disable(); /* just in case we are in an SMP single cpu fallback mode */ BKL_LOCK(); /* remove the probe */ rm_irq_handler(&calib_cpu); tsc_delta = sub64(tsc1, tsc0); cpu_freq = mul64(div64u64(tsc_delta, PROBE_TICKS - 1), make64(system_hz, 0)); cpu_set_freq(cpuid, cpu_freq); cpu_info[cpuid].freq = div64u(cpu_freq, 1000000); BOOT_VERBOSE(cpu_print_freq(cpuid)); }
/* * tell another cpu about a task to do and return only after the cpu acks that * the task is finished. Also wait before it finishes task sent by another cpu * to the same one. */ static void smp_schedule_sync(struct proc * p, unsigned task) { unsigned cpu = p->p_cpu; unsigned mycpu = cpuid; assert(cpu != mycpu); /* * if some other cpu made a request to the same cpu, wait until it is * done before proceeding */ if (sched_ipi_data[cpu].flags != 0) { BKL_UNLOCK(); while (sched_ipi_data[cpu].flags != 0) { if (sched_ipi_data[mycpu].flags) { BKL_LOCK(); smp_sched_handler(); BKL_UNLOCK(); } } BKL_LOCK(); } sched_ipi_data[cpu].data = (u32_t) p; sched_ipi_data[cpu].flags |= task; __insn_barrier(); arch_send_smp_schedule_ipi(cpu); /* wait until the destination cpu finishes its job */ BKL_UNLOCK(); while (sched_ipi_data[cpu].flags != 0) { if (sched_ipi_data[mycpu].flags) { BKL_LOCK(); smp_sched_handler(); BKL_UNLOCK(); } } BKL_LOCK(); }
void wait_for_APs_to_finish_booting(void) { unsigned n = 0; int i; /* check how many cpus are actually alive */ for (i = 0 ; i < ncpus ; i++) { if (cpu_test_flag(i, CPU_IS_READY)) n++; } if (n != ncpus) printf("WARNING only %d out of %d cpus booted\n", n, ncpus); /* we must let the other CPUs to run in kernel mode first */ BKL_UNLOCK(); while (ap_cpus_booted != (n - 1)) arch_pause(); /* now we have to take the lock again as we continue execution */ BKL_LOCK(); }
PUBLIC void context_stop(struct proc * p) { u64_t tsc, tsc_delta; u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch); #ifdef CONFIG_SMP unsigned cpu = cpuid; /* * This function is called only if we switch from kernel to user or idle * or back. Therefore this is a perfect location to place the big kernel * lock which will hopefully disappear soon. * * If we stop accounting for KERNEL we must unlock the BKL. If account * for IDLE we must not hold the lock */ if (p == proc_addr(KERNEL)) { u64_t tmp; read_tsc_64(&tsc); tmp = sub64(tsc, *__tsc_ctr_switch); kernel_ticks[cpu] = add64(kernel_ticks[cpu], tmp); p->p_cycles = add64(p->p_cycles, tmp); BKL_UNLOCK(); } else { u64_t bkl_tsc; atomic_t succ; read_tsc_64(&bkl_tsc); /* this only gives a good estimate */ succ = big_kernel_lock.val; BKL_LOCK(); read_tsc_64(&tsc); bkl_ticks[cpu] = add64(bkl_ticks[cpu], sub64(tsc, bkl_tsc)); bkl_tries[cpu]++; bkl_succ[cpu] += !(!(succ == 0)); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); #ifdef CONFIG_SMP /* * Since at the time we got a scheduling IPI we might have been * waiting for BKL already, we may miss it due to a similar IPI to * the cpu which is already waiting for us to handle its. This * results in a live-lock of these two cpus. * * Therefore we always check if there is one pending and if so, * we handle it straight away so the other cpu can continue and * we do not deadlock. */ smp_sched_handler(); #endif } #else read_tsc_64(&tsc); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); #endif tsc_delta = sub64(tsc, *__tsc_ctr_switch); if(kbill_ipc) { kbill_ipc->p_kipc_cycles = add64(kbill_ipc->p_kipc_cycles, tsc_delta); kbill_ipc = NULL; } if(kbill_kcall) { kbill_kcall->p_kcall_cycles = add64(kbill_kcall->p_kcall_cycles, tsc_delta); kbill_kcall = NULL; } /* * deduct the just consumed cpu cycles from the cpu time left for this * process during its current quantum. Skip IDLE and other pseudo kernel * tasks */ if (p->p_endpoint >= 0) { #if DEBUG_RACE make_zero64(p->p_cpu_time_left); #else /* if (tsc_delta < p->p_cpu_time_left) in 64bit */ if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) || (ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) && ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left))) p->p_cpu_time_left = sub64(p->p_cpu_time_left, tsc_delta); else { make_zero64(p->p_cpu_time_left); } #endif } *__tsc_ctr_switch = tsc; }
/*===========================================================================* * kmain * *===========================================================================*/ void kmain(kinfo_t *local_cbi) { /* Start the ball rolling. */ struct boot_image *ip; /* boot image pointer */ register struct proc *rp; /* process pointer */ register int i, j; /* save a global copy of the boot parameters */ memcpy(&kinfo, local_cbi, sizeof(kinfo)); memcpy(&kmess, kinfo.kmess, sizeof(kmess)); #ifdef __arm__ /* We want to initialize serial before we do any output */ omap3_ser_init(); #endif /* We can talk now */ printf("MINIX booting\n"); /* Kernel may use bits of main memory before VM is started */ kernel_may_alloc = 1; assert(sizeof(kinfo.boot_procs) == sizeof(image)); memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs)); cstart(); BKL_LOCK(); DEBUGEXTRA(("main()\n")); proc_init(); if(NR_BOOT_MODULES != kinfo.mbi.mods_count) panic("expecting %d boot processes/modules, found %d", NR_BOOT_MODULES, kinfo.mbi.mods_count); /* Set up proc table entries for processes in boot image. */ for (i=0; i < NR_BOOT_PROCS; ++i) { int schedulable_proc; proc_nr_t proc_nr; int ipc_to_m, kcalls; sys_map_t map; ip = &image[i]; /* process' attributes */ DEBUGEXTRA(("initializing %s... ", ip->proc_name)); rp = proc_addr(ip->proc_nr); /* get process pointer */ ip->endpoint = rp->p_endpoint; /* ipc endpoint */ make_zero64(rp->p_cpu_time_left); if(i < NR_TASKS) /* name (tasks only) */ strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name)); if(i >= NR_TASKS) { /* Remember this so it can be passed to VM */ multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS]; ip->start_addr = mb_mod->mod_start; ip->len = mb_mod->mod_end - mb_mod->mod_start; } reset_proc_accounting(rp); /* See if this process is immediately schedulable. * In that case, set its privileges now and allow it to run. * Only kernel tasks and the root system process get to run immediately. * All the other system processes are inhibited from running by the * RTS_NO_PRIV flag. They can only be scheduled once the root system * process has set their privileges. */ proc_nr = proc_nr(rp); schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) || proc_nr == VM_PROC_NR); if(schedulable_proc) { /* Assign privilege structure. Force a static privilege id. */ (void) get_priv(rp, static_priv_id(proc_nr)); /* Priviliges for kernel tasks. */ if(proc_nr == VM_PROC_NR) { priv(rp)->s_flags = VM_F; priv(rp)->s_trap_mask = SRV_T; ipc_to_m = SRV_M; kcalls = SRV_KC; priv(rp)->s_sig_mgr = SELF; rp->p_priority = SRV_Q; rp->p_quantum_size_ms = SRV_QT; } else if(iskerneln(proc_nr)) { /* Privilege flags. */ priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F); /* Allowed traps. */ priv(rp)->s_trap_mask = (proc_nr == CLOCK || proc_nr == SYSTEM ? CSK_T : TSK_T); ipc_to_m = TSK_M; /* allowed targets */ kcalls = TSK_KC; /* allowed kernel calls */ } /* Priviliges for the root system process. */ else { assert(isrootsysn(proc_nr)); priv(rp)->s_flags= RSYS_F; /* privilege flags */ priv(rp)->s_trap_mask= SRV_T; /* allowed traps */ ipc_to_m = SRV_M; /* allowed targets */ kcalls = SRV_KC; /* allowed kernel calls */ priv(rp)->s_sig_mgr = SRV_SM; /* signal manager */ rp->p_priority = SRV_Q; /* priority queue */ rp->p_quantum_size_ms = SRV_QT; /* quantum size */ } /* Fill in target mask. */ memset(&map, 0, sizeof(map)); if (ipc_to_m == ALL_M) { for(j = 0; j < NR_SYS_PROCS; j++) set_sys_bit(map, j); } fill_sendto_mask(rp, &map); /* Fill in kernel call mask. */ for(j = 0; j < SYS_CALL_MASK_SIZE; j++) { priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0)); } } else { /* Don't let the process run for now. */ RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM); } /* Arch-specific state initialization. */ arch_boot_proc(ip, rp); /* scheduling functions depend on proc_ptr pointing somewhere. */ if(!get_cpulocal_var(proc_ptr)) get_cpulocal_var(proc_ptr) = rp; /* Process isn't scheduled until VM has set up a pagetable for it. */ if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) { rp->p_rts_flags |= RTS_VMINHIBIT; rp->p_rts_flags |= RTS_BOOTINHIBIT; } rp->p_rts_flags |= RTS_PROC_STOP; rp->p_rts_flags &= ~RTS_SLOT_FREE; DEBUGEXTRA(("done\n")); } /* update boot procs info for VM */ memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs)); #define IPCNAME(n) { \ assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \ assert(!ipc_call_names[n]); \ ipc_call_names[n] = #n; \ } arch_post_init(); IPCNAME(SEND); IPCNAME(RECEIVE); IPCNAME(SENDREC); IPCNAME(NOTIFY); IPCNAME(SENDNB); IPCNAME(SENDA); /* System and processes initialization */ memory_init(); DEBUGEXTRA(("system_init()... ")); system_init(); DEBUGEXTRA(("done\n")); /* The bootstrap phase is over, so we can add the physical * memory used for it to the free list. */ add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len); #ifdef CONFIG_SMP if (config_no_apic) { BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n")); smp_single_cpu_fallback(); } else if (config_no_smp) { BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n")); smp_single_cpu_fallback(); } else { smp_init(); /* * if smp_init() returns it means that it failed and we try to finish * single CPU booting */ bsp_finish_booting(); } #else /* * if configured for a single CPU, we are already on the kernel stack which we * are going to use everytime we execute kernel code. We finish booting and we * never return here */ bsp_finish_booting(); #endif NOT_REACHABLE; }
/*===========================================================================* * main * *===========================================================================*/ PUBLIC int main(void) { /* Start the ball rolling. */ struct boot_image *ip; /* boot image pointer */ register struct proc *rp; /* process pointer */ register int i, j; size_t argsz; /* size of arguments passed to crtso on stack */ BKL_LOCK(); /* Global value to test segment sanity. */ magictest = MAGICTEST; DEBUGEXTRA(("main()\n")); proc_init(); /* Set up proc table entries for processes in boot image. The stacks * of the servers have been added to the data segment by the monitor, so * the stack pointer is set to the end of the data segment. */ for (i=0; i < NR_BOOT_PROCS; ++i) { int schedulable_proc; proc_nr_t proc_nr; int ipc_to_m, kcalls; sys_map_t map; ip = &image[i]; /* process' attributes */ DEBUGEXTRA(("initializing %s... ", ip->proc_name)); rp = proc_addr(ip->proc_nr); /* get process pointer */ ip->endpoint = rp->p_endpoint; /* ipc endpoint */ make_zero64(rp->p_cpu_time_left); strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */ reset_proc_accounting(rp); /* See if this process is immediately schedulable. * In that case, set its privileges now and allow it to run. * Only kernel tasks and the root system process get to run immediately. * All the other system processes are inhibited from running by the * RTS_NO_PRIV flag. They can only be scheduled once the root system * process has set their privileges. */ proc_nr = proc_nr(rp); schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr)); if(schedulable_proc) { /* Assign privilege structure. Force a static privilege id. */ (void) get_priv(rp, static_priv_id(proc_nr)); /* Priviliges for kernel tasks. */ if(iskerneln(proc_nr)) { /* Privilege flags. */ priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F); /* Allowed traps. */ priv(rp)->s_trap_mask = (proc_nr == CLOCK || proc_nr == SYSTEM ? CSK_T : TSK_T); ipc_to_m = TSK_M; /* allowed targets */ kcalls = TSK_KC; /* allowed kernel calls */ } /* Priviliges for the root system process. */ else if(isrootsysn(proc_nr)) { priv(rp)->s_flags= RSYS_F; /* privilege flags */ priv(rp)->s_trap_mask= SRV_T; /* allowed traps */ ipc_to_m = SRV_M; /* allowed targets */ kcalls = SRV_KC; /* allowed kernel calls */ priv(rp)->s_sig_mgr = SRV_SM; /* signal manager */ rp->p_priority = SRV_Q; /* priority queue */ rp->p_quantum_size_ms = SRV_QT; /* quantum size */ } /* Priviliges for ordinary process. */ else { NOT_REACHABLE; } /* Fill in target mask. */ memset(&map, 0, sizeof(map)); if (ipc_to_m == ALL_M) { for(j = 0; j < NR_SYS_PROCS; j++) set_sys_bit(map, j); } fill_sendto_mask(rp, &map); /* Fill in kernel call mask. */ for(j = 0; j < SYS_CALL_MASK_SIZE; j++) { priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0)); } } else { /* Don't let the process run for now. */ RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM); } rp->p_memmap[T].mem_vir = ABS2CLICK(ip->memmap.text_vaddr); rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr); rp->p_memmap[T].mem_len = ABS2CLICK(ip->memmap.text_bytes); rp->p_memmap[D].mem_vir = ABS2CLICK(ip->memmap.data_vaddr); rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr); rp->p_memmap[D].mem_len = ABS2CLICK(ip->memmap.data_bytes); rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr + ip->memmap.data_bytes + ip->memmap.stack_bytes); rp->p_memmap[S].mem_vir = ABS2CLICK(ip->memmap.data_vaddr + ip->memmap.data_bytes + ip->memmap.stack_bytes); rp->p_memmap[S].mem_len = 0; /* Set initial register values. The processor status word for tasks * is different from that of other processes because tasks can * access I/O; this is not allowed to less-privileged processes */ rp->p_reg.pc = ip->memmap.entry; rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW; /* Initialize the server stack pointer. Take it down three words * to give crtso.s something to use as "argc", "argv" and "envp". */ if (isusern(proc_nr)) { /* user-space process? */ rp->p_reg.sp = (rp->p_memmap[S].mem_vir + rp->p_memmap[S].mem_len) << CLICK_SHIFT; argsz = 3 * sizeof(reg_t); rp->p_reg.sp -= argsz; phys_memset(rp->p_reg.sp - (rp->p_memmap[S].mem_vir << CLICK_SHIFT) + (rp->p_memmap[S].mem_phys << CLICK_SHIFT), 0, argsz); } /* scheduling functions depend on proc_ptr pointing somewhere. */ if(!get_cpulocal_var(proc_ptr)) get_cpulocal_var(proc_ptr) = rp; /* If this process has its own page table, VM will set the * PT up and manage it. VM will signal the kernel when it has * done this; until then, don't let it run. */ if(ip->flags & PROC_FULLVM) rp->p_rts_flags |= RTS_VMINHIBIT; rp->p_rts_flags |= RTS_PROC_STOP; rp->p_rts_flags &= ~RTS_SLOT_FREE; alloc_segments(rp); DEBUGEXTRA(("done\n")); } #define IPCNAME(n) { \ assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \ assert(!ipc_call_names[n]); \ ipc_call_names[n] = #n; \ } IPCNAME(SEND); IPCNAME(RECEIVE); IPCNAME(SENDREC); IPCNAME(NOTIFY); IPCNAME(SENDNB); IPCNAME(SENDA); /* Architecture-dependent initialization. */ DEBUGEXTRA(("arch_init()... ")); arch_init(); DEBUGEXTRA(("done\n")); /* System and processes initialization */ DEBUGEXTRA(("system_init()... ")); system_init(); DEBUGEXTRA(("done\n")); #ifdef CONFIG_SMP if (config_no_apic) { BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n")); smp_single_cpu_fallback(); } else if (config_no_smp) { BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n")); smp_single_cpu_fallback(); } else { smp_init(); /* * if smp_init() returns it means that it failed and we try to finish * single CPU booting */ bsp_finish_booting(); } #else /* * if configured for a single CPU, we are already on the kernel stack which we * are going to use everytime we execute kernel code. We finish booting and we * never return here */ bsp_finish_booting(); #endif NOT_REACHABLE; return 1; }
PUBLIC void context_stop(struct proc * p) { u64_t tsc, tsc_delta; u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch); #ifdef CONFIG_SMP unsigned cpu = cpuid; /* * This function is called only if we switch from kernel to user or idle * or back. Therefore this is a perfect location to place the big kernel * lock which will hopefully disappear soon. * * If we stop accounting for KERNEL we must unlock the BKL. If account * for IDLE we must not hold the lock */ if (p == proc_addr(KERNEL)) { u64_t tmp; read_tsc_64(&tsc); tmp = sub64(tsc, *__tsc_ctr_switch); kernel_ticks[cpu] = add64(kernel_ticks[cpu], tmp); p->p_cycles = add64(p->p_cycles, tmp); BKL_UNLOCK(); } else { u64_t bkl_tsc; atomic_t succ; read_tsc_64(&bkl_tsc); /* this only gives a good estimate */ succ = big_kernel_lock.val; BKL_LOCK(); read_tsc_64(&tsc); bkl_ticks[cpu] = add64(bkl_ticks[cpu], sub64(tsc, bkl_tsc)); bkl_tries[cpu]++; bkl_succ[cpu] += !(!(succ == 0)); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); } #else read_tsc_64(&tsc); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); #endif tsc_delta = sub64(tsc, *__tsc_ctr_switch); if(kbill_ipc) { kbill_ipc->p_kipc_cycles = add64(kbill_ipc->p_kipc_cycles, tsc_delta); kbill_ipc = NULL; } if(kbill_kcall) { kbill_kcall->p_kcall_cycles = add64(kbill_kcall->p_kcall_cycles, tsc_delta); kbill_kcall = NULL; } /* * deduct the just consumed cpu cycles from the cpu time left for this * process during its current quantum. Skip IDLE and other pseudo kernel * tasks */ if (p->p_endpoint >= 0) { #if DEBUG_RACE make_zero64(p->p_cpu_time_left); #else /* if (tsc_delta < p->p_cpu_time_left) in 64bit */ if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) || (ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) && ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left))) p->p_cpu_time_left = sub64(p->p_cpu_time_left, tsc_delta); else { make_zero64(p->p_cpu_time_left); } #endif } *__tsc_ctr_switch = tsc; }