Beispiel #1
0
/* Finds and deletes the best-fit node from the tree. Return a pointer to the
   resulting tree.  best-fit means the node with the given or lower key */
struct Curl_tree *Curl_splaygetbest(struct timeval i,
                                    struct Curl_tree *t,
                                    struct Curl_tree **removed)
{
  struct Curl_tree *x;

  if(!t) {
    *removed = NULL; /* none removed since there was no root */
    return NULL;
  }

  t = Curl_splay(i, t);
  if(compare(i, t->key) < 0) {
    /* too big node, try the smaller chain */
    if(t->smaller)
      t=Curl_splay(t->smaller->key, t);
    else {
      /* fail */
      *removed = NULL;
      return t;
    }
  }

  if(compare(i, t->key) >= 0) {               /* found it */
    /* FIRST! Check if there is a list with identical keys */
    x = t->same;
    if(x) {
      /* there is, pick one from the list */

      /* 'x' is the new root node */

      x->key = t->key;
      x->larger = t->larger;
      x->smaller = t->smaller;

      *removed = t;
      return x; /* new root */
    }

    if(t->smaller == NULL) {
      x = t->larger;
    }
    else {
      x = Curl_splay(i, t->smaller);
      x->larger = t->larger;
    }
    *removed = t;

    return x;
  }
  else {
    *removed = NULL; /* no match */
    return t;        /* It wasn't there */
  }
}
Beispiel #2
0
/* Deletes the very node we point out from the tree if it's there. Stores a
   pointer to the new resulting tree in 'newroot'.

   Returns zero on success and non-zero on errors! TODO: document error codes.
   When returning error, it does not touch the 'newroot' pointer.

   NOTE: when the last node of the tree is removed, there's no tree left so
   'newroot' will be made to point to NULL.
*/
int Curl_splayremovebyaddr(struct Curl_tree *t,
                           struct Curl_tree *remove,
                           struct Curl_tree **newroot)
{
  struct Curl_tree *x;

  if (!t || !remove)
    return 1;

  if(KEY_NOTUSED == remove->key) {
    /* Key set to NOTUSED means it is a subnode within a 'same' linked list
       and thus we can unlink it easily. The 'smaller' link of a subnode
       links to the parent node. */
    remove->smaller->same = remove->same;
    if(remove->same)
      remove->same->smaller = remove->smaller;
    /* voila, we're done! */
    *newroot = t; /* return the same root */
    return 0;
  }

  t = Curl_splay(remove->key, t);

  /* First make sure that we got a root node witht he same key as the one we
     want to remove, as otherwise we might be trying to remove a node that
     isn't actually in the tree. */
  if(t->key != remove->key)
    return 2;

  /* Check if there is a list with identical sizes, as then we're trying to
     remove the root node of a list of nodes with identical keys. */
  x = t->same;
  if(x) {
    /* 'x' is the new root node, we just make it use the root node's
       smaller/larger links */

    x->key = t->key;
    x->larger = t->larger;
    x->smaller = t->smaller;
  }
  else {
    /* Remove the root node */
    if (t->smaller == NULL)
      x = t->larger;
    else {
      x = Curl_splay(remove->key, t->smaller);
      x->larger = t->larger;
    }
  }

  *newroot = x; /* store new root pointer */

  return 0;
}
Beispiel #3
0
/* Deletes 'i' from the tree if it's there (with an exact match). Returns a
   pointer to the resulting tree.

   Function not used in libcurl.
*/
struct Curl_tree *Curl_splayremove(struct timeval i,
                                   struct Curl_tree *t,
                                   struct Curl_tree **removed)
{
  struct Curl_tree *x;

  *removed = NULL; /* default to no removed */

  if(t==NULL)
    return NULL;

  t = Curl_splay(i,t);
  if(compare(i, t->key) == 0) {               /* found it */

    /* FIRST! Check if there is a list with identical sizes */
    if((x = t->same) != NULL) {
      /* there is, pick one from the list */

      /* 'x' is the new root node */

      x->key = t->key;
      x->larger = t->larger;
      x->smaller = t->smaller;

      *removed = t;
      return x; /* new root */
    }

    if(t->smaller == NULL) {
      x = t->larger;
    }
    else {
      x = Curl_splay(i, t->smaller);
      x->larger = t->larger;
    }
    *removed = t;

    return x;
  }
  else
    return t;                         /* It wasn't there */
}
Beispiel #4
0
/* Insert key i into the tree t.  Return a pointer to the resulting tree or
 * NULL if something went wrong.
 *
 * @unittest: 1309
 */
struct Curl_tree *Curl_splayinsert(struct timeval i,
                                   struct Curl_tree *t,
                                   struct Curl_tree *node)
{
  static const struct timeval KEY_NOTUSED = {-1, -1}; /* will *NEVER* appear */

  if(node == NULL)
    return t;

  if(t != NULL) {
    t = Curl_splay(i, t);
    if(compare(i, t->key)==0) {
      /* There already exists a node in the tree with the very same key. Build
         a linked list of nodes. We make the new 'node' struct the new master
         node and make the previous node the first one in the 'same' list. */

      node->same = t;
      node->key = i;
      node->smaller = t->smaller;
      node->larger = t->larger;

      t->smaller = node; /* in the sub node for this same key, we use the
                            smaller pointer to point back to the master
                            node */

      t->key = KEY_NOTUSED; /* and we set the key in the sub node to NOTUSED
                               to quickly identify this node as a subnode */

      return node; /* new root node */
    }
  }

  if(t == NULL) {
    node->smaller = node->larger = NULL;
  }
  else if(compare(i, t->key) < 0) {
    node->smaller = t->smaller;
    node->larger = t;
    t->smaller = NULL;

  }
  else {
    node->larger = t->larger;
    node->smaller = t;
    t->larger = NULL;
  }
  node->key = i;

  node->same = NULL; /* no identical node (yet) */
  return node;
}
Beispiel #5
0
/* Insert key i into the tree t.  Return a pointer to the resulting tree or
 * NULL if something went wrong.
 *
 * @unittest: 1309
 */
struct Curl_tree *Curl_splayinsert(struct curltime i,
                                   struct Curl_tree *t,
                                   struct Curl_tree *node)
{
  static const struct curltime KEY_NOTUSED = {
    (time_t)-1, (unsigned int)-1
  }; /* will *NEVER* appear */

  if(node == NULL)
    return t;

  if(t != NULL) {
    t = Curl_splay(i, t);
    if(compare(i, t->key) == 0) {
      /* There already exists a node in the tree with the very same key. Build
         a doubly-linked circular list of nodes. We add the new 'node' struct
         to the end of this list. */

      node->key = KEY_NOTUSED; /* we set the key in the sub node to NOTUSED
                                  to quickly identify this node as a subnode */
      node->samen = t;
      node->samep = t->samep;
      t->samep->samen = node;
      t->samep = node;

      return t; /* the root node always stays the same */
    }
  }

  if(t == NULL) {
    node->smaller = node->larger = NULL;
  }
  else if(compare(i, t->key) < 0) {
    node->smaller = t->smaller;
    node->larger = t;
    t->smaller = NULL;

  }
  else {
    node->larger = t->larger;
    node->smaller = t;
    t->larger = NULL;
  }
  node->key = i;

  /* no identical nodes (yet), we are the only one in the list of nodes */
  node->samen = node;
  node->samep = node;
  return node;
}
Beispiel #6
0
/* Finds and deletes the best-fit node from the tree. Return a pointer to the
   resulting tree.  best-fit means the smallest node if it is not larger than
   the key */
struct Curl_tree *Curl_splaygetbest(struct curltime i,
                                    struct Curl_tree *t,
                                    struct Curl_tree **removed)
{
  static struct curltime tv_zero = {0, 0};
  struct Curl_tree *x;

  if(!t) {
    *removed = NULL; /* none removed since there was no root */
    return NULL;
  }

  /* find smallest */
  t = Curl_splay(tv_zero, t);
  if(compare(i, t->key) < 0) {
    /* even the smallest is too big */
    *removed = NULL;
    return t;
  }

  /* FIRST! Check if there is a list with identical keys */
  x = t->samen;
  if(x != t) {
    /* there is, pick one from the list */

    /* 'x' is the new root node */

    x->key = t->key;
    x->larger = t->larger;
    x->smaller = t->smaller;
    x->samep = t->samep;
    t->samep->samen = x;

    *removed = t;
    return x; /* new root */
  }

  /* we splayed the tree to the smallest element, there is no smaller */
  x = t->larger;
  *removed = t;

  return x;
}
Beispiel #7
0
/* Deletes the very node we point out from the tree if it's there. Stores a
 * pointer to the new resulting tree in 'newroot'.
 *
 * Returns zero on success and non-zero on errors! TODO: document error codes.
 * When returning error, it does not touch the 'newroot' pointer.
 *
 * NOTE: when the last node of the tree is removed, there's no tree left so
 * 'newroot' will be made to point to NULL.
 *
 * @unittest: 1309
 */
int Curl_splayremovebyaddr(struct Curl_tree *t,
                           struct Curl_tree *removenode,
                           struct Curl_tree **newroot)
{
  static const struct timeval KEY_NOTUSED = {-1, -1}; /* will *NEVER* appear */
  struct Curl_tree *x;

  if(!t || !removenode)
    return 1;

  if(compare(KEY_NOTUSED, removenode->key) == 0) {
    /* Key set to NOTUSED means it is a subnode within a 'same' linked list
       and thus we can unlink it easily. The 'smaller' link of a subnode
       links to the parent node. */
    if(removenode->smaller == NULL)
      return 3;

    removenode->smaller->same = removenode->same;
    if(removenode->same)
      removenode->same->smaller = removenode->smaller;

    /* Ensures that double-remove gets caught. */
    removenode->smaller = NULL;

    /* voila, we're done! */
    *newroot = t; /* return the same root */
    return 0;
  }

  t = Curl_splay(removenode->key, t);

  /* First make sure that we got the same root node as the one we want
     to remove, as otherwise we might be trying to remove a node that
     isn't actually in the tree.

     We cannot just compare the keys here as a double remove in quick
     succession of a node with key != KEY_NOTUSED && same != NULL
     could return the same key but a different node. */
  if(t != removenode)
    return 2;

  /* Check if there is a list with identical sizes, as then we're trying to
     remove the root node of a list of nodes with identical keys. */
  x = t->same;
  if(x) {
    /* 'x' is the new root node, we just make it use the root node's
       smaller/larger links */

    x->key = t->key;
    x->larger = t->larger;
    x->smaller = t->smaller;
  }
  else {
    /* Remove the root node */
    if(t->smaller == NULL)
      x = t->larger;
    else {
      x = Curl_splay(removenode->key, t->smaller);
      x->larger = t->larger;
    }
  }

  *newroot = x; /* store new root pointer */

  return 0;
}