Beispiel #1
0
//--------------------------------
void esp8266::ConfigureUART(uint32_t nBps) {
	SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
	GPIOPinConfigure(GPIO_PC4_U1RX);
	GPIOPinConfigure(GPIO_PC5_U1TX);
	GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
	UARTClockSourceSet(UART_BASE, UART_CLOCK_PIOSC);
	SetBitrate(nBps);
	MAP_UARTFIFOLevelSet(UART_BASE, UART_FIFO_TX1_8, UART_FIFO_RX1_8);
	MAP_UARTIntDisable(UART_BASE, 0xFFFFFFFF);
	MAP_UARTIntEnable(UART_BASE, UART_INT_RX | UART_INT_RT);
	MAP_IntEnable(UART_INT);
	MAP_UARTEnable(UART_BASE);
}
Beispiel #2
0
int main() {
#ifndef USE_TIRTOS
  MAP_IntVTableBaseSet((unsigned long) &g_pfnVectors[0]);
#endif
  MAP_IntEnable(FAULT_SYSTICK);
  MAP_IntMasterEnable();
  PRCMCC3200MCUInit();

  /* Console UART init. */
  MAP_PRCMPeripheralClkEnable(CONSOLE_UART_PERIPH, PRCM_RUN_MODE_CLK);
  MAP_PinTypeUART(PIN_55, PIN_MODE_3); /* PIN_55 -> UART0_TX */
  MAP_PinTypeUART(PIN_57, PIN_MODE_3); /* PIN_57 -> UART0_RX */
  MAP_UARTConfigSetExpClk(
      CONSOLE_UART, MAP_PRCMPeripheralClockGet(CONSOLE_UART_PERIPH),
      CONSOLE_BAUD_RATE,
      (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));
  MAP_UARTFIFOLevelSet(CONSOLE_UART, UART_FIFO_TX1_8, UART_FIFO_RX4_8);
  MAP_UARTFIFOEnable(CONSOLE_UART);

  setvbuf(stdout, NULL, _IOLBF, 0);
  setvbuf(stderr, NULL, _IOLBF, 0);
  cs_log_set_level(LL_INFO);
  cs_log_set_file(stdout);

  LOG(LL_INFO, ("Hello, world!"));

  MAP_PinTypeI2C(PIN_01, PIN_MODE_1); /* SDA */
  MAP_PinTypeI2C(PIN_02, PIN_MODE_1); /* SCL */
  I2C_IF_Open(I2C_MASTER_MODE_FST);

  /* Set up the red LED. Note that amber and green cannot be used as they share
   * pins with I2C. */
  MAP_PRCMPeripheralClkEnable(PRCM_GPIOA1, PRCM_RUN_MODE_CLK);
  MAP_PinTypeGPIO(PIN_64, PIN_MODE_0, false);
  MAP_GPIODirModeSet(GPIOA1_BASE, 0x2, GPIO_DIR_MODE_OUT);
  GPIO_IF_LedConfigure(LED1);
  GPIO_IF_LedOn(MCU_RED_LED_GPIO);

  if (VStartSimpleLinkSpawnTask(8) != 0) {
    LOG(LL_ERROR, ("Failed to create SL task"));
  }

  if (!mg_start_task(MG_TASK_PRIORITY, MG_TASK_STACK_SIZE, mg_init)) {
    LOG(LL_ERROR, ("Failed to create MG task"));
  }

  osi_start();

  return 0;
}
Beispiel #3
0
// assumes init parameters have been set up correctly
bool uart_init2(pyb_uart_obj_t *self) {
    uint uartPerh;

    switch (self->uart_id) {
    case PYB_UART_0:
        self->reg = UARTA0_BASE;
        uartPerh = PRCM_UARTA0;
        MAP_UARTIntRegister(UARTA0_BASE, UART0IntHandler);
        MAP_IntPrioritySet(INT_UARTA0, INT_PRIORITY_LVL_3);
        break;
    case PYB_UART_1:
        self->reg = UARTA1_BASE;
        uartPerh = PRCM_UARTA1;
        MAP_UARTIntRegister(UARTA1_BASE, UART1IntHandler);
        MAP_IntPrioritySet(INT_UARTA1, INT_PRIORITY_LVL_3);
        break;
    default:
        return false;
    }

    // Enable the peripheral clock
    MAP_PRCMPeripheralClkEnable(uartPerh, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);

    // Reset the uart
    MAP_PRCMPeripheralReset(uartPerh);

    // Initialize the UART
    MAP_UARTConfigSetExpClk(self->reg, MAP_PRCMPeripheralClockGet(uartPerh),
                            self->baudrate, self->config);

    // Enbale the FIFO
    MAP_UARTFIFOEnable(self->reg);

    // Configure the FIFO interrupt levels
    MAP_UARTFIFOLevelSet(self->reg, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
    
    // Configure the flow control mode
    UARTFlowControlSet(self->reg, self->flowcontrol);

    // Enable the RX and RX timeout interrupts
    MAP_UARTIntEnable(self->reg, UART_INT_RX | UART_INT_RT);

    self->enabled = true;

    return true;
}
Beispiel #4
0
Datei: main.c Projekt: dlugaz/All
//*****************************************************************************
//
//! Initializes the UART0 peripheral and sets up the TX and RX uDMA channels.
//! The UART is configured for loopback mode so that any data sent on TX will be
//! received on RX.  The uDMA channels are configured so that the TX channel
//! will copy data from a buffer to the UART TX output.  And the uDMA RX channel
//! will receive any incoming data into a pair of buffers in ping-pong mode.
//!
//! \param None
//!
//! \return None
//!
//*****************************************************************************
void
InitUART0Transfer(void)
{
    unsigned int uIdx;

    //
    // Fill the TX buffer with a simple data pattern.
    //
    for(uIdx = 0; uIdx < UART_TXBUF_SIZE; uIdx++)
    {
        g_ucTxBuf[uIdx] = 65;
    }
    MAP_PRCMPeripheralReset(PRCM_UARTA0);
    MAP_PRCMPeripheralClkEnable(PRCM_UARTA0,PRCM_RUN_MODE_CLK);

    MAP_UARTConfigSetExpClk(CONSOLE,SYSCLK, UART_BAUD_RATE,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                                        UART_CONFIG_PAR_NONE));
    MAP_uDMAChannelAssign(UDMA_CH8_UARTA0_RX);
    MAP_uDMAChannelAssign(UDMA_CH9_UARTA0_TX);
    MAP_UARTIntRegister(UARTA0_BASE,UART0IntHandler);
    
    //
    // Set both the TX and RX trigger thresholds to 4.  This will be used by
    // the uDMA controller to signal when more data should be transferred.  The
    // uDMA TX and RX channels will be configured so that it can transfer 4
    // bytes in a burst when the UART is ready to transfer more data.
    //
    MAP_UARTFIFOLevelSet(UARTA0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Enable the UART for operation, and enable the uDMA interface for both TX
    // and RX channels.
    //
    MAP_UARTEnable(UARTA0_BASE);

    //
    // This register write will set the UART to operate in loopback mode.  Any
    // data sent on the TX output will be received on the RX input.
    //
    HWREG(UARTA0_BASE + UART_O_CTL) |= UART_CTL_LBE;

    //
    // Enable the UART peripheral interrupts. uDMA controller will cause an 
    // interrupt on the UART interrupt signal when a uDMA transfer is complete.
    //
   
    MAP_UARTIntEnable(UARTA0_BASE,UART_INT_DMATX);
    MAP_UARTIntEnable(UARTA0_BASE,UART_INT_DMARX);

    //
    // Configure the control parameters for the UART TX.  The uDMA UART TX
    // channel is used to transfer a block of data from a buffer to the UART.
    // The data size is 8 bits.  The source address increment is 8-bit bytes
    // since the data is coming from a buffer.  The destination increment is
    // none since the data is to be written to the UART data register.  The
    // arbitration size is set to 4, which matches the UART TX FIFO trigger
    // threshold.
    //
    UDMASetupTransfer(UDMA_CH8_UARTA0_RX | UDMA_PRI_SELECT, UDMA_MODE_PINGPONG,
            sizeof(g_ucRxBufA),UDMA_SIZE_8, UDMA_ARB_4,
            (void *)(UARTA0_BASE + UART_O_DR), UDMA_SRC_INC_NONE,
                                            g_ucRxBufA, UDMA_DST_INC_8);

    UDMASetupTransfer(UDMA_CH8_UARTA0_RX | UDMA_ALT_SELECT, UDMA_MODE_PINGPONG,
            sizeof(g_ucRxBufB),UDMA_SIZE_8, UDMA_ARB_4,
              (void *)(UARTA0_BASE + UART_O_DR), UDMA_SRC_INC_NONE,
                                            g_ucRxBufB, UDMA_DST_INC_8);

    UDMASetupTransfer(UDMA_CH9_UARTA0_TX| UDMA_PRI_SELECT,
               UDMA_MODE_BASIC,sizeof(g_ucTxBuf),UDMA_SIZE_8, UDMA_ARB_4,
               g_ucTxBuf, UDMA_SRC_INC_8,(void *)(UARTA0_BASE + UART_O_DR), 
                                                    UDMA_DST_INC_NONE);
    
    MAP_UARTDMAEnable(UARTA0_BASE, UART_DMA_RX | UART_DMA_TX);
}
Beispiel #5
0
bool mgos_uart_hal_configure(struct mgos_uart_state *us,
                             const struct mgos_uart_config *cfg) {
  uint32_t base = cc32xx_uart_get_base(us->uart_no);
  if (us->uart_no == 0 && (cfg->tx_fc_type == MGOS_UART_FC_HW ||
                           cfg->rx_fc_type == MGOS_UART_FC_HW)) {
    /* No FC on UART0, according to the TRM. */
    return false;
  }
  MAP_UARTIntDisable(base, ~0);
  uint32_t periph = (us->uart_no == 0 ? PRCM_UARTA0 : PRCM_UARTA1);
  uint32_t data_cfg = 0;
  switch (cfg->num_data_bits) {
    case 5:
      data_cfg |= UART_CONFIG_WLEN_5;
      break;
    case 6:
      data_cfg |= UART_CONFIG_WLEN_6;
      break;
    case 7:
      data_cfg |= UART_CONFIG_WLEN_7;
      break;
    case 8:
      data_cfg |= UART_CONFIG_WLEN_8;
      break;
    default:
      return false;
  }

  switch (cfg->parity) {
    case MGOS_UART_PARITY_NONE:
      data_cfg |= UART_CONFIG_PAR_NONE;
      break;
    case MGOS_UART_PARITY_EVEN:
      data_cfg |= UART_CONFIG_PAR_EVEN;
      break;
    case MGOS_UART_PARITY_ODD:
      data_cfg |= UART_CONFIG_PAR_ODD;
      break;
  }

  switch (cfg->stop_bits) {
    case MGOS_UART_STOP_BITS_1:
      data_cfg |= UART_CONFIG_STOP_ONE;
      break;
    case MGOS_UART_STOP_BITS_1_5:
      return false; /* Not supported */
    case MGOS_UART_STOP_BITS_2:
      data_cfg |= UART_CONFIG_STOP_TWO;
      break;
  }

  MAP_UARTConfigSetExpClk(base, MAP_PRCMPeripheralClockGet(periph),
                          cfg->baud_rate, data_cfg);

  if (cfg->tx_fc_type == MGOS_UART_FC_HW ||
      cfg->rx_fc_type == MGOS_UART_FC_HW) {
    /* Note: only UART1 */
    uint32_t ctl = HWREG(base + UART_O_CTL);
    if (cfg->tx_fc_type == MGOS_UART_FC_HW) {
      ctl |= UART_CTL_CTSEN;
      MAP_PinTypeUART(PIN_61, PIN_MODE_3); /* UART1_CTS */
    }
    if (cfg->rx_fc_type == MGOS_UART_FC_HW) {
      ctl |= UART_CTL_RTSEN;
      MAP_PinTypeUART(PIN_62, PIN_MODE_3); /* UART1_RTS */
    }
    HWREG(base + UART_O_CTL) = ctl;
  }
  MAP_UARTFIFOLevelSet(base, UART_FIFO_TX1_8, UART_FIFO_RX4_8);
  MAP_UARTFIFOEnable(base);
  return true;
}
Beispiel #6
0
int main(void) {
  MAP_IntVTableBaseSet((unsigned long) &int_vectors[0]);
  MAP_IntMasterEnable();
  PRCMCC3200MCUInit();

/* Console UART init. */
#ifndef NO_DEBUG
  MAP_PRCMPeripheralClkEnable(DEBUG_UART_PERIPH, PRCM_RUN_MODE_CLK);
#if MIOT_DEBUG_UART == 0
  MAP_PinTypeUART(PIN_55, PIN_MODE_3); /* UART0_TX */
  MAP_PinTypeUART(PIN_57, PIN_MODE_3); /* UART0_RX */
#else
  MAP_PinTypeUART(PIN_07, PIN_MODE_5); /* UART1_TX */
  MAP_PinTypeUART(PIN_08, PIN_MODE_5); /* UART1_RX */
#endif
  MAP_UARTConfigSetExpClk(
      DEBUG_UART_BASE, MAP_PRCMPeripheralClockGet(DEBUG_UART_PERIPH),
      MIOT_DEBUG_UART_BAUD_RATE,
      (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));
  MAP_UARTFIFOLevelSet(DEBUG_UART_BASE, UART_FIFO_TX1_8, UART_FIFO_RX4_8);
  MAP_UARTFIFODisable(DEBUG_UART_BASE);
#endif

  dbg_puts("\r\n\n");

  if (sl_Start(NULL, NULL, NULL) < 0) abort();
  dbg_putc('S');

  int cidx = get_active_boot_cfg_idx();
  if (cidx < 0) abort();
  dbg_putc('0' + cidx);
  struct boot_cfg cfg;
  if (read_boot_cfg(cidx, &cfg) < 0) abort();

  dbg_puts(cfg.app_image_file);
  dbg_putc('@');
  print_addr(cfg.app_load_addr);

  /*
   * Zero memory before loading.
   * This should provide proper initialisation for BSS, wherever it is.
   */
  uint32_t *pstart = (uint32_t *) 0x20000000;
  uint32_t *pend = (&_text_start - 0x100 /* our stack */);
  for (uint32_t *p = pstart; p < pend; p++) *p = 0;

  if (load_image(cfg.app_image_file, (_u8 *) cfg.app_load_addr) != 0) {
    abort();
  }

  dbg_putc('.');

  sl_Stop(0);
  print_addr(*(((uint32_t *) cfg.app_load_addr) + 1));
  dbg_puts("\r\n\n");

  MAP_IntMasterDisable();
  MAP_IntVTableBaseSet(cfg.app_load_addr);

  run(cfg.app_load_addr); /* Does not return. */

  abort();

  return 0; /* not reached */
}
Beispiel #7
0
bool initializeUartChannel(uint8_t channel,
                           uint8_t uartPort,
                           uint32_t baudRate,
                           uint32_t cpuSpeedHz,
                           uint32_t flags)
{
    if (channel >= UART_NUMBER_OF_CHANNELS ||
        uartPort >= UART_COUNT)
    {
        return false;
    }

    if (uart2UartChannelData[uartPort] != 0)
    {
        return false;
    }

    if (!(flags & UART_FLAGS_RECEIVE) && !(flags & UART_FLAGS_SEND))
    {
        return false;
    }

    uint32_t uartBase;
    uint32_t uartInterruptId;
    uint32_t uartPeripheralSysCtl;

    switch (uartPort)
    {
#ifdef DEBUG
        case UART_0:
        {
            uartBase = UART0_BASE;
            uartInterruptId = INT_UART0;
            uartPeripheralSysCtl = SYSCTL_PERIPH_UART0;
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
            ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
            ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
            ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
            break;
        }
#endif
        case UART_1:
        {
            uartBase = UART1_BASE;
            uartInterruptId = INT_UART1;
            uartPeripheralSysCtl = SYSCTL_PERIPH_UART1;
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
            ROM_GPIOPinConfigure(GPIO_PB0_U1RX);
            ROM_GPIOPinConfigure(GPIO_PB1_U1TX);
            ROM_GPIOPinTypeUART(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);
            break;
        }
        case UART_2:
        {
            uartBase = UART2_BASE;
            uartInterruptId = INT_UART2;
            uartPeripheralSysCtl = SYSCTL_PERIPH_UART2;
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART2);
            ROM_GPIOPinConfigure(GPIO_PD6_U2RX);
            ROM_GPIOPinConfigure(GPIO_PD7_U2TX);
            ROM_GPIOPinTypeUART(GPIO_PORTD_BASE, GPIO_PIN_6 | GPIO_PIN_7);
            break;
        }
        case UART_3:
        {
            uartBase = UART3_BASE;
            uartInterruptId = INT_UART3;
            uartPeripheralSysCtl = SYSCTL_PERIPH_UART3;
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART3);
            ROM_GPIOPinConfigure(GPIO_PC6_U3RX);
            ROM_GPIOPinConfigure(GPIO_PC7_U3TX);
            ROM_GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_6 | GPIO_PIN_7);
            break;
        }
        case UART_4:
        {
            uartBase = UART4_BASE;
            uartInterruptId = INT_UART4;
            uartPeripheralSysCtl = SYSCTL_PERIPH_UART4;
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART4);
            ROM_GPIOPinConfigure(GPIO_PC4_U4RX);
            ROM_GPIOPinConfigure(GPIO_PC5_U4TX);
            ROM_GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
            break;
        }
        default:
        {
            return false;
        }
    }

    UARTClockSourceSet(uartBase, UART_CLOCK_PIOSC);

    if(!MAP_SysCtlPeripheralPresent(uartPeripheralSysCtl))
    {
        return false;
    }

    MAP_SysCtlPeripheralEnable(uartPeripheralSysCtl);
    
    MAP_UARTConfigSetExpClk(uartBase,
                            cpuSpeedHz,
                            baudRate, 
                            (UART_CONFIG_PAR_NONE | UART_CONFIG_STOP_ONE | UART_CONFIG_WLEN_8));
    MAP_UARTFIFOLevelSet(uartBase, UART_FIFO_TX1_8, UART_FIFO_RX1_8);
    MAP_UARTIntDisable(uartBase, 0xFFFFFFFF);

    if (flags & UART_FLAGS_RECEIVE)
    {
        MAP_UARTIntEnable(uartBase, UART_INT_RX | UART_INT_RT);
    }
    if (flags & UART_FLAGS_SEND)
    {
        MAP_UARTIntEnable(uartBase, UART_INT_TX);
    }

    MAP_IntEnable(uartInterruptId);
    MAP_UARTEnable(uartBase);

    uartChannelData[channel].base = uartBase;
    uartChannelData[channel].interruptId = uartInterruptId;
    uartChannelData[channel].writeBuffer.isEmpty = true;
    uart2UartChannelData[uartPort] = &uartChannelData[channel];

    return true;
}
//*****************************************************************************
//
// The main function sets up the peripherals for the example, then enters
// a wait loop until the DMA transfers are complete.  At the end some
// information is printed for the user.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulIdx;

    //
    // Set the clocking to run directly from the PLL at 50 MHz.
    //
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Initialize the console UART and write a message to the terminal.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    MAP_GPIOPinConfigure(GPIO_PA0_U0RX);
    MAP_GPIOPinConfigure(GPIO_PA1_U0TX);
    MAP_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    UARTStdioInit(0);
    UARTprintf("\033[2JMemory/UART scatter-gather uDMA example\n\n");

    //
    // Configure UART1 to be used for the loopback peripheral
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);

    //
    // Configure the UART communication parameters.
    //
    MAP_UARTConfigSetExpClk(UART1_BASE, MAP_SysCtlClockGet(), 115200,
                            UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                            UART_CONFIG_PAR_NONE);

    //
    // Set both the TX and RX trigger thresholds to one-half (8 bytes).  This
    // will be used by the uDMA controller to signal when more data should be
    // transferred.  The uDMA TX and RX channels will be configured so that it
    // can transfer 8 bytes in a burst when the UART is ready to transfer more
    // data.
    //
    MAP_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Enable the UART for operation, and enable the uDMA interface for both TX
    // and RX channels.
    //
    MAP_UARTEnable(UART1_BASE);
    MAP_UARTDMAEnable(UART1_BASE, UART_DMA_RX | UART_DMA_TX);

    //
    // This register write will set the UART to operate in loopback mode.  Any
    // data sent on the TX output will be received on the RX input.
    //
    HWREG(UART1_BASE + UART_O_CTL) |= UART_CTL_LBE;

    //
    // Enable the UART peripheral interrupts.  Note that no UART interrupts
    // were enabled, but the uDMA controller will cause an interrupt on the
    // UART interrupt signal when a uDMA transfer is complete.
    //
    MAP_IntEnable(INT_UART1);

    //
    // Enable the uDMA peripheral clocking.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Enable the uDMA controller.
    //
    MAP_uDMAEnable();

    //
    // Point at the control table to use for channel control structures.
    //
    MAP_uDMAControlBaseSet(sControlTable);

    //
    // Configure the UART TX channel for scatter-gather
    // Peripheral scatter-gather is used because transfers are gated by
    // requests from the peripheral
    //
    UARTprintf("Configuring UART TX uDMA channel for scatter-gather\n");
#ifndef USE_SGSET_API
    //
    // Use the original method for configuring the scatter-gather transfer
    //
    uDMAChannelControlSet(UDMA_CHANNEL_UART1TX, UDMA_SIZE_32 |
                          UDMA_SRC_INC_32 | UDMA_DST_INC_32 | UDMA_ARB_4);
    uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX, UDMA_MODE_PER_SCATTER_GATHER,
                           g_TaskTableSrc,
                           &sControlTable[UDMA_CHANNEL_UART1TX], 6 * 4);
#else
    //
    // Use the simplified API for configuring the scatter-gather transfer
    //
    uDMAChannelScatterGatherSet(UDMA_CHANNEL_UART1TX, 6, g_TaskTableSrc, 1);
#endif

    //
    // Configure the UART RX channel for scatter-gather task list.
    // This is set to peripheral s-g because it starts by receiving data
    // from the UART
    //
    UARTprintf("Configuring UART RX uDMA channel for scatter-gather\n");
#ifndef USE_SGSET_API
    //
    // Use the original method for configuring the scatter-gather transfer
    //
    uDMAChannelControlSet(UDMA_CHANNEL_UART1RX, UDMA_SIZE_32 |
                          UDMA_SRC_INC_32 | UDMA_DST_INC_32 | UDMA_ARB_4);
    uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX, UDMA_MODE_PER_SCATTER_GATHER,
                           g_TaskTableDst,
                           &sControlTable[UDMA_CHANNEL_UART1RX], 7 * 4);
#else
    //
    // Use the simplified API for configuring the scatter-gather transfer
    //
    uDMAChannelScatterGatherSet(UDMA_CHANNEL_UART1RX, 7, g_TaskTableDst, 1);
#endif

    //
    // Fill the source buffer with a pattern
    //
    for(ulIdx = 0; ulIdx < 1024; ulIdx++)
    {
        g_ucSrcBuf[ulIdx] = ulIdx + (ulIdx / 256);
    }

    //
    // Enable the uDMA controller error interrupt.  This interrupt will occur
    // if there is a bus error during a transfer.
    //
    IntEnable(INT_UDMAERR);

    //
    // Enable the UART RX DMA channel.  It will wait for data to be available
    // from the UART.
    //
    UARTprintf("Enabling uDMA channel for UART RX\n");
    MAP_uDMAChannelEnable(UDMA_CHANNEL_UART1RX);

    //
    // Enable the UART TX DMA channel.  Since the UART TX will be asserting
    // a DMA request (since the TX FIFO is empty), this will cause this
    // DMA channel to start running.
    //
    UARTprintf("Enabling uDMA channel for UART TX\n");
    MAP_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);

    //
    // Wait for the TX task list to be finished
    //
    UARTprintf("Waiting for TX task list to finish ... ");
    while(!g_bTXdone)
    {
    }
    UARTprintf("done\n");

    //
    // Wait for the RX task list to be finished
    //
    UARTprintf("Waiting for RX task list to finish ... ");
    while(!g_bRXdone)
    {
    }
    UARTprintf("done\n");

    //
    // Verify that all the counters are in the expected state
    //
    UARTprintf("Verifying counters\n");
    if(g_ulDMAIntCount != 2)
    {
        UARTprintf("ERROR in interrupt count, found %d, expected 2\n",
                  g_ulDMAIntCount);
    }
    if(g_uluDMAErrCount != 0)
    {
        UARTprintf("ERROR in error counter, found %d, expected 0\n",
                  g_uluDMAErrCount);
    }

    //
    // Now verify the contents of the final destination buffer.  Compare it
    // to the original source buffer.
    //
    UARTprintf("Verifying buffer contents ... ");
    for(ulIdx = 0; ulIdx < 1024; ulIdx++)
    {
        if(g_ucDstBuf[ulIdx] != g_ucSrcBuf[ulIdx])
        {
            UARTprintf("ERROR\n    @ index %d: expected 0x%02X, found 0x%02X\n",
                       ulIdx, g_ucSrcBuf[ulIdx], g_ucDstBuf[ulIdx]);
            UARTprintf("Checking stopped.  There may be additional errors\n");
            break;
        }
    }
    if(ulIdx == 1024)
    {
        UARTprintf("OK\n");
    }

    //
    // End of program, loop forever
    //
    for(;;)
    {
    }
}