Beispiel #1
0
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
{
    status_t result;
    uint32_t data = 0;

    /* Set the loop mode. */
    if (enable)
    {
        if (mode == kPHY_LocalLoop)
        {
            if (speed == kPHY_Speed100M)
            {
                data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
            }
            else
            {
                data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
            }
           return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
        }
        else
        {
            /* First read the current status in control register. */
            result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
            }
        }
    }
    else
    {
        /* Disable the loop mode. */
        if (mode == kPHY_LocalLoop)
        {
            /* First read the current status in control register. */
            result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
            if (result == kStatus_Success)
            {
                data &= ~PHY_BCTL_LOOP_MASK;
                return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
            }
        }
        else
        {
            /* First read the current status in control one register. */
            result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
            }
        }
    }
    return result;
}
Beispiel #2
0
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, bool enable)
{
    status_t result;
    uint32_t data = 0;

    /* Set the loop mode. */
    if (enable)
    {
        if (mode == kPHY_LocalLoop)
        {
            /* First read the current status in control register. */
            result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_LOOP_MASK));
            }
        }
        else
        {
            /* First read the current status in control register. */
            result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
            }
        }
    }
    else
    {
        /* Disable the loop mode. */
        if (mode == kPHY_LocalLoop)
        {
            /* First read the current status in the basic control register. */
            result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data & ~PHY_BCTL_LOOP_MASK));
            }
        }
        else
        {
            /* First read the current status in control one register. */
            result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
            if (result == kStatus_Success)
            {
                return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
            }
        }
    }
    return result;
}
Beispiel #3
0
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
    uint32_t counter = PHY_TIMEOUT_COUNT;
    uint32_t idReg = 0;
    status_t result = kStatus_Success;
    uint32_t instance = ENET_GetInstance(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Set SMI first. */
    CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
    ENET_SetSMI(base, srcClock_Hz, false);

    /* Initialization after PHY stars to work. */
    while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
    {
        PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
        counter --;
    }

    if (!counter)
    {
        return kStatus_Fail;
    }

    /* Reset PHY. */
    result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
    if (result == kStatus_Success)
    {

#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
        uint32_t data = 0;
        result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
        if ( result != kStatus_Success)
        {
            return result;
        }
        result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
        if (result != kStatus_Success)
        {
            return result;
        }
#endif  /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
    }
    return result;
}
Beispiel #4
0
status_t PHY_AutoNegotiation(ENET_Type *base, uint32_t phyAddr)
{
    status_t result = kStatus_Success;
    uint32_t bssReg;
    uint32_t counter = PHY_TIMEOUT_COUNT;
    uint32_t timeDelay;
    uint32_t ctlReg = 0;

    /* Set the negotiation. */
    result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
                       (PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
                        PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
    if (result == kStatus_Success)
    {
        result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
                           (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
        if (result == kStatus_Success)
        {
            /* Check auto negotiation complete. */
            while (counter --)
            {
                result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
                if ( result == kStatus_Success)
                {
                    PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
                    if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
                    {
                        /* Wait a moment for Phy status stable. */
                        for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
                        {
                            __ASM("nop");
                        }
                        break;
                    }
                }

                if (!counter)
                {
                    return kStatus_PHY_AutoNegotiateFail;
                }
            }
        }
    }

    return result;
}
Beispiel #5
0
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
    assert(duplex);

    status_t result = kStatus_Success;
    uint32_t data, ctlReg;

    /* Read the control two register. */
#if defined(BOARD_RT1050_FIRE) || defined(BOARD_RT1050_ATK)
    result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &ctlReg);
#endif
#if defined(BOARD_RT1050_EVK) || defined(BOARD_RT1050_SeeedStudio)
    result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
#endif
    if (result == kStatus_Success)
    {
        data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
        if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
        {
            /* Full duplex. */
            *duplex = kPHY_FullDuplex;
        }
        else
        {
            /* Half duplex. */
            *duplex = kPHY_HalfDuplex;
        }

        data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
        if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
        {
            /* 100M speed. */
            *speed = kPHY_Speed100M;
        }
        else
        { /* 10M speed. */
            *speed = kPHY_Speed10M;
        }
    }

    return result;
}
Beispiel #6
0
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
    uint32_t bssReg;
    uint32_t counter = PHY_TIMEOUT_COUNT;
    status_t result = kStatus_Success;
    uint32_t instance = ENET_GetInstance(base);

    /* Set SMI first. */
    CLOCK_EnableClock(s_enetClock[instance]);
    ENET_SetSMI(base, srcClock_Hz, false);

    /* Reset PHY. */
    result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
    if (result == kStatus_Success)
    {
        /* Set the negotiation. */
        result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
                           (PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
                            PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
        if (result == kStatus_Success)
        {
            result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
                               (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
            if (result == kStatus_Success)
            {
                /* Check auto negotiation complete. */
                while (counter --)
                {
                    result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
                    if ( result == kStatus_Success)
                    {
                        if ((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0)
                        {
                            break;
                        }
                    }

                    if (!counter)
                    {
                        return kStatus_PHY_AutoNegotiateFail;
                    }
                }
            }
        }
    }

    return result;
}
Beispiel #7
0
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
    assert(status);

    status_t result = kStatus_Success;
    uint32_t data;

    /* Read the basic status register. */
    result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
    if (result == kStatus_Success)
    {
        if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
        {
            /* link down. */
            *status = false;
        }
        else
        {
            /* link up. */
            *status = true;
        }
    }
    return result;
}
Beispiel #8
0
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
    uint32_t bssReg;
    uint32_t counter = PHY_TIMEOUT_COUNT;
    uint32_t idReg = 0;
    status_t result = kStatus_Success;
    uint32_t instance = ENET_GetInstance(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Set SMI first. */
    CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
    ENET_SetSMI(base, srcClock_Hz, false);

    /* Initialization after PHY stars to work. */
    while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
    {
        PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
        counter --;       
    }
    
    if (!counter)
    {
        return kStatus_Fail;
    }

    /* Reset PHY. */
    counter = 6;
    result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
    if (result == kStatus_Success)
    {
#if defined(BOARD_RT1050_FIRE)
        for (uint32_t i = 0x10000; i > 0; i--)
        {
            result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &bssReg);
            if (!(bssReg & PHY_BCTL_POWER_DOWN_MASK))
            {
                break;
            }
        }
#endif
#if defined(BOARD_RT1050_ATK)
      rt_thread_delay(RT_TICK_PER_SECOND);  
#endif
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
        uint32_t data = 0;
        result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
        if ( result != kStatus_Success)
        {
            return result;
        }
        result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
        if (result != kStatus_Success)
        {
            return result;
        }
#endif  /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */    
        
        /* Set the negotiation. */
        result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
                           (PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
                            PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
        if (result == kStatus_Success)
        {
            result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
                               (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
            if (result == kStatus_Success)
            {
                /* Check auto negotiation complete. */
                while (counter --)
                {
                    result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
                    if ( result == kStatus_Success)
                    {
#if defined(BOARD_RT1050_FIRE) || defined(BOARD_RT1050_ATK)
                        if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0))
#else
                        uint32_t ctlReg = 0;
                        PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
                        if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
#endif
                        {
                            rt_kprintf("auto negotiation complete success\n");
                            break;
                        }
                        else
                        {
                         /* Wait a moment for Phy status stable. */
                                __ASM("nop");
                        }
                    }
                    
                    rt_kprintf("[PHY] wait autonegotiation complete...\n");
                    rt_thread_delay(RT_TICK_PER_SECOND);

                    if (!counter)
                    {
                        return kStatus_PHY_AutoNegotiateFail;
                    }
                }
            }
        }
    }

    return result;
}