int do_flash_write(uint32_t addr, uint32_t len, uint32_t erase) { struct uart_buf ub; uint8_t digest[16]; uint32_t num_written = 0, num_erased = 0; struct MD5Context ctx; MD5Init(&ctx); if (addr % FLASH_SECTOR_SIZE != 0) return 0x32; if (len % FLASH_SECTOR_SIZE != 0) return 0x33; if (SPIUnlock() != 0) return 0x34; ub.nr = 0; ub.pr = ub.pw = ub.data; ets_isr_attach(ETS_UART_INUM, uart_isr, &ub); SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RX_INTS); ets_isr_unmask(1 << ETS_UART_INUM); SLIP_send(&num_written, 4); while (num_written < len) { volatile uint32_t *nr = &ub.nr; /* Prepare the space ahead. */ while (erase && num_erased < num_written + SPI_WRITE_SIZE) { const uint32_t num_left = (len - num_erased); if (num_left > FLASH_BLOCK_SIZE && addr % FLASH_BLOCK_SIZE == 0) { if (SPIEraseBlock(addr / FLASH_BLOCK_SIZE) != 0) return 0x35; num_erased += FLASH_BLOCK_SIZE; } else { /* len % FLASH_SECTOR_SIZE == 0 is enforced, no further checks needed */ if (SPIEraseSector(addr / FLASH_SECTOR_SIZE) != 0) return 0x36; num_erased += FLASH_SECTOR_SIZE; } } /* Wait for data to arrive. */ while (*nr < SPI_WRITE_SIZE) { } MD5Update(&ctx, ub.pr, SPI_WRITE_SIZE); if (SPIWrite(addr, ub.pr, SPI_WRITE_SIZE) != 0) return 0x37; ets_intr_lock(); *nr -= SPI_WRITE_SIZE; ets_intr_unlock(); num_written += SPI_WRITE_SIZE; addr += SPI_WRITE_SIZE; ub.pr += SPI_WRITE_SIZE; if (ub.pr >= ub.data + UART_BUF_SIZE) ub.pr = ub.data; SLIP_send(&num_written, 4); } ets_isr_mask(1 << ETS_UART_INUM); MD5Final(digest, &ctx); SLIP_send(digest, 16); return 0; }
void stub_main() { uint32_t baud_rate = params[0]; uint32_t greeting = 0x4941484f; /* OHAI */ uint8_t last_cmd; /* This points at us right now, reset for next boot. */ ets_set_user_start(NULL); /* Selects SPI functions for flash pins. */ SelectSpiFunction(); if (baud_rate > 0) { ets_delay_us(1000); uart_div_modify(0, UART_CLKDIV_26MHZ(baud_rate)); } /* Give host time to get ready too. */ ets_delay_us(10000); SLIP_send(&greeting, 4); last_cmd = cmd_loop(); ets_delay_us(10000); if (last_cmd == CMD_BOOT_FW) { /* * Find the return address in our own stack and change it. * "flash_finish" it gets to the same point, except it doesn't need to * patch up its RA: it returns from UartDwnLdProc, then from f_400011ac, * then jumps to 0x4000108a, then checks strapping bits again (which will * not have changed), and then proceeds to 0x400010a8. */ volatile uint32_t *sp = &baud_rate; while (*sp != (uint32_t) 0x40001100) sp++; *sp = 0x400010a8; /* * The following dummy asm fragment acts as a barrier, to make sure function * epilogue, including return address loading, is added after our stack * patching. */ __asm volatile("nop.n"); return; /* To 0x400010a8 */ } else {
void cmd_loop() { while(1) { /* Wait for a command */ while(ub.command == NULL) { } esp_command_req_t *command = ub.command; ub.command = NULL; /* provide easy access for 32-bit data words */ uint32_t *data_words = (uint32_t *)command->data_buf; /* Send command response header */ esp_command_response_t resp = { .resp = 1, .op_ret = command->op, .len_ret = 0, /* esptool.py ignores this value */ .value = 0, }; /* ESP_READ_REG is the only command that needs to write into the 'resp' structure before we send it back. */ if (command->op == ESP_READ_REG && command->data_len == 4) { resp.value = REG_READ(data_words[0]); } /* Send the command response. */ SLIP_send_frame_delimiter(); SLIP_send_frame_data_buf(&resp, sizeof(esp_command_response_t)); if(command->data_len > MAX_WRITE_BLOCK+16) { SLIP_send_frame_data(ESP_BAD_DATA_LEN); SLIP_send_frame_data(0xEE); SLIP_send_frame_delimiter(); continue; } /* ... some commands will insert in-frame response data between here and when we send the end of the frame */ esp_command_error error = ESP_CMD_NOT_IMPLEMENTED; int status = 0; /* First stage of command processing - before sending error/status */ switch (command->op) { case ESP_ERASE_FLASH: error = verify_data_len(command, 0) || SPIEraseChip(); break; case ESP_ERASE_REGION: /* Params for ERASE_REGION are addr, len */ error = verify_data_len(command, 8) || handle_flash_erase(data_words[0], data_words[1]); break; case ESP_SET_BAUD: /* ESP_SET_BAUD sends two args, we ignore the second one */ error = verify_data_len(command, 8); /* actual baud setting happens after we send the reply */ break; case ESP_READ_FLASH: error = verify_data_len(command, 16); /* actual data is sent after we send the reply */ break; case ESP_FLASH_VERIFY_MD5: /* unsure why the MD5 command has 4 params but we only pass 2 of them, but this is in ESP32 ROM so we can't mess with it. */ error = verify_data_len(command, 16) || handle_flash_get_md5sum(data_words[0], data_words[1]); break; case ESP_FLASH_BEGIN: /* parameters (interpreted differently to ROM flasher): 0 - erase_size (used as total size to write) 1 - num_blocks (ignored) 2 - block_size (should be MAX_WRITE_BLOCK, relies on num_blocks * block_size >= erase_size) 3 - offset (used as-is) */ if (command->data_len == 16 && data_words[2] != MAX_WRITE_BLOCK) { error = ESP_BAD_BLOCKSIZE; } else { error = verify_data_len(command, 16) || handle_flash_begin(data_words[0], data_words[3]); } break; case ESP_FLASH_DEFLATED_BEGIN: /* parameters: 0 - uncompressed size 1 - num_blocks (based on compressed size) 2 - block_size (should be MAX_WRITE_BLOCK, total bytes over serial = num_blocks * block_size) 3 - offset (used as-is) */ if (command->data_len == 16 && data_words[2] != MAX_WRITE_BLOCK) { error = ESP_BAD_BLOCKSIZE; } else { error = verify_data_len(command, 16) || handle_flash_deflated_begin(data_words[0], data_words[1] * data_words[2], data_words[3]); } break; case ESP_FLASH_DATA: case ESP_FLASH_DEFLATED_DATA: /* ACK DATA commands immediately, then process them a few lines down, allowing next command to buffer */ if(is_in_flash_mode()) { error = get_flash_error(); int payload_len = command->data_len - 16; if (data_words[0] != payload_len) { /* First byte of data payload header is length (repeated) as a word */ error = ESP_BAD_DATA_LEN; } uint8_t data_checksum = calculate_checksum(command->data_buf + 16, payload_len); if (data_checksum != command->checksum) { error = ESP_BAD_DATA_CHECKSUM; } } else { error = ESP_NOT_IN_FLASH_MODE; } break; case ESP_FLASH_END: case ESP_FLASH_DEFLATED_END: error = handle_flash_end(); break; case ESP_SPI_SET_PARAMS: /* data params: fl_id, total_size, block_size, sector_Size, page_size, status_mask */ error = verify_data_len(command, 24) || handle_spi_set_params(data_words, &status); break; case ESP_SPI_ATTACH: /* parameter is 'hspi mode' (0, 1 or a pin mask for ESP32. Ignored on ESP8266.) */ error = verify_data_len(command, 4) || handle_spi_attach(data_words[0]); break; case ESP_WRITE_REG: /* params are addr, value, mask (ignored), delay_us (ignored) */ error = verify_data_len(command, 16); if (error == ESP_OK) { REG_WRITE(data_words[0], data_words[1]); } break; case ESP_READ_REG: /* actual READ_REG operation happens higher up */ error = verify_data_len(command, 4); break; case ESP_MEM_BEGIN: error = verify_data_len(command, 16) || handle_mem_begin(data_words[0], data_words[3]); break; case ESP_MEM_DATA: error = handle_mem_data(command->data_buf + 16, command->data_len - 16); break; case ESP_MEM_END: error = verify_data_len(command, 8) || handle_mem_finish(); break; case ESP_RUN_USER_CODE: /* Returning from here will run user code, ie standard boot process This command does not send a response. */ return; } SLIP_send_frame_data(error); SLIP_send_frame_data(status); SLIP_send_frame_delimiter(); /* Some commands need to do things after after sending this response */ if (error == ESP_OK) { switch(command->op) { case ESP_SET_BAUD: ets_delay_us(10000); uart_div_modify(0, baud_rate_to_divider(data_words[0])); ets_delay_us(1000); break; case ESP_READ_FLASH: /* args are: offset, length, block_size, max_in_flight */ handle_flash_read(data_words[0], data_words[1], data_words[2], data_words[3]); break; case ESP_FLASH_DATA: /* drop into flashing mode, discard 16 byte payload header */ handle_flash_data(command->data_buf + 16, command->data_len - 16); break; case ESP_FLASH_DEFLATED_DATA: handle_flash_deflated_data(command->data_buf + 16, command->data_len - 16); break; case ESP_FLASH_DEFLATED_END: case ESP_FLASH_END: /* passing 0 as parameter for ESP_FLASH_END means reboot now */ if (data_words[0] == 0) { /* Flush the FLASH_END response before rebooting */ #ifdef ESP32 uart_tx_flush(0); #endif ets_delay_us(10000); software_reset(); } break; case ESP_MEM_END: if (data_words[1] != 0) { void (*entrypoint_fn)(void) = (void (*))data_words[1]; /* this is a little different from the ROM loader, which exits the loader routine and _then_ calls this function. But for our purposes so far, having a bit of extra stuff on the stack doesn't really matter. */ entrypoint_fn(); } break; } } } } extern uint32_t _bss_start; extern uint32_t _bss_end; void __attribute__((used)) stub_main(); #ifdef ESP8266 __asm__ ( ".global stub_main_8266\n" ".literal_position\n" ".align 4\n" "stub_main_8266:\n" /* ESP8266 wrapper for "stub_main()" manipulates the return address in * a0, so 'return' from here runs user code. * * After setting a0, we jump directly to stub_main_inner() which is a * normal C function * * Adapted from similar approach used by Cesanta Software for ESP8266 * flasher stub. * */ "movi a0, 0x400010a8;" "j stub_main;"); #endif /* This function is called from stub_main, with return address reset to point to user code. */ void stub_main() { const uint32_t greeting = 0x4941484f; /* OHAI */ /* this points to stub_main now, clear for next boot */ ets_set_user_start(0); /* zero bss */ for(uint32_t *p = &_bss_start; p < &_bss_end; p++) { *p = 0; } SLIP_send(&greeting, 4); /* All UART reads come via uart_isr */ ub.reading_buf = ub.buf_a; ets_isr_attach(ETS_UART0_INUM, uart_isr, NULL); SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RX_INTS); ets_isr_unmask(1 << ETS_UART0_INUM); /* Configure default SPI flash functionality. Can be overriden later by esptool.py. */ #ifdef ESP8266 SelectSpiFunction(); #else uint32_t spiconfig = ets_efuse_get_spiconfig(); uint32_t strapping = REG_READ(GPIO_STRAP_REG); /* If GPIO1 (U0TXD) is pulled low and no other boot mode is set in efuse, assume HSPI flash mode (same as normal boot) */ if (spiconfig == 0 && (strapping & 0x1c) == 0x08) { spiconfig = 1; /* HSPI flash mode */ } spi_flash_attach(spiconfig, 0); #endif SPIParamCfg(0, 16*1024*1024, FLASH_BLOCK_SIZE, FLASH_SECTOR_SIZE, FLASH_PAGE_SIZE, FLASH_STATUS_MASK); cmd_loop(); /* if cmd_loop returns, it's due to ESP_RUN_USER_CODE command. */ return; }
uint8_t cmd_loop() { uint8_t cmd; do { uint32_t args[4]; uint32_t len = SLIP_recv(&cmd, 1); if (len != 1) { continue; } uint8_t resp = 0xff; switch (cmd) { case CMD_FLASH_ERASE: { len = SLIP_recv(args, sizeof(args)); if (len == 8) { resp = do_flash_erase(args[0] /* addr */, args[1] /* len */); } else { resp = 0x31; } break; } case CMD_FLASH_WRITE: { len = SLIP_recv(args, sizeof(args)); if (len == 12) { resp = do_flash_write(args[0] /* addr */, args[1] /* len */, args[2] /* erase */); } else { resp = 0x41; } break; } case CMD_FLASH_READ: { len = SLIP_recv(args, sizeof(args)); if (len == 16) { resp = do_flash_read(args[0] /* addr */, args[1], /* len */ args[2] /* block_size */, args[3] /* max_in_flight */); } else { resp = 0x51; } break; } case CMD_FLASH_DIGEST: { len = SLIP_recv(args, sizeof(args)); if (len == 12) { resp = do_flash_digest(args[0] /* addr */, args[1], /* len */ args[2] /* digest_block_size */); } else { resp = 0x61; } break; } case CMD_FLASH_READ_CHIP_ID: { resp = do_flash_read_chip_id(); break; } case CMD_FLASH_ERASE_CHIP: { resp = SPIEraseChip(); break; } case CMD_BOOT_FW: case CMD_REBOOT: { resp = 0; SLIP_send(&resp, 1); return cmd; } } SLIP_send(&resp, 1); } while (cmd != CMD_BOOT_FW && cmd != CMD_REBOOT); return cmd; }