Exemple #1
0
int do_flash_write(uint32_t addr, uint32_t len, uint32_t erase) {
  struct uart_buf ub;
  uint8_t digest[16];
  uint32_t num_written = 0, num_erased = 0;
  struct MD5Context ctx;
  MD5Init(&ctx);

  if (addr % FLASH_SECTOR_SIZE != 0) return 0x32;
  if (len % FLASH_SECTOR_SIZE != 0) return 0x33;
  if (SPIUnlock() != 0) return 0x34;

  ub.nr = 0;
  ub.pr = ub.pw = ub.data;
  ets_isr_attach(ETS_UART_INUM, uart_isr, &ub);
  SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RX_INTS);
  ets_isr_unmask(1 << ETS_UART_INUM);

  SLIP_send(&num_written, 4);

  while (num_written < len) {
    volatile uint32_t *nr = &ub.nr;
    /* Prepare the space ahead. */
    while (erase && num_erased < num_written + SPI_WRITE_SIZE) {
      const uint32_t num_left = (len - num_erased);
      if (num_left > FLASH_BLOCK_SIZE && addr % FLASH_BLOCK_SIZE == 0) {
        if (SPIEraseBlock(addr / FLASH_BLOCK_SIZE) != 0) return 0x35;
        num_erased += FLASH_BLOCK_SIZE;
      } else {
        /* len % FLASH_SECTOR_SIZE == 0 is enforced, no further checks needed */
        if (SPIEraseSector(addr / FLASH_SECTOR_SIZE) != 0) return 0x36;
        num_erased += FLASH_SECTOR_SIZE;
      }
    }
    /* Wait for data to arrive. */
    while (*nr < SPI_WRITE_SIZE) {
    }
    MD5Update(&ctx, ub.pr, SPI_WRITE_SIZE);
    if (SPIWrite(addr, ub.pr, SPI_WRITE_SIZE) != 0) return 0x37;
    ets_intr_lock();
    *nr -= SPI_WRITE_SIZE;
    ets_intr_unlock();
    num_written += SPI_WRITE_SIZE;
    addr += SPI_WRITE_SIZE;
    ub.pr += SPI_WRITE_SIZE;
    if (ub.pr >= ub.data + UART_BUF_SIZE) ub.pr = ub.data;
    SLIP_send(&num_written, 4);
  }

  ets_isr_mask(1 << ETS_UART_INUM);

  MD5Final(digest, &ctx);
  SLIP_send(digest, 16);

  return 0;
}
Exemple #2
0
void stub_main() {
  uint32_t baud_rate = params[0];
  uint32_t greeting = 0x4941484f; /* OHAI */
  uint8_t last_cmd;

  /* This points at us right now, reset for next boot. */
  ets_set_user_start(NULL);

  /* Selects SPI functions for flash pins. */
  SelectSpiFunction();

  if (baud_rate > 0) {
    ets_delay_us(1000);
    uart_div_modify(0, UART_CLKDIV_26MHZ(baud_rate));
  }

  /* Give host time to get ready too. */
  ets_delay_us(10000);

  SLIP_send(&greeting, 4);

  last_cmd = cmd_loop();

  ets_delay_us(10000);

  if (last_cmd == CMD_BOOT_FW) {
    /*
     * Find the return address in our own stack and change it.
     * "flash_finish" it gets to the same point, except it doesn't need to
     * patch up its RA: it returns from UartDwnLdProc, then from f_400011ac,
     * then jumps to 0x4000108a, then checks strapping bits again (which will
     * not have changed), and then proceeds to 0x400010a8.
     */
    volatile uint32_t *sp = &baud_rate;
    while (*sp != (uint32_t) 0x40001100) sp++;
    *sp = 0x400010a8;
    /*
     * The following dummy asm fragment acts as a barrier, to make sure function
     * epilogue, including return address loading, is added after our stack
     * patching.
     */
    __asm volatile("nop.n");
    return; /* To 0x400010a8 */
  } else {
Exemple #3
0
void cmd_loop() {
  while(1) {
    /* Wait for a command */
    while(ub.command == NULL) { }
    esp_command_req_t *command = ub.command;
    ub.command = NULL;
    /* provide easy access for 32-bit data words */
    uint32_t *data_words = (uint32_t *)command->data_buf;

    /* Send command response header */
    esp_command_response_t resp = {
      .resp = 1,
      .op_ret = command->op,
      .len_ret = 0, /* esptool.py ignores this value */
      .value = 0,
    };

    /* ESP_READ_REG is the only command that needs to write into the
       'resp' structure before we send it back. */
    if (command->op == ESP_READ_REG && command->data_len == 4) {
      resp.value = REG_READ(data_words[0]);
    }

    /* Send the command response. */
    SLIP_send_frame_delimiter();
    SLIP_send_frame_data_buf(&resp, sizeof(esp_command_response_t));

    if(command->data_len > MAX_WRITE_BLOCK+16) {
      SLIP_send_frame_data(ESP_BAD_DATA_LEN);
      SLIP_send_frame_data(0xEE);
      SLIP_send_frame_delimiter();
      continue;
    }

    /* ... some commands will insert in-frame response data
       between here and when we send the end of the frame */

    esp_command_error error = ESP_CMD_NOT_IMPLEMENTED;
    int status = 0;

    /* First stage of command processing - before sending error/status */
    switch (command->op) {
    case ESP_ERASE_FLASH:
      error = verify_data_len(command, 0) || SPIEraseChip();
      break;
    case ESP_ERASE_REGION:
      /* Params for ERASE_REGION are addr, len */
      error = verify_data_len(command, 8) || handle_flash_erase(data_words[0], data_words[1]);
      break;
    case ESP_SET_BAUD:
      /* ESP_SET_BAUD sends two args, we ignore the second one */
      error = verify_data_len(command, 8);
      /* actual baud setting happens after we send the reply */
      break;
    case ESP_READ_FLASH:
      error = verify_data_len(command, 16);
      /* actual data is sent after we send the reply */
      break;
    case ESP_FLASH_VERIFY_MD5:
      /* unsure why the MD5 command has 4 params but we only pass 2 of them,
         but this is in ESP32 ROM so we can't mess with it.
      */
      error = verify_data_len(command, 16) || handle_flash_get_md5sum(data_words[0], data_words[1]);
      break;
    case ESP_FLASH_BEGIN:
      /* parameters (interpreted differently to ROM flasher):
         0 - erase_size (used as total size to write)
         1 - num_blocks (ignored)
         2 - block_size (should be MAX_WRITE_BLOCK, relies on num_blocks * block_size >= erase_size)
         3 - offset (used as-is)
       */
        if (command->data_len == 16 && data_words[2] != MAX_WRITE_BLOCK) {
            error = ESP_BAD_BLOCKSIZE;
        } else {
            error = verify_data_len(command, 16) || handle_flash_begin(data_words[0], data_words[3]);
        }
      break;
    case ESP_FLASH_DEFLATED_BEGIN:
      /* parameters:
         0 - uncompressed size
         1 - num_blocks (based on compressed size)
         2 - block_size (should be MAX_WRITE_BLOCK, total bytes over serial = num_blocks * block_size)
         3 - offset (used as-is)
      */
        if (command->data_len == 16 && data_words[2] != MAX_WRITE_BLOCK) {
            error = ESP_BAD_BLOCKSIZE;
        } else {
            error = verify_data_len(command, 16) || handle_flash_deflated_begin(data_words[0], data_words[1] * data_words[2], data_words[3]);            }
        break;
    case ESP_FLASH_DATA:
    case ESP_FLASH_DEFLATED_DATA:
      /* ACK DATA commands immediately, then process them a few lines down,
         allowing next command to buffer */
      if(is_in_flash_mode()) {
        error = get_flash_error();
        int payload_len = command->data_len - 16;
        if (data_words[0] != payload_len) {
          /* First byte of data payload header is length (repeated) as a word */
          error = ESP_BAD_DATA_LEN;
        }
        uint8_t data_checksum = calculate_checksum(command->data_buf + 16, payload_len);
        if (data_checksum != command->checksum) {
          error = ESP_BAD_DATA_CHECKSUM;
        }
      }
      else {
        error = ESP_NOT_IN_FLASH_MODE;
      }
      break;
    case ESP_FLASH_END:
    case ESP_FLASH_DEFLATED_END:
      error = handle_flash_end();
      break;
    case ESP_SPI_SET_PARAMS:
      /* data params: fl_id, total_size, block_size, sector_Size, page_size, status_mask */
      error = verify_data_len(command, 24) || handle_spi_set_params(data_words, &status);
      break;
    case ESP_SPI_ATTACH:
      /* parameter is 'hspi mode' (0, 1 or a pin mask for ESP32. Ignored on ESP8266.) */
      error = verify_data_len(command, 4) || handle_spi_attach(data_words[0]);
      break;
    case ESP_WRITE_REG:
      /* params are addr, value, mask (ignored), delay_us (ignored) */
      error = verify_data_len(command, 16);
      if (error == ESP_OK) {
        REG_WRITE(data_words[0], data_words[1]);
      }
      break;
    case ESP_READ_REG:
      /* actual READ_REG operation happens higher up */
      error = verify_data_len(command, 4);
      break;
    case ESP_MEM_BEGIN:
        error = verify_data_len(command, 16) || handle_mem_begin(data_words[0], data_words[3]);
        break;
    case ESP_MEM_DATA:
        error = handle_mem_data(command->data_buf + 16, command->data_len - 16);
        break;
    case ESP_MEM_END:
        error = verify_data_len(command, 8) || handle_mem_finish();
        break;
    case ESP_RUN_USER_CODE:
        /* Returning from here will run user code, ie standard boot process

           This command does not send a response.
        */
        return;
    }

    SLIP_send_frame_data(error);
    SLIP_send_frame_data(status);
    SLIP_send_frame_delimiter();

    /* Some commands need to do things after after sending this response */
    if (error == ESP_OK) {
      switch(command->op) {
      case ESP_SET_BAUD:
        ets_delay_us(10000);
        uart_div_modify(0, baud_rate_to_divider(data_words[0]));
        ets_delay_us(1000);
        break;
      case ESP_READ_FLASH:
        /* args are: offset, length, block_size, max_in_flight */
        handle_flash_read(data_words[0], data_words[1], data_words[2],
                          data_words[3]);
        break;
      case ESP_FLASH_DATA:
        /* drop into flashing mode, discard 16 byte payload header */
        handle_flash_data(command->data_buf + 16, command->data_len - 16);
        break;
      case ESP_FLASH_DEFLATED_DATA:
        handle_flash_deflated_data(command->data_buf + 16, command->data_len - 16);
        break;
      case ESP_FLASH_DEFLATED_END:
      case ESP_FLASH_END:
        /* passing 0 as parameter for ESP_FLASH_END means reboot now */
        if (data_words[0] == 0) {
          /* Flush the FLASH_END response before rebooting */
#ifdef ESP32
          uart_tx_flush(0);
#endif
          ets_delay_us(10000);
          software_reset();
        }
        break;
      case ESP_MEM_END:
          if (data_words[1] != 0) {
              void (*entrypoint_fn)(void) = (void (*))data_words[1];
              /* this is a little different from the ROM loader,
                 which exits the loader routine and _then_ calls this
                 function. But for our purposes so far, having a bit of
                 extra stuff on the stack doesn't really matter.
              */
              entrypoint_fn();
          }
          break;
      }
    }
  }
}


extern uint32_t _bss_start;
extern uint32_t _bss_end;

void __attribute__((used)) stub_main();


#ifdef ESP8266
__asm__ (
  ".global stub_main_8266\n"
  ".literal_position\n"
  ".align 4\n"
  "stub_main_8266:\n"
/* ESP8266 wrapper for "stub_main()" manipulates the return address in
 * a0, so 'return' from here runs user code.
 *
 * After setting a0, we jump directly to stub_main_inner() which is a
 * normal C function
 *
 * Adapted from similar approach used by Cesanta Software for ESP8266
 * flasher stub.
 *
 */
  "movi a0, 0x400010a8;"
  "j stub_main;");
#endif

/* This function is called from stub_main, with return address
   reset to point to user code. */
void stub_main()
{
  const uint32_t greeting = 0x4941484f; /* OHAI */

  /* this points to stub_main now, clear for next boot */
  ets_set_user_start(0);

  /* zero bss */
  for(uint32_t *p = &_bss_start; p < &_bss_end; p++) {
    *p = 0;
  }

  SLIP_send(&greeting, 4);

  /* All UART reads come via uart_isr */
  ub.reading_buf = ub.buf_a;
  ets_isr_attach(ETS_UART0_INUM, uart_isr, NULL);
  SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RX_INTS);
  ets_isr_unmask(1 << ETS_UART0_INUM);

  /* Configure default SPI flash functionality.
     Can be overriden later by esptool.py. */
#ifdef ESP8266
        SelectSpiFunction();
#else
        uint32_t spiconfig = ets_efuse_get_spiconfig();
        uint32_t strapping = REG_READ(GPIO_STRAP_REG);
        /* If GPIO1 (U0TXD) is pulled low and no other boot mode is
           set in efuse, assume HSPI flash mode (same as normal boot)
        */
        if (spiconfig == 0 && (strapping & 0x1c) == 0x08) {
            spiconfig = 1; /* HSPI flash mode */
        }
        spi_flash_attach(spiconfig, 0);
#endif
        SPIParamCfg(0, 16*1024*1024, FLASH_BLOCK_SIZE, FLASH_SECTOR_SIZE,
                    FLASH_PAGE_SIZE, FLASH_STATUS_MASK);

  cmd_loop();

  /* if cmd_loop returns, it's due to ESP_RUN_USER_CODE command. */

  return;
}
Exemple #4
0
uint8_t cmd_loop() {
  uint8_t cmd;
  do {
    uint32_t args[4];
    uint32_t len = SLIP_recv(&cmd, 1);
    if (len != 1) {
      continue;
    }
    uint8_t resp = 0xff;
    switch (cmd) {
      case CMD_FLASH_ERASE: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 8) {
          resp = do_flash_erase(args[0] /* addr */, args[1] /* len */);
        } else {
          resp = 0x31;
        }
        break;
      }
      case CMD_FLASH_WRITE: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 12) {
          resp = do_flash_write(args[0] /* addr */, args[1] /* len */,
                                args[2] /* erase */);
        } else {
          resp = 0x41;
        }
        break;
      }
      case CMD_FLASH_READ: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 16) {
          resp = do_flash_read(args[0] /* addr */, args[1], /* len */
                               args[2] /* block_size */,
                               args[3] /* max_in_flight */);
        } else {
          resp = 0x51;
        }
        break;
      }
      case CMD_FLASH_DIGEST: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 12) {
          resp = do_flash_digest(args[0] /* addr */, args[1], /* len */
                                 args[2] /* digest_block_size */);
        } else {
          resp = 0x61;
        }
        break;
      }
      case CMD_FLASH_READ_CHIP_ID: {
        resp = do_flash_read_chip_id();
        break;
      }
      case CMD_FLASH_ERASE_CHIP: {
        resp = SPIEraseChip();
        break;
      }
      case CMD_BOOT_FW:
      case CMD_REBOOT: {
        resp = 0;
        SLIP_send(&resp, 1);
        return cmd;
      }
    }
    SLIP_send(&resp, 1);
  } while (cmd != CMD_BOOT_FW && cmd != CMD_REBOOT);
  return cmd;
}