Beispiel #1
0
void WebRtcAec_ProcessFrame(aec_t *aec,
                            const short *nearend,
                            const short *nearendH,
                            int knownDelay)
{
    // For each frame the process is as follows:
    // 1) If the system_delay indicates on being too small for processing a
    //    frame we stuff the buffer with enough data for 10 ms.
    // 2) Adjust the buffer to the system delay, by moving the read pointer.
    // 3) If we can't move read pointer due to buffer size limitations we
    //    flush/stuff the buffer.
    // 4) Process as many partitions as possible.
    // 5) Update the |system_delay| with respect to a full frame of FRAME_LEN
    //    samples. Even though we will have data left to process (we work with
    //    partitions) we consider updating a whole frame, since that's the
    //    amount of data we input and output in audio_processing.

    // TODO(bjornv): Investigate how we should round the delay difference; right
    // now we know that incoming |knownDelay| is underestimated when it's less
    // than |aec->knownDelay|. We therefore, round (-32) in that direction. In
    // the other direction, we don't have this situation, but might flush one
    // partition too little. This can cause non-causality, which should be
    // investigated. Maybe, allow for a non-symmetric rounding, like -16.
    int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN;
    int moved_elements = 0;

    // TODO(bjornv): Change the near-end buffer handling to be the same as for
    // far-end, that is, with a near_pre_buf.
    // Buffer the near-end frame.
    WebRtc_WriteBuffer(aec->nearFrBuf, nearend, FRAME_LEN);
    // For H band
    if (aec->sampFreq == 32000) {
        WebRtc_WriteBuffer(aec->nearFrBufH, nearendH, FRAME_LEN);
    }

    // 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we
    // have enough far-end data for that by stuffing the buffer if the
    // |system_delay| indicates others.
    if (aec->system_delay < FRAME_LEN) {
      // We don't have enough data so we rewind 10 ms.
      WebRtcAec_MoveFarReadPtr(aec, -(aec->mult + 1));
    }

    // 2) Compensate for a possible change in the system delay.
    WebRtc_MoveReadPtr(aec->far_buf_windowed, move_elements);
    moved_elements = WebRtc_MoveReadPtr(aec->far_buf, move_elements);
    aec->knownDelay -= moved_elements * PART_LEN;
#ifdef WEBRTC_AEC_DEBUG_DUMP
    WebRtc_MoveReadPtr(aec->far_time_buf, move_elements);
#endif

    // 4) Process as many blocks as possible.
    while (WebRtc_available_read(aec->nearFrBuf) >= PART_LEN) {
        ProcessBlock(aec);
    }

    // 5) Update system delay with respect to the entire frame.
    aec->system_delay -= FRAME_LEN;
}
// only buffer L band for farend
int32_t WebRtcAec_BufferFarend(void* aecInst,
                               const float* farend,
                               size_t nrOfSamples) {
  Aec* aecpc = aecInst;
  size_t newNrOfSamples = nrOfSamples;
  float new_farend[MAX_RESAMP_LEN];
  const float* farend_ptr = farend;

  // Get any error caused by buffering the farend signal.
  int32_t error_code = WebRtcAec_GetBufferFarendError(aecInst, farend,
                                                      nrOfSamples);

  if (error_code != 0)
    return error_code;


  if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
    // Resample and get a new number of samples
    WebRtcAec_ResampleLinear(aecpc->resampler,
                             farend,
                             nrOfSamples,
                             aecpc->skew,
                             new_farend,
                             &newNrOfSamples);
    farend_ptr = new_farend;
  }

  aecpc->farend_started = 1;
  WebRtcAec_SetSystemDelay(
      aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples);

  // Write the time-domain data to |far_pre_buf|.
  WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples);

  // Transform to frequency domain if we have enough data.
  while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
    // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
    {
      float* ptmp = NULL;
      float tmp[PART_LEN2];
      WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2);
      WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp);
#ifdef WEBRTC_AEC_DEBUG_DUMP
      WebRtc_WriteBuffer(
          WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1);
#endif
    }

    // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
    WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
  }

  return 0;
}
Beispiel #3
0
void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend) {
  float fft[PART_LEN2];
  float xf[2][PART_LEN1];

  // Check if the buffer is full, and in that case flush the oldest data.
  if (WebRtc_available_write(aec->far_buf) < 1) {
    WebRtcAec_MoveFarReadPtr(aec, 1);
  }
  // Convert far-end partition to the frequency domain without windowing.
  memcpy(fft, farend, sizeof(float) * PART_LEN2);
  TimeToFrequency(fft, xf, 0);
  WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1);

  // Convert far-end partition to the frequency domain with windowing.
  memcpy(fft, farend, sizeof(float) * PART_LEN2);
  TimeToFrequency(fft, xf, 1);
  WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1);
}
// only buffer L band for farend
int32_t WebRtcAec_BufferFarend(void *aecInst, const int16_t *farend,
                               int16_t nrOfSamples)
{
    aecpc_t *aecpc = aecInst;
    int32_t retVal = 0;
    int newNrOfSamples = (int) nrOfSamples;
    short newFarend[MAX_RESAMP_LEN];
    const int16_t* farend_ptr = farend;
    float tmp_farend[MAX_RESAMP_LEN];
    const float* farend_float = tmp_farend;
    float skew;
    int i = 0;

    if (aecpc == NULL) {
        return -1;
    }

    if (farend == NULL) {
        aecpc->lastError = AEC_NULL_POINTER_ERROR;
        return -1;
    }

    if (aecpc->initFlag != initCheck) {
        aecpc->lastError = AEC_UNINITIALIZED_ERROR;
        return -1;
    }

    // number of samples == 160 for SWB input
    if (nrOfSamples != 80 && nrOfSamples != 160) {
        aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
        return -1;
    }

    skew = aecpc->skew;

    if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
        // Resample and get a new number of samples
        WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, skew,
                                 newFarend, &newNrOfSamples);
        farend_ptr = (const int16_t*) newFarend;
    }

    WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) +
                             newNrOfSamples);

#ifdef WEBRTC_AEC_DEBUG_DUMP
    WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr,
                       (size_t) newNrOfSamples);
#endif
    // Cast to float and write the time-domain data to |far_pre_buf|.
    for (i = 0; i < newNrOfSamples; i++) {
      tmp_farend[i] = (float) farend_ptr[i];
    }
    WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float,
                       (size_t) newNrOfSamples);

    // Transform to frequency domain if we have enough data.
    while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
      // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
      WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend,
                        PART_LEN2);

      WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float);

      // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
      WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
#ifdef WEBRTC_AEC_DEBUG_DUMP
      WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend,
                        PART_LEN2);
      WebRtc_WriteBuffer(WebRtcAec_far_time_buf(aecpc->aec),
                         &farend_ptr[PART_LEN], 1);
      WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN);
#endif
    }

    return retVal;
}
// only buffer L band for farend
int32_t WebRtcAec_BufferFarend(void* aecInst,
                               const float* farend,
                               int16_t nrOfSamples) {
  Aec* aecpc = aecInst;
  int newNrOfSamples = (int)nrOfSamples;
  float new_farend[MAX_RESAMP_LEN];
  const float* farend_ptr = farend;

  if (farend == NULL) {
    aecpc->lastError = AEC_NULL_POINTER_ERROR;
    return -1;
  }

  if (aecpc->initFlag != initCheck) {
    aecpc->lastError = AEC_UNINITIALIZED_ERROR;
    return -1;
  }

  // number of samples == 160 for SWB input
  if (nrOfSamples != 80 && nrOfSamples != 160) {
    aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
    return -1;
  }

  if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
    // Resample and get a new number of samples
    WebRtcAec_ResampleLinear(aecpc->resampler,
                             farend,
                             nrOfSamples,
                             aecpc->skew,
                             new_farend,
                             &newNrOfSamples);
    farend_ptr = new_farend;
  }

  aecpc->farend_started = 1;
  WebRtcAec_SetSystemDelay(aecpc->aec,
                           WebRtcAec_system_delay(aecpc->aec) + newNrOfSamples);

  // Write the time-domain data to |far_pre_buf|.
  WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, (size_t)newNrOfSamples);

  // Transform to frequency domain if we have enough data.
  while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
    // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
    {
      float* ptmp = NULL;
      float tmp[PART_LEN2];
      WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2);
      WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp);
#ifdef WEBRTC_AEC_DEBUG_DUMP
      WebRtc_WriteBuffer(
          WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1);
#endif
    }

    // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
    WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
  }

  return 0;
}
Beispiel #6
0
static void ProcessBlock(aec_t* aec) {
    int i;
    float d[PART_LEN], y[PART_LEN], e[PART_LEN], dH[PART_LEN];
    float scale;

    float fft[PART_LEN2];
    float xf[2][PART_LEN1], yf[2][PART_LEN1], ef[2][PART_LEN1];
    float df[2][PART_LEN1];
    float far_spectrum = 0.0f;
    float near_spectrum = 0.0f;
    float abs_far_spectrum[PART_LEN1];
    float abs_near_spectrum[PART_LEN1];

    const float gPow[2] = {0.9f, 0.1f};

    // Noise estimate constants.
    const int noiseInitBlocks = 500 * aec->mult;
    const float step = 0.1f;
    const float ramp = 1.0002f;
    const float gInitNoise[2] = {0.999f, 0.001f};

    int16_t nearend[PART_LEN];
    int16_t* nearend_ptr = NULL;
    int16_t output[PART_LEN];
    int16_t outputH[PART_LEN];

    float* xf_ptr = NULL;

    memset(dH, 0, sizeof(dH));
    if (aec->sampFreq == 32000) {
      // Get the upper band first so we can reuse |nearend|.
      WebRtc_ReadBuffer(aec->nearFrBufH,
                        (void**) &nearend_ptr,
                        nearend,
                        PART_LEN);
      for (i = 0; i < PART_LEN; i++) {
          dH[i] = (float) (nearend_ptr[i]);
      }
      memcpy(aec->dBufH + PART_LEN, dH, sizeof(float) * PART_LEN);
    }
    WebRtc_ReadBuffer(aec->nearFrBuf, (void**) &nearend_ptr, nearend, PART_LEN);

    // ---------- Ooura fft ----------
    // Concatenate old and new nearend blocks.
    for (i = 0; i < PART_LEN; i++) {
        d[i] = (float) (nearend_ptr[i]);
    }
    memcpy(aec->dBuf + PART_LEN, d, sizeof(float) * PART_LEN);

#ifdef WEBRTC_AEC_DEBUG_DUMP
    {
        int16_t farend[PART_LEN];
        int16_t* farend_ptr = NULL;
        WebRtc_ReadBuffer(aec->far_time_buf, (void**) &farend_ptr, farend, 1);
        (void)fwrite(farend_ptr, sizeof(int16_t), PART_LEN, aec->farFile);
        (void)fwrite(nearend_ptr, sizeof(int16_t), PART_LEN, aec->nearFile);
    }
#endif

    // We should always have at least one element stored in |far_buf|.
    assert(WebRtc_available_read(aec->far_buf) > 0);
    WebRtc_ReadBuffer(aec->far_buf, (void**) &xf_ptr, &xf[0][0], 1);

    // Near fft
    memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2);
    TimeToFrequency(fft, df, 0);

    // Power smoothing
    for (i = 0; i < PART_LEN1; i++) {
      far_spectrum = (xf_ptr[i] * xf_ptr[i]) +
          (xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]);
      aec->xPow[i] = gPow[0] * aec->xPow[i] + gPow[1] * NR_PART * far_spectrum;
      // Calculate absolute spectra
      abs_far_spectrum[i] = sqrtf(far_spectrum);

      near_spectrum = df[0][i] * df[0][i] + df[1][i] * df[1][i];
      aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum;
      // Calculate absolute spectra
      abs_near_spectrum[i] = sqrtf(near_spectrum);
    }

    // Estimate noise power. Wait until dPow is more stable.
    if (aec->noiseEstCtr > 50) {
        for (i = 0; i < PART_LEN1; i++) {
            if (aec->dPow[i] < aec->dMinPow[i]) {
                aec->dMinPow[i] = (aec->dPow[i] + step * (aec->dMinPow[i] -
                    aec->dPow[i])) * ramp;
            }
            else {
                aec->dMinPow[i] *= ramp;
            }
        }
    }

    // Smooth increasing noise power from zero at the start,
    // to avoid a sudden burst of comfort noise.
    if (aec->noiseEstCtr < noiseInitBlocks) {
        aec->noiseEstCtr++;
        for (i = 0; i < PART_LEN1; i++) {
            if (aec->dMinPow[i] > aec->dInitMinPow[i]) {
                aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] +
                    gInitNoise[1] * aec->dMinPow[i];
            }
            else {
                aec->dInitMinPow[i] = aec->dMinPow[i];
            }
        }
        aec->noisePow = aec->dInitMinPow;
    }
    else {
        aec->noisePow = aec->dMinPow;
    }

    // Block wise delay estimation used for logging
    if (aec->delay_logging_enabled) {
      int delay_estimate = 0;
      // Estimate the delay
      delay_estimate = WebRtc_DelayEstimatorProcessFloat(aec->delay_estimator,
                                                         abs_far_spectrum,
                                                         abs_near_spectrum,
                                                         PART_LEN1);
      if (delay_estimate >= 0) {
        // Update delay estimate buffer.
        aec->delay_histogram[delay_estimate]++;
      }
    }

    // Update the xfBuf block position.
    aec->xfBufBlockPos--;
    if (aec->xfBufBlockPos == -1) {
        aec->xfBufBlockPos = NR_PART - 1;
    }

    // Buffer xf
    memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, xf_ptr,
           sizeof(float) * PART_LEN1);
    memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, &xf_ptr[PART_LEN1],
           sizeof(float) * PART_LEN1);

    memset(yf, 0, sizeof(yf));

    // Filter far
    WebRtcAec_FilterFar(aec, yf);

    // Inverse fft to obtain echo estimate and error.
    fft[0] = yf[0][0];
    fft[1] = yf[0][PART_LEN];
    for (i = 1; i < PART_LEN; i++) {
        fft[2 * i] = yf[0][i];
        fft[2 * i + 1] = yf[1][i];
    }
    aec_rdft_inverse_128(fft);

    scale = 2.0f / PART_LEN2;
    for (i = 0; i < PART_LEN; i++) {
        y[i] = fft[PART_LEN + i] * scale; // fft scaling
    }

    for (i = 0; i < PART_LEN; i++) {
        e[i] = d[i] - y[i];
    }

    // Error fft
    memcpy(aec->eBuf + PART_LEN, e, sizeof(float) * PART_LEN);
    memset(fft, 0, sizeof(float) * PART_LEN);
    memcpy(fft + PART_LEN, e, sizeof(float) * PART_LEN);
    // TODO(bjornv): Change to use TimeToFrequency().
    aec_rdft_forward_128(fft);

    ef[1][0] = 0;
    ef[1][PART_LEN] = 0;
    ef[0][0] = fft[0];
    ef[0][PART_LEN] = fft[1];
    for (i = 1; i < PART_LEN; i++) {
        ef[0][i] = fft[2 * i];
        ef[1][i] = fft[2 * i + 1];
    }

    if (aec->metricsMode == 1) {
      // Note that the first PART_LEN samples in fft (before transformation) are
      // zero. Hence, the scaling by two in UpdateLevel() should not be
      // performed. That scaling is taken care of in UpdateMetrics() instead.
      UpdateLevel(&aec->linoutlevel, ef);
    }

    // Scale error signal inversely with far power.
    WebRtcAec_ScaleErrorSignal(aec, ef);
    WebRtcAec_FilterAdaptation(aec, fft, ef);
    NonLinearProcessing(aec, output, outputH);

    if (aec->metricsMode == 1) {
        // Update power levels and echo metrics
        UpdateLevel(&aec->farlevel, (float (*)[PART_LEN1]) xf_ptr);
        UpdateLevel(&aec->nearlevel, df);
        UpdateMetrics(aec);
    }

    // Store the output block.
    WebRtc_WriteBuffer(aec->outFrBuf, output, PART_LEN);
    // For H band
    if (aec->sampFreq == 32000) {
        WebRtc_WriteBuffer(aec->outFrBufH, outputH, PART_LEN);
    }

#ifdef WEBRTC_AEC_DEBUG_DUMP
    {
        int16_t eInt16[PART_LEN];
        for (i = 0; i < PART_LEN; i++) {
            eInt16[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, e[i],
                WEBRTC_SPL_WORD16_MIN);
        }

        (void)fwrite(eInt16, sizeof(int16_t), PART_LEN, aec->outLinearFile);
        (void)fwrite(output, sizeof(int16_t), PART_LEN, aec->outFile);
    }
#endif
}