void WebRtcAec_ProcessFrame(aec_t *aec, const short *nearend, const short *nearendH, int knownDelay) { // For each frame the process is as follows: // 1) If the system_delay indicates on being too small for processing a // frame we stuff the buffer with enough data for 10 ms. // 2) Adjust the buffer to the system delay, by moving the read pointer. // 3) If we can't move read pointer due to buffer size limitations we // flush/stuff the buffer. // 4) Process as many partitions as possible. // 5) Update the |system_delay| with respect to a full frame of FRAME_LEN // samples. Even though we will have data left to process (we work with // partitions) we consider updating a whole frame, since that's the // amount of data we input and output in audio_processing. // TODO(bjornv): Investigate how we should round the delay difference; right // now we know that incoming |knownDelay| is underestimated when it's less // than |aec->knownDelay|. We therefore, round (-32) in that direction. In // the other direction, we don't have this situation, but might flush one // partition too little. This can cause non-causality, which should be // investigated. Maybe, allow for a non-symmetric rounding, like -16. int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN; int moved_elements = 0; // TODO(bjornv): Change the near-end buffer handling to be the same as for // far-end, that is, with a near_pre_buf. // Buffer the near-end frame. WebRtc_WriteBuffer(aec->nearFrBuf, nearend, FRAME_LEN); // For H band if (aec->sampFreq == 32000) { WebRtc_WriteBuffer(aec->nearFrBufH, nearendH, FRAME_LEN); } // 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we // have enough far-end data for that by stuffing the buffer if the // |system_delay| indicates others. if (aec->system_delay < FRAME_LEN) { // We don't have enough data so we rewind 10 ms. WebRtcAec_MoveFarReadPtr(aec, -(aec->mult + 1)); } // 2) Compensate for a possible change in the system delay. WebRtc_MoveReadPtr(aec->far_buf_windowed, move_elements); moved_elements = WebRtc_MoveReadPtr(aec->far_buf, move_elements); aec->knownDelay -= moved_elements * PART_LEN; #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_MoveReadPtr(aec->far_time_buf, move_elements); #endif // 4) Process as many blocks as possible. while (WebRtc_available_read(aec->nearFrBuf) >= PART_LEN) { ProcessBlock(aec); } // 5) Update system delay with respect to the entire frame. aec->system_delay -= FRAME_LEN; }
// only buffer L band for farend int32_t WebRtcAec_BufferFarend(void* aecInst, const float* farend, size_t nrOfSamples) { Aec* aecpc = aecInst; size_t newNrOfSamples = nrOfSamples; float new_farend[MAX_RESAMP_LEN]; const float* farend_ptr = farend; // Get any error caused by buffering the farend signal. int32_t error_code = WebRtcAec_GetBufferFarendError(aecInst, farend, nrOfSamples); if (error_code != 0) return error_code; if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, aecpc->skew, new_farend, &newNrOfSamples); farend_ptr = new_farend; } aecpc->farend_started = 1; WebRtcAec_SetSystemDelay( aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples); // Write the time-domain data to |far_pre_buf|. WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples); // Transform to frequency domain if we have enough data. while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { // We have enough data to pass to the FFT, hence read PART_LEN2 samples. { float* ptmp = NULL; float tmp[PART_LEN2]; WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2); WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_WriteBuffer( WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1); #endif } // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); } return 0; }
void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend) { float fft[PART_LEN2]; float xf[2][PART_LEN1]; // Check if the buffer is full, and in that case flush the oldest data. if (WebRtc_available_write(aec->far_buf) < 1) { WebRtcAec_MoveFarReadPtr(aec, 1); } // Convert far-end partition to the frequency domain without windowing. memcpy(fft, farend, sizeof(float) * PART_LEN2); TimeToFrequency(fft, xf, 0); WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1); // Convert far-end partition to the frequency domain with windowing. memcpy(fft, farend, sizeof(float) * PART_LEN2); TimeToFrequency(fft, xf, 1); WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1); }
// only buffer L band for farend int32_t WebRtcAec_BufferFarend(void *aecInst, const int16_t *farend, int16_t nrOfSamples) { aecpc_t *aecpc = aecInst; int32_t retVal = 0; int newNrOfSamples = (int) nrOfSamples; short newFarend[MAX_RESAMP_LEN]; const int16_t* farend_ptr = farend; float tmp_farend[MAX_RESAMP_LEN]; const float* farend_float = tmp_farend; float skew; int i = 0; if (aecpc == NULL) { return -1; } if (farend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } skew = aecpc->skew; if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, skew, newFarend, &newNrOfSamples); farend_ptr = (const int16_t*) newFarend; } WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + newNrOfSamples); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr, (size_t) newNrOfSamples); #endif // Cast to float and write the time-domain data to |far_pre_buf|. for (i = 0; i < newNrOfSamples; i++) { tmp_farend[i] = (float) farend_ptr[i]; } WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float, (size_t) newNrOfSamples); // Transform to frequency domain if we have enough data. while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { // We have enough data to pass to the FFT, hence read PART_LEN2 samples. WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend, PART_LEN2); WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float); // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend, PART_LEN2); WebRtc_WriteBuffer(WebRtcAec_far_time_buf(aecpc->aec), &farend_ptr[PART_LEN], 1); WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); #endif } return retVal; }
// only buffer L band for farend int32_t WebRtcAec_BufferFarend(void* aecInst, const float* farend, int16_t nrOfSamples) { Aec* aecpc = aecInst; int newNrOfSamples = (int)nrOfSamples; float new_farend[MAX_RESAMP_LEN]; const float* farend_ptr = farend; if (farend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, aecpc->skew, new_farend, &newNrOfSamples); farend_ptr = new_farend; } aecpc->farend_started = 1; WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + newNrOfSamples); // Write the time-domain data to |far_pre_buf|. WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, (size_t)newNrOfSamples); // Transform to frequency domain if we have enough data. while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { // We have enough data to pass to the FFT, hence read PART_LEN2 samples. { float* ptmp = NULL; float tmp[PART_LEN2]; WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2); WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_WriteBuffer( WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1); #endif } // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); } return 0; }
static void ProcessBlock(aec_t* aec) { int i; float d[PART_LEN], y[PART_LEN], e[PART_LEN], dH[PART_LEN]; float scale; float fft[PART_LEN2]; float xf[2][PART_LEN1], yf[2][PART_LEN1], ef[2][PART_LEN1]; float df[2][PART_LEN1]; float far_spectrum = 0.0f; float near_spectrum = 0.0f; float abs_far_spectrum[PART_LEN1]; float abs_near_spectrum[PART_LEN1]; const float gPow[2] = {0.9f, 0.1f}; // Noise estimate constants. const int noiseInitBlocks = 500 * aec->mult; const float step = 0.1f; const float ramp = 1.0002f; const float gInitNoise[2] = {0.999f, 0.001f}; int16_t nearend[PART_LEN]; int16_t* nearend_ptr = NULL; int16_t output[PART_LEN]; int16_t outputH[PART_LEN]; float* xf_ptr = NULL; memset(dH, 0, sizeof(dH)); if (aec->sampFreq == 32000) { // Get the upper band first so we can reuse |nearend|. WebRtc_ReadBuffer(aec->nearFrBufH, (void**) &nearend_ptr, nearend, PART_LEN); for (i = 0; i < PART_LEN; i++) { dH[i] = (float) (nearend_ptr[i]); } memcpy(aec->dBufH + PART_LEN, dH, sizeof(float) * PART_LEN); } WebRtc_ReadBuffer(aec->nearFrBuf, (void**) &nearend_ptr, nearend, PART_LEN); // ---------- Ooura fft ---------- // Concatenate old and new nearend blocks. for (i = 0; i < PART_LEN; i++) { d[i] = (float) (nearend_ptr[i]); } memcpy(aec->dBuf + PART_LEN, d, sizeof(float) * PART_LEN); #ifdef WEBRTC_AEC_DEBUG_DUMP { int16_t farend[PART_LEN]; int16_t* farend_ptr = NULL; WebRtc_ReadBuffer(aec->far_time_buf, (void**) &farend_ptr, farend, 1); (void)fwrite(farend_ptr, sizeof(int16_t), PART_LEN, aec->farFile); (void)fwrite(nearend_ptr, sizeof(int16_t), PART_LEN, aec->nearFile); } #endif // We should always have at least one element stored in |far_buf|. assert(WebRtc_available_read(aec->far_buf) > 0); WebRtc_ReadBuffer(aec->far_buf, (void**) &xf_ptr, &xf[0][0], 1); // Near fft memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2); TimeToFrequency(fft, df, 0); // Power smoothing for (i = 0; i < PART_LEN1; i++) { far_spectrum = (xf_ptr[i] * xf_ptr[i]) + (xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]); aec->xPow[i] = gPow[0] * aec->xPow[i] + gPow[1] * NR_PART * far_spectrum; // Calculate absolute spectra abs_far_spectrum[i] = sqrtf(far_spectrum); near_spectrum = df[0][i] * df[0][i] + df[1][i] * df[1][i]; aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum; // Calculate absolute spectra abs_near_spectrum[i] = sqrtf(near_spectrum); } // Estimate noise power. Wait until dPow is more stable. if (aec->noiseEstCtr > 50) { for (i = 0; i < PART_LEN1; i++) { if (aec->dPow[i] < aec->dMinPow[i]) { aec->dMinPow[i] = (aec->dPow[i] + step * (aec->dMinPow[i] - aec->dPow[i])) * ramp; } else { aec->dMinPow[i] *= ramp; } } } // Smooth increasing noise power from zero at the start, // to avoid a sudden burst of comfort noise. if (aec->noiseEstCtr < noiseInitBlocks) { aec->noiseEstCtr++; for (i = 0; i < PART_LEN1; i++) { if (aec->dMinPow[i] > aec->dInitMinPow[i]) { aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] + gInitNoise[1] * aec->dMinPow[i]; } else { aec->dInitMinPow[i] = aec->dMinPow[i]; } } aec->noisePow = aec->dInitMinPow; } else { aec->noisePow = aec->dMinPow; } // Block wise delay estimation used for logging if (aec->delay_logging_enabled) { int delay_estimate = 0; // Estimate the delay delay_estimate = WebRtc_DelayEstimatorProcessFloat(aec->delay_estimator, abs_far_spectrum, abs_near_spectrum, PART_LEN1); if (delay_estimate >= 0) { // Update delay estimate buffer. aec->delay_histogram[delay_estimate]++; } } // Update the xfBuf block position. aec->xfBufBlockPos--; if (aec->xfBufBlockPos == -1) { aec->xfBufBlockPos = NR_PART - 1; } // Buffer xf memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, xf_ptr, sizeof(float) * PART_LEN1); memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, &xf_ptr[PART_LEN1], sizeof(float) * PART_LEN1); memset(yf, 0, sizeof(yf)); // Filter far WebRtcAec_FilterFar(aec, yf); // Inverse fft to obtain echo estimate and error. fft[0] = yf[0][0]; fft[1] = yf[0][PART_LEN]; for (i = 1; i < PART_LEN; i++) { fft[2 * i] = yf[0][i]; fft[2 * i + 1] = yf[1][i]; } aec_rdft_inverse_128(fft); scale = 2.0f / PART_LEN2; for (i = 0; i < PART_LEN; i++) { y[i] = fft[PART_LEN + i] * scale; // fft scaling } for (i = 0; i < PART_LEN; i++) { e[i] = d[i] - y[i]; } // Error fft memcpy(aec->eBuf + PART_LEN, e, sizeof(float) * PART_LEN); memset(fft, 0, sizeof(float) * PART_LEN); memcpy(fft + PART_LEN, e, sizeof(float) * PART_LEN); // TODO(bjornv): Change to use TimeToFrequency(). aec_rdft_forward_128(fft); ef[1][0] = 0; ef[1][PART_LEN] = 0; ef[0][0] = fft[0]; ef[0][PART_LEN] = fft[1]; for (i = 1; i < PART_LEN; i++) { ef[0][i] = fft[2 * i]; ef[1][i] = fft[2 * i + 1]; } if (aec->metricsMode == 1) { // Note that the first PART_LEN samples in fft (before transformation) are // zero. Hence, the scaling by two in UpdateLevel() should not be // performed. That scaling is taken care of in UpdateMetrics() instead. UpdateLevel(&aec->linoutlevel, ef); } // Scale error signal inversely with far power. WebRtcAec_ScaleErrorSignal(aec, ef); WebRtcAec_FilterAdaptation(aec, fft, ef); NonLinearProcessing(aec, output, outputH); if (aec->metricsMode == 1) { // Update power levels and echo metrics UpdateLevel(&aec->farlevel, (float (*)[PART_LEN1]) xf_ptr); UpdateLevel(&aec->nearlevel, df); UpdateMetrics(aec); } // Store the output block. WebRtc_WriteBuffer(aec->outFrBuf, output, PART_LEN); // For H band if (aec->sampFreq == 32000) { WebRtc_WriteBuffer(aec->outFrBufH, outputH, PART_LEN); } #ifdef WEBRTC_AEC_DEBUG_DUMP { int16_t eInt16[PART_LEN]; for (i = 0; i < PART_LEN; i++) { eInt16[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, e[i], WEBRTC_SPL_WORD16_MIN); } (void)fwrite(eInt16, sizeof(int16_t), PART_LEN, aec->outLinearFile); (void)fwrite(output, sizeof(int16_t), PART_LEN, aec->outFile); } #endif }