void millis_init(void)
{
	//AST generic clock 8MHz / (2*(249+1) = 16kHz
	scif_gc_setup(AVR32_SCIF_GCLK_AST,SCIF_GCCTRL_RC8M,AVR32_SCIF_GC_DIV_CLOCK,249);
	// Now enable the generic clock
	scif_gc_enable(AVR32_SCIF_GCLK_AST);
	//set up timer
	ast_init_counter(&AVR32_AST,AST_OSC_GCLK,4,counta);  //16kHz / (2^(4+1)) = 1kHz
	ast_enable(&AVR32_AST);
}
Beispiel #2
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.

	// Replace "scif_configure_osc_crystalmode(SCIF_OSC0, 16000000)" by
	// inline routine to safe code (160B)
	{
		u_avr32_scif_oscctrl0_t   u_avr32_scif_oscctrl0 = {AVR32_SCIF.oscctrl0};

		// Modify : Configure the oscillator mode to crystal and set the gain according to the
		// crystal frequency.
		u_avr32_scif_oscctrl0.OSCCTRL0.mode = SCIF_OSC_MODE_2PIN_CRYSTAL;
		u_avr32_scif_oscctrl0.OSCCTRL0.gain =
			(16000000 <  900000) ? AVR32_SCIF_OSCCTRL0_GAIN_G0 :
			(16000000 < 3000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G1 :
			(16000000 < 8000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G2 :
										  AVR32_SCIF_OSCCTRL0_GAIN_G3;
		AVR32_ENTER_CRITICAL_REGION( );
		// Unlock the write-protected OSCCTRL0 register
		SCIF_UNLOCK(AVR32_SCIF_OSCCTRL0);
		// Write Back
		AVR32_SCIF.oscctrl0 = u_avr32_scif_oscctrl0.oscctrl0;
		AVR32_LEAVE_CRITICAL_REGION( );
	}

	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC, true);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 11;
		break;
	case 16000000:
		mul = 5;
		break;
	case 12000000:
	default:
		mul = 7;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 1;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll0_setup((const scif_pll_opt_t *)&opt);

	/* Enable PLL0 */
	scif_pll0_enable();

	/* Wait for PLL0 locked */
	scif_wait_for_pll0_locked();

	// Configure and start the RC120Mhz internal oscillator.
	scif_start_rc120M();

	// Since our target is to set the CPU&HSB frequency domains to 30MHz, we must
	// set one wait-state and enable the High-speed read mode on the flash controller.
	flashcdw_set_flash_waitstate_and_readmode(30000000UL);

	// Set the CPU clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_CPU, PM_CKSEL_DIVRATIO_4);

	// Set the PBA clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBA, PM_CKSEL_DIVRATIO_4);

	// Set the PBB clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBB, PM_CKSEL_DIVRATIO_4);

	// Set the main clock source to be DFLL0.
	pm_set_mclk_source(PM_CLK_SRC_RC120M);
}
int main(void)
{
	enum sleepmgr_mode      current_sleep_mode = SLEEPMGR_ACTIVE;
	uint32_t                ast_counter = 0;

	/*
	 * Initialize the synchronous clock system to the default configuration
	 * set in conf_clock.h.
	 * \note All non-essential peripheral clocks are initially disabled.
	 */
	sysclk_init();

	/*
	 * Initialize the resources used by this example to the default
	 * configuration set in conf_board.h
	 */
	board_init();

	/*
	 * Turn the activity status LED on to inform the user that the device
	 * is active.
	 */
	gpio_set_pin_low(LED_ACTIVITY_STATUS_PIN);

	/*
	 * Configure pin change interrupt for asynchronous wake-up (required to
	 * wake up from the STATIC sleep mode) and enable the EIC clock.
	 *
	 * First, enable the clock for the EIC module.
	 */
	sysclk_enable_pba_module(SYSCLK_EIC);
	/*
	 * Map the interrupt line to the GPIO pin with the right peripheral
	 * function.
	 */
	gpio_enable_module_pin(WAKE_BUTTON_EIC_PIN, WAKE_BUTTON_EIC_FUNCTION);
	/*
	 * Enable the internal pull-up resistor on that pin (because the EIC is
	 * configured such that the interrupt will trigger on low-level, see
	 * eic_options.eic_level).
	 */
	gpio_enable_pin_pull_up(WAKE_BUTTON_EIC_PIN);
	// Init the EIC controller with the options
	eic_init(&AVR32_EIC, &eic_options, sizeof(eic_options) /
			sizeof(eic_options_t));
	// Enable External Interrupt Controller Line
	eic_enable_line(&AVR32_EIC, WAKE_BUTTON_EIC_LINE);

	// Enable the AST clock.
	sysclk_enable_pba_module(SYSCLK_AST);
	// Initialize the AST in Counter mode
	ast_init_counter(&AVR32_AST, AST_OSC_RC, AST_PSEL_RC_1_76HZ,
			ast_counter);
	/*
	 * Configure the AST to wake up the CPU when the counter reaches the
	 * selected alarm0 value.
	 */
	AVR32_AST.WER.alarm0 = 1;
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Initialize the sleep manager, lock initial mode.
	sleepmgr_init();
	sleepmgr_lock_mode(current_sleep_mode);

	while (1) {
		ast_counter = ast_get_counter_value(&AVR32_AST);
		// disable alarm 0
		ast_disable_alarm0(&AVR32_AST);
		// Set Alarm to current time + (6/1.76) seconds
		ast_counter += 6;
		ast_set_alarm0_value(&AVR32_AST, ast_counter);
		// Enable alarm 0
		ast_enable_alarm0(&AVR32_AST);

		/*
		 * Turn the activity status LED off to inform the user that the
		 * device is in a sleep mode.
		 */
		gpio_set_pin_high(LED_ACTIVITY_STATUS_PIN);

		/*
		 * Go to sleep in the deepest allowed sleep mode (i.e. no
		 * deeper than the currently locked sleep mode).
		 */
		sleepmgr_enter_sleep();

		/*
		 * Turn the activity status LED on to inform the user that the
		 * device is active.
		 */
		gpio_set_pin_low(LED_ACTIVITY_STATUS_PIN);

		// After wake up, clear the Alarm0
		AVR32_AST.SCR.alarm0 = 1;

		// Unlock the current sleep mode.
		sleepmgr_unlock_mode(current_sleep_mode);

		// Add a 3s delay
		cpu_delay_ms(3000, sysclk_get_cpu_hz());

		// Clear the External Interrupt Line (in case it was raised).
		eic_clear_interrupt_line(&AVR32_EIC, WAKE_BUTTON_EIC_LINE);

		// Lock the next sleep mode.
		++current_sleep_mode;
		if ((current_sleep_mode >= SLEEPMGR_NR_OF_MODES)
#if UC3L && (BOARD == UC3L_EK)
		/* Note concerning the SHUTDOWN sleep mode: the shutdown sleep
		 * mode can only be used when the UC3L supply mode is the 3.3V
		 * Supply Mode with 1.8V Regulated I/O Lines. That is not how
		 * the UC3L is powered on the ATUC3L-EK so the SHUTDOWN mode
		 * cannot be used on this board. Thus we skip this sleep mode
		 * in this example for this board.
		 */
			|| (current_sleep_mode == SLEEPMGR_SHUTDOWN)
#endif
			) {
			current_sleep_mode = SLEEPMGR_ACTIVE;
		}

		sleepmgr_lock_mode(current_sleep_mode);
	}
}
Beispiel #4
0
/*!
 * \brief main function : do init and loop (poll if configured so)
 */
int main(void)
{
	char temp[20];
	char *ptemp;
	uint32_t ast_alarm;

	static const gpio_map_t USART_GPIO_MAP = {
		{EXAMPLE_USART_RX_PIN, EXAMPLE_USART_RX_FUNCTION},
		{EXAMPLE_USART_TX_PIN, EXAMPLE_USART_TX_FUNCTION}
	};

	/* USART options */
	static const usart_options_t USART_OPTIONS = {
		.baudrate     = 57600,
		.charlength   = 8,
		.paritytype   = USART_NO_PARITY,
		.stopbits     = USART_1_STOPBIT,
		.channelmode  = 0
	};

#if BOARD == UC3L_EK
	scif_osc32_opt_t opt = {
		/* 2-pin Crystal connected to XIN32/XOUT32 and high current
		 * mode. */
		SCIF_OSC_MODE_2PIN_CRYSTAL_HICUR,
		/* oscillator startup time */
		AVR32_SCIF_OSCCTRL32_STARTUP_0_RCOSC,
		/* select alternate xin32_2 and xout32_2 for 32kHz crystal
		 * oscillator */
		true,
		/* disable the 1kHz output */
		false,
		/* enable the 32kHz output */
		true
	};
#else
	scif_osc32_opt_t opt;
	opt.mode = SCIF_OSC_MODE_2PIN_CRYSTAL;
	opt.startup = AVR32_SCIF_OSCCTRL32_STARTUP_0_RCOSC;
#endif

#if BOARD == UC3L_EK

	/*
	 * Note: on the AT32UC3L-EK board, there is no crystal/external clock
	 * connected to the OSC0 pinout XIN0/XOUT0. We shall then program the
	 * DFLL and switch the main clock source to the DFLL.
	 */
	pcl_configure_clocks(&pcl_dfll_freq_param);

	/*
	 * Note: since it is dynamically computing the appropriate field values
	 * of the configuration registers from the parameters structure, this
	 * function is not optimal in terms of code size. For a code size
	 * optimal solution, it is better to create a new function from
	 * pcl_configure_clocks_dfll0() and modify it to use preprocessor
	 * computation from pre-defined target frequencies.
	 */
#else
	pcl_switch_to_osc(PCL_OSC0, FOSC0, OSC0_STARTUP);
#endif

	/* Start OSC_32KHZ */
	scif_start_osc32(&opt, true);

	/* Assign GPIO pins to USART0. */
	gpio_enable_module(USART_GPIO_MAP,
			sizeof(USART_GPIO_MAP) / sizeof(USART_GPIO_MAP[0]));

	/* Initialize USART in RS232 mode */
	usart_init_rs232(EXAMPLE_USART, &USART_OPTIONS, FPBA);

	/* Welcome sentence // 2-pin Crystal and high current mode. */
	/* Crystal is connected to XIN32/XOUT32. */
	usart_write_line(EXAMPLE_USART, "\x1B[2J\x1B[H\r\nATMEL\r\n");
	usart_write_line(EXAMPLE_USART, "AVR32 UC3 - AST example 2\r\n");
	usart_write_line(EXAMPLE_USART,
			"AST 32 KHz oscillator counter example.\r\n");
	usart_write_line(EXAMPLE_USART,
			"Alarm0 wakeup from static sleep mode every second.\r\n");

	/* Using counter mode and set it to 0 */
	unsigned long ast_counter = 0;

	/* Initialize the AST */
	if (!ast_init_counter(&AVR32_AST,
			AST_OSC_32KHZ, AST_PSEL_32KHZ_1HZ, ast_counter)) {
		usart_write_line(EXAMPLE_USART,
				"Error initializing the AST\r\n");
		while (1) {
		}
	}

	/* Alarm 0 sends a wakeup signal to the Power manager */
	ast_enable_alarm_async_wakeup(&AVR32_AST, 0);

	/* Enable the AST */
	ast_enable(&AVR32_AST);

	while (1) {
		/* disable alarm 0 */
		ast_disable_alarm0(&AVR32_AST);

		/* ast_init_counter Set Alarm to current time+30 seconds */
		ast_alarm = ast_counter + 1;
		ast_set_alarm0_value(&AVR32_AST, ast_alarm);

		/* Enable alarm 0 */
		ast_enable_alarm0(&AVR32_AST);

		/*
		 * Precautions when entering a sleep mode
		 * Modules communicating with external circuits should normally
		 * be disabled before entering a sleep mode that will stop the
		 * module operation.
		 * Make sure the USART dumps the last message completely before
		 * turning it off.
		 */
		while (!usart_tx_empty(EXAMPLE_USART)) {
		}
		pcl_disable_module(EXAMPLE_USART_CLOCK_MASK);

		/*
		 * Since we're going into a sleep mode deeper than IDLE, all HSB
		 * masters must be stopped before entering the sleep mode.
		 * Note: since we're not using the PDCA, we don't have to stop
		 *it.
		 */

		/*
		 * If there is a chance that any PB write operations are
		 *incomplete,
		 * the CPU should perform a read operation from any register on
		 *the
		 * PB bus before executing the sleep instruction.
		 */
		AVR32_INTC.ipr[0];  /* Dummy read */

		/* Go into static sleep mode */
		SLEEP(AVR32_PM_SMODE_STATIC);

		/* We're out of the static sleep mode now => re-enable the USART
		 * module */
		pcl_enable_module(EXAMPLE_USART_CLOCK_MASK);

		/* After wake up, clear the Alarm0 */
		ast_clear_alarm_status_flag(&AVR32_AST, 0);

		/* Toggle Led0 */
		gpio_tgl_gpio_pin(LED0_GPIO);

		/* Set cursor to the position (1; 6) */
		usart_write_line(EXAMPLE_USART, "\x1B[6;1H");
		ast_counter = ast_get_counter_value(&AVR32_AST);
		usart_write_line(EXAMPLE_USART, "Timer: ");
		ptemp = print_i(temp, ast_counter);
		usart_write_line(EXAMPLE_USART, ptemp);
		usart_write_line(EXAMPLE_USART, " sec ");
	}
}
int main(void)
{
	enum sleepmgr_mode current_sleep_mode = SLEEPMGR_ACTIVE;
	uint32_t ast_counter = 0;

	/*
	 * Initialize the synchronous clock system to the default configuration
	 * set in conf_clock.h.
	 * \note All non-essential peripheral clocks are initially disabled.
	 */
	sysclk_init();

	/*
	 * Initialize the resources used by this example to the default
	 * configuration set in conf_board.h
	 */
	board_init();

	/*
	 * Turn the activity status LED on to inform the user that the device
	 * is active.
	 */
	ioport_set_pin_level(LED_ACTIVITY_STATUS_PIN, LED_STATUS_ON);

	osc_priv_enable_osc32();

	/* Enable the AST clock. */
	sysclk_enable_pba_module(SYSCLK_AST);
	/* Initialize the AST in Counter mode. */
	ast_init_counter(AST, AST_OSC_1KHZ, AST_PSEL_32KHZ_1HZ - 6,
			ast_counter);

	/*
	 * Configure the AST to wake up the CPU when the counter reaches the
	 * selected periodic0 value.
	 */
	ast_set_periodic0_value(AST,AST_PSEL_32KHZ_1HZ - 3);
	ast_enable_periodic_interrupt(AST,0);
	ast_enable_periodic_async_wakeup(AST,0);
	ast_enable_periodic0(AST);
	ast_clear_periodic_status_flag(AST,0);

	NVIC_ClearPendingIRQ(AST_PER_IRQn);
	NVIC_EnableIRQ(AST_PER_IRQn);

	/* Enable the AST. */
	ast_enable(AST);

	/* AST can wakeup the device */
	bpm_enable_wakeup_source(BPM, (1 << BPM_BKUPWEN_AST));

	// Initialize the sleep manager, lock initial mode.
	sleepmgr_init();
	sleepmgr_lock_mode(current_sleep_mode);

	while (1) {
		/*
		 * Turn the activity status LED off to inform the user that the
		 * device is in a sleep mode.
		 */
		ioport_set_pin_level(LED_ACTIVITY_STATUS_PIN, LED_STATUS_OFF);

		/*
		 * Go to sleep in the deepest allowed sleep mode (i.e. no
		 * deeper than the currently locked sleep mode).
		 */
		sleepmgr_enter_sleep();

		/*
		 * Turn the activity status LED on to inform the user that the
		 * device is active.
		 */
		ioport_set_pin_level(LED_ACTIVITY_STATUS_PIN, LED_STATUS_ON);

		/* Unlock the current sleep mode. */
		sleepmgr_unlock_mode(current_sleep_mode);

		/* Add a 3s delay. */
		delay_s(3);

		/* Lock the next sleep mode. */
		++current_sleep_mode;
		if ((current_sleep_mode >= SLEEPMGR_NR_OF_MODES)) {
			current_sleep_mode = SLEEPMGR_ACTIVE;
		}

		sleepmgr_lock_mode(current_sleep_mode);
	}
}
/**
 * \brief Initializes the ACIFB module with trigger
 * - Start the GCLK for ACIFB
 * - Initialize the trigger mode & compare interrupts for ACIFB
 *
 * \retval STATUS_OK   Configuration OK
 * \retval ERR_TIMEOUT Timeout on configuring ACIFB module
 * \retval ERR_BUSY    ACIFB module unable to configure the trigger
 */
static status_code_t ac_init()
{
	/* struct genclk_config gcfg; */
	uint32_t div = sysclk_get_pba_hz() / AC_GCLK_FREQUENCY;

	scif_gc_setup(AC_GCLK_ID, AC_GCLK_SRC, AVR32_GC_DIV_CLOCK, div);

	/* Now enable the generic clock */
	scif_gc_enable(AC_GCLK_ID);

	/* GPIO pin/acifb - function map. */
	static const gpio_map_t ACIFB_GPIO_MAP = {
		{EXAMPLE_ACIFBP_PIN, EXAMPLE_ACIFBP_FUNCTION},
		{EXAMPLE_ACIFBN_PIN, EXAMPLE_ACIFBN_FUNCTION},
	};

	/* ACIFB Configuration */
	const acifb_t acifb_opt = {
		.sut = 6, /* Resolution mode */
		.actest = TESTMODE_OFF,
		.eventen = true
	};
	/* ACIFB Channel Configuration */
	const acifb_channel_t acifb_channel_opt = {
		/* Filter length */
		.filter_len = 0,
		/* Hysteresis value */
		.hysteresis_value = 0,
		/* Output event when ACOUT is zero? */
		.event_negative = false,
		/* Output event when ACOUT is one? */
		.event_positive = false,
		/* Set the positive input */
		.positive_input = PI_ACP,
		/* Set the negative input */
		.negative_input = NI_ACN,
		/* Set the comparator mode */
		.mode = MODE_EVENT_TRIGGERED,
		/* Interrupt settings */
		.interrupt_settings = IS_VINP_LT_VINN,
		/* Analog comparator channel number */
		.ac_n = EXAMPLE_ACIFB_CHANNEL
	};

	/* Enable Analog Comparator clock */
	sysclk_enable_pba_module(SYSCLK_ACIFB);
	/* Disable pullup on ACIFB channel input pins */
	gpio_disable_pin_pull_up(EXAMPLE_ACIFBP_PIN);
	gpio_disable_pin_pull_up(EXAMPLE_ACIFBN_PIN);
	/* Enable the ACIFB pins */
	gpio_enable_module(ACIFB_GPIO_MAP,
			sizeof(ACIFB_GPIO_MAP) / sizeof(ACIFB_GPIO_MAP[0]));
	/* Configure the ACIFB peripheral */
	acifb_setup_and_enable(acifb, &acifb_opt);
	/* Configure the ACIFB channel with interrupt & trigger */
	acifb_channels_setup(acifb, &acifb_channel_opt, AC_NB_CHANNELS);

	/* Disable global interrupts */
	cpu_irq_disable();

	/*
	 * Initialize the interrupt vectors
	 * Note: This function adds nothing for IAR as the interrupts are
	 * handled by the IAR compiler itself. It provides an abstraction
	 * between GCC & IAR compiler to use interrupts.
	 * Refer function implementation in interrupt_avr32.h
	 */
	irq_initialize_vectors();

	/*
	 * Register the ACIFB interrupt handler
	 * Note: This function adds nothing for IAR as the interrupts are
	 * handled by the IAR compiler itself. It provides an abstraction
	 * between GCC & IAR compiler to use interrupts.
	 * Refer function implementation in interrupt_avr32.h
	 */
	irq_register_handler(&ACIFB_interrupt_handler, AVR32_ACIFB_IRQ,
			AC_INTERRUPT_PRIORITY);
	/* Enable Analog Comparator Channel interrupt */
	acifb_enable_comparison_interrupt(acifb, EXAMPLE_ACIFB_CHANNEL);
	/* Enable global interrupts */
	cpu_irq_enable();

	return STATUS_OK;
} /* End of ac_init() */

/**
 * \brief  Asynchronous Timer Initialization
 * - Start the 32KHz Oscillator
 * - Initializes the AST module with periodic trigger events
 *
 * \retval STATUS_OK   Configuration OK
 * \retval ERR_BUSY    Error in configuring the AST module
 */
static status_code_t ast_init()
{
	/* Initial Count value to write in AST */
	unsigned long ast_counter = 0;
	/* Set the prescaler to set a periodic trigger from AST */
	avr32_ast_pir0_t pir = {
		.insel = AST_TRIGGER_PRESCALER
	};

	/* Set the OSC32 parameters */
	scif_osc32_opt_t osc32_opt = {
		.mode = SCIF_OSC_MODE_2PIN_CRYSTAL_HICUR,
		.startup = OSC32_STARTUP_8192,
		.pinsel = BOARD_OSC32_PINSEL,
		.en1k = false,
		.en32k = true
	};

	/* Enable the 32KHz Oscillator */
	scif_start_osc32(&osc32_opt, true);
	/* Enable the Peripheral Event System Clock */
	sysclk_enable_hsb_module(SYSCLK_EVENT);
	/* Enable PBA clock for AST clock to switch its source */
	sysclk_enable_pba_module(SYSCLK_AST);
	/* Initialize the AST in counter mode */
	if (!ast_init_counter(&AVR32_AST, AST_CLOCK_SOURCE, AST_PRESCALER,
			ast_counter)) {
		return ERR_BUSY;
	}

	/* Initialize the periodic value register with the prescaler */
	ast_set_periodic0_value(&AVR32_AST, pir);
	/* Enable the AST periodic event */
	ast_enable_periodic0(&AVR32_AST);

	/* Clear All AST Interrupt request and clear SR */
	ast_clear_all_status_flags(&AVR32_AST);

	/* Enable the AST */
	ast_enable(&AVR32_AST);
	
	/* Disable PBA clock for AST after switching its source to OSC32 */
	sysclk_disable_pba_module(SYSCLK_AST);

	return STATUS_OK;
} /* End of ast_init() */

/**
 * \brief  Low Power Configuration
 * Initializes the power saving measures to reduce power consumption
 * - Enable pull-ups on GPIO pins
 * - Disable the clocks to unwanted modules
 * - Disable internal voltage regulator when in 1.8V supply mode
 */
static void power_save_measures_init()
{
	uint8_t i;
	uint32_t gpio_mask[AVR32_GPIO_PORT_LENGTH] = {0};

	/*
	 * Enable internal pull-ups on all unused GPIO pins
	 * Note: Pull-ups on Oscillator or JTAG pins can be enabled only if they
	 * are not used as an oscillator or JTAG pin respectively.
	 */
	for (i = 0; i < (sizeof(gpio_used_pins) / sizeof(uint32_t)); i++) {
		gpio_mask[gpio_used_pins[i] >>
		5] |= 1 << (gpio_used_pins[i] & 0x1F);
	}
	for (i = 0; i < AVR32_GPIO_PORT_LENGTH; i++) {
		gpio_configure_group(i, ~(gpio_mask[i]),
				GPIO_PULL_UP | GPIO_DIR_INPUT);
	}
	/* Disable OCD clock which is not disabled by sysclk service */
	sysclk_disable_cpu_module(SYSCLK_OCD);
#if POWER_SUPPLY_MODE_1_8V

	/*
	 * When using 1.8V Single supply mode, the Voltage Regulator can be
	 * shut-down using the code below, in-order to save power.
	 * See Voltage Regulator Calibration Register in datasheet for more
	 *info.
	 * CAUTION: When using 3.3V Single supply mode, the Voltage Regulator
	 * cannot be shut-down and the application will hang in this loop.
	 */
	uint32_t tmp = (AVR32_SCIF.vregcr);
	tmp &= (~(1 << 5 | 1 << 18));
	AVR32_SCIF.unlock = 0xAA000000 | AVR32_SCIF_VREGCR;
	AVR32_SCIF.vregcr = tmp;
	/* Wait until internal voltage regulator is disabled. */
	while ((AVR32_SCIF.vregcr & 0x00040020)) {
	}
#endif
} /* End of power_save_measures_init() */
Beispiel #7
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.

	// Replace "scif_configure_osc_crystalmode(SCIF_OSC0, 16000000)" by
	// inline routine to safe code (160B)
	{
		typedef union
		{
			unsigned long                 oscctrl[2];
			avr32_scif_oscctrl_t          OSCCTRL[2];
		} u_avr32_scif_oscctrl_t;
		u_avr32_scif_oscctrl_t   u_avr32_scif_oscctrl;

		// Read Register
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0] = AVR32_SCIF.OSCCTRL[SCIF_OSC0] ;
		// Modify : Configure the oscillator mode to crystal and set the gain according to the
		// crystal frequency.
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0].mode = SCIF_OSC_MODE_2PIN_CRYSTAL;
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0].gain =
			(16000000 <  900000) ? AVR32_SCIF_OSCCTRL0_GAIN_G0 :
			(16000000 < 3000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G1 :
			(16000000 < 8000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G2 :
										  AVR32_SCIF_OSCCTRL0_GAIN_G3;
		AVR32_ENTER_CRITICAL_REGION( );
		// Unlock the write-protected OSCCTRL0 register
		SCIF_UNLOCK(AVR32_SCIF_OSCCTRL);
		// Write Back
		AVR32_SCIF.OSCCTRL[SCIF_OSC0] = u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0];
		AVR32_LEAVE_CRITICAL_REGION( );
	}

	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC, true);
	flashc_set_flash_waitstate_and_readmode(16000000);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 5;
		break;
	case 16000000:
		mul = 2;
		break;
	case 12000000:
	default:
		mul = 3;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 0;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll_setup(SCIF_PLL0, &opt);

	/* Enable PLL0 */
	scif_pll_enable(SCIF_PLL0);

	/* Wait for PLL0 locked */
	scif_wait_for_pll_locked(SCIF_PLL0);

	// Use 1 flash wait state
	flashc_set_wait_state(1);

	// Switch the main clock to PLL0
	pm_set_mclk_source(PM_CLK_SRC_PLL0);

	// fCPU: 48 MHz  // USBC request a CPU clock >25MHz
	// fPBA: 48 MHz
	// fHSB: 48 MHz
	// fPBB: 48 MHz must be the same that CPU
	// fPBC: 48 MHz
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_0);	// CPU
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_1);	// HSB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_2);	// PBA
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_3);	// PBB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_4);	// PBC

	// Use 0 flash wait state
	flashc_set_wait_state(1);
}
void time_keeper_init(void)
{
    ast_init_counter(&AVR32_AST, AST_OSC_PB, AST_PRESCALER_SETTING, 0);
    ast_enable(&AVR32_AST);
}
/**
 * \brief Initializes the ADCIFB module with trigger
 * - Initialize the trigger mode & compare interrupts for ADCIFB
 *
 * \retval STATUS_OK   Configuration OK
 * \retval ERR_TIMEOUT Timeout on configuring ADCIFB module
 * \retval ERR_BUSY    ADCIFB module unable to configure the trigger
 */
static status_code_t adc_init()
{
	/* GPIO pin/adc - function map. */
	static const gpio_map_t ADCIFB_GPIO_MAP = {
		{EXAMPLE_ADCIFB_PIN, EXAMPLE_ADCIFB_FUNCTION}
	};

	/* ADCIFB Configuration */
	adcifb_opt_t adcifb_opt = {
		/* Resolution mode */
		.resolution = AVR32_ADCIFB_ACR_RES_10BIT,
		/* Channels Sample & Hold Time in [0,15] */
		.shtim  = ADC_SAMPLE_HOLD_TIME,
		/* ADC Clock Prescaler */
		.ratio_clkadcifb_clkadc = (sysclk_get_pba_hz()) / ADC_FREQUENCY,
		.startup = ADC_STARTUP_TIME,
		/* ADCIFB Sleep Mode enabled */
		.sleep_mode_enable = true
	};

	/* Disable pull up on ADCIFB channel input pin */
	gpio_disable_pin_pull_up(EXAMPLE_ADCIFB_PIN);
	/* Enable the ADC pins */
	gpio_enable_module(ADCIFB_GPIO_MAP,
			sizeof(ADCIFB_GPIO_MAP) / sizeof(ADCIFB_GPIO_MAP[0]));
	/* Enable ADCIFB clock */
	sysclk_enable_pba_module(SYSCLK_ADCIFB);
	/* Configure the ADCIFB peripheral */
	if (adcifb_configure(adcifb, &adcifb_opt)) {
		/* Error configuring the ADCIFB */
		return ERR_TIMEOUT;
	}

	/* Configure the trigger for ADCIFB peripheral */
	if (adcifb_configure_trigger(adcifb, AVR32_ADCIFB_TRGR_TRGMOD_EVT, 0)) {
		/* Error configuring the trigger for ADCIFB */
		return ERR_BUSY;
	}

	/* Enable ADCIFB Channel 0 */
	adcifb_channels_enable(adcifb, EXAMPLE_ADCIFB_CHANNEL);

	/* Disable global interrupts */
	cpu_irq_disable();

	/*
	 * Initialize the interrupt vectors
	 * Note: This function adds nothing for IAR as the interrupts are
	 * handled by the IAR compiler itself. It provides an abstraction
	 * between GCC & IAR compiler to use interrupts.
	 * Refer function implementation in interrupt_avr32.h
	 */
	irq_initialize_vectors();

	/*
	 * Register the ADCIFB interrupt handler
	 * Note: This function adds nothing for IAR as the interrupts are
	 * handled by the IAR compiler itself. It provides an abstraction
	 * between GCC & IAR compiler to use interrupts.
	 * Refer function implementation in interrupt_avr32.h
	 */
	irq_register_handler(&ADCIFB_interrupt_handler, AVR32_ADCIFB_IRQ,
			ADC_INTERRUPT_PRIORITY);

	/*
	 * Set the threshold value in CVR.LV register to generate interrupt
	 * when the value detected is above the threshold.
	 * 1.500 V with 10-bit resolution
	 */
	adcifb_set_high_compare_value(adcifb, ADC_COMPARE_VALUE);

	/* Enable the Analog Compare option in ADCIFB */
	adcifb_enable_analog_compare_mode(adcifb);

	/* Enable the data ready interrupt for ADCIFB */
	adcifb_enable_compare_gt_interrupt(adcifb);

	return STATUS_OK;
} /* End of adc_init() */

/**
 * \brief  Asynchronous Timer Initialization
 * - Start the 32KHz Oscillator
 * - Initializes the AST module with periodic trigger events
 *
 * \retval STATUS_OK      Configuration OK
 * \retval ERR_TIMEOUT    Error in configuring the AST module
 */
static status_code_t ast_init()
{
	/* Initial Count value to write in AST */
	unsigned long ast_counter = 0;
	/* Set the prescaler to set a periodic trigger from AST */
	avr32_ast_pir0_t pir = {
		.insel = AST_TRIGGER_PRESCALER
	};

	/* Set the OSC32 parameters */
	scif_osc32_opt_t osc32_opt = {
		.mode = SCIF_OSC_MODE_2PIN_CRYSTAL_HICUR,
		.startup = OSC32_STARTUP_8192,
		.pinsel = BOARD_OSC32_PINSEL,
		.en1k = false,
		.en32k = true
	};

	/* Enable the 32KHz Oscillator */
	scif_start_osc32(&osc32_opt, true);
	/* Enable the Peripheral Event System Clock */
	sysclk_enable_hsb_module(SYSCLK_EVENT);
	/* Enable PBA clock for AST clock to switch its source */
	sysclk_enable_pba_module(SYSCLK_AST);
	/* Initialize the AST in counter mode */
	if (!ast_init_counter(&AVR32_AST, AST_CLOCK_SOURCE, AST_PRESCALER,
			ast_counter)) {
		return ERR_TIMEOUT;
	}

	/* Initialize the periodic value register with the prescaler */
	ast_set_periodic0_value(&AVR32_AST, pir);
	/* Enable the AST periodic event */
	ast_enable_periodic0(&AVR32_AST);

	/* Clear All AST Interrupt request and clear SR */
	ast_clear_all_status_flags(&AVR32_AST);

	/* Enable the AST */
	ast_enable(&AVR32_AST);

	/* Disable PBA clock for AST after switching its source to OSC32 */
	sysclk_disable_pba_module(SYSCLK_AST);

	return STATUS_OK;
} /* End of ast_init() */

/**
 * \brief  Low Power Configuration
 * Initializes the power saving measures to reduce power consumption
 * - Enable pullups on GPIO pins
 * - Disable the clocks to unused modules
 * - Disable internal voltage regulator when in 1.8V supply mode
 */
static void power_save_measures_init()
{
	uint8_t i;
	uint32_t gpio_mask[AVR32_GPIO_PORT_LENGTH] = {0};

	/*
	 * Enable internal pull-ups on all unused GPIO pins
	 * Note: Pull-ups on Oscillator or JTAG pins can be enabled only if they
	 * are not used as an oscillator or JTAG pin respectively.
	 */
	for (i = 0; i < (sizeof(gpio_used_pins) / sizeof(uint32_t)); i++) {
		gpio_mask[gpio_used_pins[i] >>
		5] |= 1 << (gpio_used_pins[i] & 0x1F);
	}
	for (i = 0; i < AVR32_GPIO_PORT_LENGTH; i++) {
		gpio_configure_group(i, ~(gpio_mask[i]),
				GPIO_PULL_UP | GPIO_DIR_INPUT);
	}
	/* Disable OCD clock which is not disabled by sysclk service */
	sysclk_disable_cpu_module(SYSCLK_OCD);
#if POWER_SUPPLY_MODE_1_8V

	/*
	 * When using 1.8V Single supply mode, the Voltage Regulator can be
	 * shut-down using the code below, in-order to save power.
	 * See Voltage Regulator Calibration Register in datasheet for more
	 *info.
	 * CAUTION: When using 3.3V Single supply mode, the Voltage Regulator
	 * cannot be shut-down and the application will hang in this loop.
	 */
	uint32_t tmp = (AVR32_SCIF.vregcr);
	tmp &= (~(1 << 5 | 1 << 18));
	AVR32_SCIF.unlock = 0xAA000000 | AVR32_SCIF_VREGCR;
	AVR32_SCIF.vregcr = tmp;
	/* Wait until internal voltage regulator is disabled. */
	while ((AVR32_SCIF.vregcr & 0x00040020)) {
	}
#endif
} /* End of power_save_measures_init() */
static status_code_t ast_init()
{
	/* Initial Count value to write in AST */
	unsigned long ast_counter = 0;
	/* Set the prescaler to set a periodic trigger from AST */
	avr32_ast_pir0_t pir = {
		.insel = AST_TRIGGER_PRESCALER
	};
	/* Set the OSC32 parameters */
	scif_osc32_opt_t osc32_opt = {
#if BOARD_OSC32_IS_XTAL
		.mode = SCIF_OSC_MODE_2PIN_CRYSTAL_HICUR,
#else
		.mode = SCIF_OSC_MODE_EXT_CLK,
#endif
		.startup = OSC32_STARTUP_8192,
		.pinsel = BOARD_OSC32_PINSEL,
		.en1k = false,
		.en32k = true
	};

	/* Enable the 32KHz Oscillator */
	scif_start_osc32(&osc32_opt, true);
	/* Enable the Peripheral Event System Clock */
	sysclk_enable_hsb_module(SYSCLK_EVENT);
	/* Enable PBA clock for AST clock to switch its source */
	sysclk_enable_pba_module(SYSCLK_AST);
	/* Initialize the AST in counter mode */
	if (!ast_init_counter(&AVR32_AST, AST_CLOCK_SOURCE, AST_PRESCALER,
			ast_counter)) {
		return ERR_BUSY;        /* Check AST timer */
	}

	/* Initialize the periodic value register with the prescaler */
	ast_set_periodic0_value(&AVR32_AST, pir);
	/* Enable the AST periodic event */
	ast_enable_periodic0(&AVR32_AST);

	/* Clear All AST Interrupt request and clear SR */
	ast_clear_all_status_flags(&AVR32_AST);

	/* Enable the AST */
	ast_enable(&AVR32_AST);

	/* Disable PBA clock for AST after switching its source to OSC32 */
	sysclk_disable_pba_module(SYSCLK_AST);

	return STATUS_OK;
} /* End of ast_init() */

#endif

/**
 * \brief  Low Power Configuration
 * Initializes the power saving measures to reduce power consumption
 * - Enable pull ups on GPIO pins
 * - Disable the clocks to unwanted modules
 * - Disable internal voltage regulator when in 1.8V supply mode
 */
void power_save_measures_init()
{
	uint8_t i;
	uint32_t gpio_mask[AVR32_GPIO_PORT_LENGTH] = {0};

	/*
	 * Enable internal pull-ups on all unused GPIO pins
	 * Note: Pull-ups on Oscillator or JTAG pins can be enabled only if they
	 * are not used as an oscillator or JTAG pin respectively.
	 */
	for (i = 0; i < (sizeof(gpio_used_pins) / sizeof(uint32_t)); i++) {
		gpio_mask[gpio_used_pins[i] >>
		5] |= 1 << (gpio_used_pins[i] & 0x1F);
	}
	for (i = 0; i < AVR32_GPIO_PORT_LENGTH; i++) {
		gpio_configure_group(i, gpio_mask[i],
				GPIO_PULL_UP | GPIO_DIR_INPUT);
	}
	/* Disable OCD clock which is not disabled by sysclk service */
	sysclk_disable_cpu_module(SYSCLK_OCD);
#if POWER_SUPPLY_MODE_1_8V

	/*
	 * When using 1.8V Single supply mode, the Voltage Regulator can be
	 * shut-down using the code below, in-order to save power.
	 * See Voltage Regulator Calibration Register in datasheet for more
	 *info.
	 * CAUTION: When using 3.3V Single supply mode, the Voltage Regulator
	 * cannot be shut-down and the application will hang in this loop.
	 */
	uint32_t tmp = (AVR32_SCIF.vregcr);
	tmp &= (~(1 << 5));
	AVR32_SCIF.unlock = 0xAA000000 | AVR32_SCIF_VREGCR;
	AVR32_SCIF.vregcr = tmp;
	/* Wait until internal voltage regulator is disabled. */
	while ((AVR32_SCIF.vregcr & 0x20)) {
	}
#endif
} /* End of power_save_measures_init() */
Beispiel #11
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal
	// with a fcrystal Hz frequency.
	scif_configure_osc_crystalmode(SCIF_OSC0, 12000000);
	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC,
			true);
	flashcdw_set_flash_waitstate_and_readmode(12000000);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 5;
		break;
	case 16000000:
		mul = 2;
		break;
	case 12000000:
	default:
		mul = 3;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 0;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll_setup(SCIF_PLL0, &opt);

	/* Enable PLL0 */
	scif_pll_enable(SCIF_PLL0);

	/* Wait for PLL0 locked */
	scif_wait_for_pll_locked(SCIF_PLL0);

	// Use 1 flash wait state
	flashcdw_set_wait_state(1);

	// Switch the main clock to PLL0
	pm_set_mclk_source(PM_CLK_SRC_PLL0);

	// fCPU: 48 MHz  // USBC request a CPU clock >25MHz
	// fHSB: 48 MHz
	// fPBA: 48 MHz
	// fPBB: 48 MHz
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_0);	// CPU
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_1);	// HSB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_2);	// PBA
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_3);	// PBB

	// Use 0 flash wait state
	flashcdw_set_wait_state(1);
}