static
void i2400m_report_state_hook(struct i2400m *i2400m,
			      const struct i2400m_l3l4_hdr *l3l4_hdr,
			      size_t size, const char *tag)
{
	struct device *dev = i2400m_dev(i2400m);
	const struct i2400m_tlv_hdr *tlv;
	size_t tlv_size = le16_to_cpu(l3l4_hdr->length);

	d_fnstart(4, dev, "(i2400m %p, l3l4_hdr %p, size %zu, %s)\n",
		  i2400m, l3l4_hdr, size, tag);
	tlv = NULL;

	while ((tlv = i2400m_tlv_buffer_walk(i2400m, &l3l4_hdr->pl,
					     tlv_size, tlv)))
		i2400m_report_state_parse_tlv(i2400m, tlv, tag);
	d_fnend(4, dev, "(i2400m %p, l3l4_hdr %p, size %zu, %s) = void\n",
		i2400m, l3l4_hdr, size, tag);
}
Beispiel #2
0
/*
 * TX an skb to an idle device
 *
 * When the device is in basestation-idle mode, we need to wake it up
 * and then TX. So we queue a work_struct for doing so.
 *
 * We need to get an extra ref for the skb (so it is not dropped), as
 * well as be careful not to queue more than one request (won't help
 * at all). If more than one request comes or there are errors, we
 * just drop the packets (see i2400m_hard_start_xmit()).
 */
static
int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
		       struct sk_buff *skb)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	unsigned long flags;

	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
	if (net_ratelimit()) {
		d_printf(3, dev, "WAKE&NETTX: "
			 "skb %p sending %d bytes to radio\n",
			 skb, skb->len);
		d_dump(4, dev, skb->data, skb->len);
	}
	/* We hold a ref count for i2400m and skb, so when
	 * stopping() the device, we need to cancel that work
	 * and if pending, release those resources. */
	result = 0;
	spin_lock_irqsave(&i2400m->tx_lock, flags);
	if (!work_pending(&i2400m->wake_tx_ws)) {
		netif_stop_queue(net_dev);
		i2400m_get(i2400m);
		i2400m->wake_tx_skb = skb_get(skb);	/* transfer ref count */
		i2400m_tx_prep_header(skb);
		result = schedule_work(&i2400m->wake_tx_ws);
		WARN_ON(result == 0);
	}
	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
	if (result == 0) {
		/* Yes, this happens even if we stopped the
		 * queue -- blame the queue disciplines that
		 * queue without looking -- I guess there is a reason
		 * for that. */
		if (net_ratelimit())
			d_printf(1, dev, "NETTX: device exiting idle, "
				 "dropping skb %p, queue running %d\n",
				 skb, netif_queue_stopped(net_dev));
		result = -EBUSY;
	}
	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
	return result;
}
Beispiel #3
0
static
int i2400m_open(struct net_device *net_dev)
{
	int result;
	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
	/* Make sure we wait until init is complete... */
	mutex_lock(&i2400m->init_mutex);
	if (i2400m->updown)
		result = 0;
	else
		result = -EBUSY;
	mutex_unlock(&i2400m->init_mutex);
	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
		net_dev, i2400m, result);
	return result;
}
static
int i2400mu_txd(void *_i2400mu)
{
	struct i2400mu *i2400mu = _i2400mu;
	struct i2400m *i2400m = &i2400mu->i2400m;
	struct device *dev = &i2400mu->usb_iface->dev;
	struct i2400m_msg_hdr *tx_msg;
	size_t tx_msg_size;
	unsigned long flags;

	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);

	spin_lock_irqsave(&i2400m->tx_lock, flags);
	BUG_ON(i2400mu->tx_kthread != NULL);
	i2400mu->tx_kthread = current;
	spin_unlock_irqrestore(&i2400m->tx_lock, flags);

	while (1) {
		d_printf(2, dev, "TX: waiting for messages\n");
		tx_msg = NULL;
		wait_event_interruptible(
			i2400mu->tx_wq,
			(kthread_should_stop()	/*                   */
			 || (tx_msg = i2400m_tx_msg_get(i2400m, &tx_msg_size)))
			);
		if (kthread_should_stop())
			break;
		WARN_ON(tx_msg == NULL);	/*                     */
		d_printf(2, dev, "TX: submitting %zu bytes\n", tx_msg_size);
		d_dump(5, dev, tx_msg, tx_msg_size);
		/*                                               */
		i2400mu_tx(i2400mu, tx_msg, tx_msg_size);
		i2400m_tx_msg_sent(i2400m);	/*                          */
	}

	spin_lock_irqsave(&i2400m->tx_lock, flags);
	i2400mu->tx_kthread = NULL;
	spin_unlock_irqrestore(&i2400m->tx_lock, flags);

	d_fnend(4, dev, "(i2400mu %p)\n", i2400mu);
	return 0;
}
Beispiel #5
0
/*
 * Transmit a packet to the base station on behalf of the network stack.
 *
 * Returns: 0 if ok, < 0 errno code on error.
 *
 * We need to pull the ethernet header and add the hardware header,
 * which is currently set to all zeroes and reserved.
 */
static
int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
		  struct sk_buff *skb)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
		  i2400m, net_dev, skb);
	/* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
	net_dev->trans_start = jiffies;
	i2400m_tx_prep_header(skb);
	d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
		 skb, skb->len);
	d_dump(4, dev, skb->data, skb->len);
	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
	d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
		i2400m, net_dev, skb, result);
	return result;
}
Beispiel #6
0
/*
 * Send a Report State Change message (as created with _alloc).
 *
 * @report_skb: as returned by wimax_gnl_re_state_change_alloc()
 * @header: as returned by wimax_gnl_re_state_change_alloc()
 *
 * Returns: 0 if ok, < 0 errno code on error.
 *
 * If the message is  NULL, pretend it didn't happen.
 */
static
int wimax_gnl_re_state_change_send(
	struct wimax_dev *wimax_dev, struct sk_buff *report_skb,
	void *header)
{
	int result = 0;
	struct device *dev = wimax_dev_to_dev(wimax_dev);
	d_fnstart(3, dev, "(wimax_dev %p report_skb %p)\n",
		  wimax_dev, report_skb);
	if (report_skb == NULL) {
		result = -ENOMEM;
		goto out;
	}
	genlmsg_end(report_skb, header);
	genlmsg_multicast(&wimax_gnl_family, report_skb, 0, 0, GFP_KERNEL);
out:
	d_fnend(3, dev, "(wimax_dev %p report_skb %p) = %d\n",
		wimax_dev, report_skb, result);
	return result;
}
Beispiel #7
0
static
int i2400mu_resume(struct usb_interface *iface)
{
	int ret = 0;
	struct device *dev = &iface->dev;
	struct i2400mu *i2400mu = usb_get_intfdata(iface);
	struct i2400m *i2400m = &i2400mu->i2400m;

	d_fnstart(3, dev, "(iface %p)\n", iface);
	if (i2400m->updown == 0) {
		d_printf(1, dev, "fw was down, no resume neeed\n");
		goto out;
	}
	d_printf(1, dev, "fw was up, resuming\n");
	i2400mu_notification_setup(i2400mu);
	
out:
	d_fnend(3, dev, "(iface %p) = %d\n", iface, ret);
	return ret;
}
Beispiel #8
0
/**
 * i2400m_tx_msg_sent - indicate the transmission of a TX message
 *
 * @i2400m: device descriptor
 *
 * Called by the bus-specific driver when a message has been sent;
 * this pops it from the FIFO; and as there is space, start the queue
 * in case it was stopped.
 *
 * Should be called even if the message send failed and we are
 * dropping this TX message.
 */
void i2400m_tx_msg_sent(struct i2400m *i2400m)
{
	unsigned n;
	unsigned long flags;
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
	spin_lock_irqsave(&i2400m->tx_lock, flags);
	i2400m->tx_out += i2400m->tx_msg_size;
	d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
	i2400m->tx_msg_size = 0;
	BUG_ON(i2400m->tx_out > i2400m->tx_in);
	/* level them FIFO markers off */
	n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
	i2400m->tx_out %= I2400M_TX_BUF_SIZE;
	i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
	netif_start_queue(i2400m->wimax_dev.net_dev);
	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
ssize_t i2400ms_bus_bm_wait_for_ack(struct i2400m *i2400m,
				    struct i2400m_bootrom_header *ack,
				    size_t ack_size)
{
	ssize_t result;
	struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
	struct sdio_func *func = i2400ms->func;
	struct device *dev = &func->dev;
	int size;

	BUG_ON(sizeof(*ack) > ack_size);

	d_fnstart(5, dev, "(i2400m %p ack %p size %zu)\n",
		  i2400m, ack, ack_size);

	result = wait_event_timeout(i2400ms->bm_wfa_wq,
				    i2400ms->bm_ack_size != -EINPROGRESS,
				    2 * HZ);
	if (result == 0) {
		result = -ETIMEDOUT;
		dev_err(dev, "BM: error waiting for an ack\n");
		goto error_timeout;
	}

	spin_lock(&i2400m->rx_lock);
	result = i2400ms->bm_ack_size;
	BUG_ON(result == -EINPROGRESS);
	if (result < 0)        
		dev_err(dev, "BM: %s failed: %zd\n", __func__, result);
	else {
		size = min(ack_size, i2400ms->bm_ack_size);
		memcpy(ack, i2400m->bm_ack_buf, size);
	}
	i2400ms->bm_ack_size = -EINPROGRESS;
	spin_unlock(&i2400m->rx_lock);

error_timeout:
	d_fnend(5, dev, "(i2400m %p ack %p size %zu) = %zd\n",
		i2400m, ack, ack_size, result);
	return result;
}
Beispiel #10
0
/*
 * i2400m_net_rx - pass a network packet to the stack
 *
 * @i2400m: device instance
 * @skb_rx: the skb where the buffer pointed to by @buf is
 * @i: 1 if payload is the only one
 * @buf: pointer to the buffer containing the data
 * @len: buffer's length
 *
 * This is only used now for the v1.3 firmware. It will be deprecated
 * in >= 2.6.31.
 *
 * Note that due to firmware limitations, we don't have space to add
 * an ethernet header, so we need to copy each packet. Firmware
 * versions >= v1.4 fix this [see i2400m_net_erx()].
 *
 * We just clone the skb and set it up so that it's skb->data pointer
 * points to "buf" and it's length.
 *
 * Note that if the payload is the last (or the only one) in a
 * multi-payload message, we don't clone the SKB but just reuse it.
 *
 * This function is normally run from a thread context. However, we
 * still use netif_rx() instead of netif_receive_skb() as was
 * recommended in the mailing list. Reason is in some stress tests
 * when sending/receiving a lot of data we seem to hit a softlock in
 * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
 * netif_rx() took care of the issue.
 *
 * This is, of course, still open to do more research on why running
 * with netif_receive_skb() hits this softlock. FIXME.
 *
 * FIXME: currently we don't do any efforts at distinguishing if what
 * we got was an IPv4 or IPv6 header, to setup the protocol field
 * correctly.
 */
void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
		   unsigned i, const void *buf, int buf_len)
{
	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
	struct device *dev = i2400m_dev(i2400m);
	struct sk_buff *skb;

	d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
		  i2400m, buf, buf_len);
	if (i) {
		skb = skb_get(skb_rx);
		d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
		skb_pull(skb, buf - (void *) skb->data);
		skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
	} else {
		/* Yes, this is bad -- a lot of overhead -- see
		 * comments at the top of the file */
		skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
		if (skb == NULL) {
			dev_err(dev, "NETRX: no memory to realloc skb\n");
			net_dev->stats.rx_dropped++;
			goto error_skb_realloc;
		}
		memcpy(skb_put(skb, buf_len), buf, buf_len);
	}
	i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
				  skb->data - ETH_HLEN,
				  cpu_to_be16(ETH_P_IP));
	skb_set_mac_header(skb, -ETH_HLEN);
	skb->dev = i2400m->wimax_dev.net_dev;
	skb->protocol = htons(ETH_P_IP);
	net_dev->stats.rx_packets++;
	net_dev->stats.rx_bytes += buf_len;
	d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
		buf_len);
	d_dump(4, dev, buf, buf_len);
	netif_rx_ni(skb);	/* see notes in function header */
error_skb_realloc:
	d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
		i2400m, buf, buf_len);
}
Beispiel #11
0
Datei: fw.c Projekt: 020gzh/linux
static
int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
			enum i2400m_bri flags)
{
	int ret;
	struct device *dev = i2400m_dev(i2400m);
	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */

	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	bcf = (void *) fw->data;
	ret = i2400m_fw_check(i2400m, bcf, fw->size);
	if (ret >= 0)
		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
	if (ret < 0)
		dev_err(dev, "%s: cannot use: %d, skipping\n",
			i2400m->fw_name, ret);
	kfree(i2400m->fw_hdrs);
	i2400m->fw_hdrs = NULL;
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
	return ret;
}
Beispiel #12
0
/*
 * Translate from rfkill state to wimax state
 *
 * NOTE: Special state handling rules here
 *
 *     Just pretend the call didn't happen if we are in a state where
 *     we know for sure it cannot be handled (WIMAX_ST_DOWN or
 *     __WIMAX_ST_QUIESCING). rfkill() needs it to register and
 *     unregister, as it will run this path.
 *
 * NOTE: This call will block until the operation is completed.
 */
static int wimax_rfkill_set_radio_block(void *data, bool blocked)
{
	int result;
	struct wimax_dev *wimax_dev = data;
	struct device *dev = wimax_dev_to_dev(wimax_dev);
	enum wimax_rf_state rf_state;

	d_fnstart(3, dev, "(wimax_dev %p blocked %u)\n", wimax_dev, blocked);
	rf_state = WIMAX_RF_ON;
	if (blocked)
		rf_state = WIMAX_RF_OFF;
	mutex_lock(&wimax_dev->mutex);
	if (wimax_dev->state <= __WIMAX_ST_QUIESCING)
		result = 0;
	else
		result = __wimax_rf_toggle_radio(wimax_dev, rf_state);
	mutex_unlock(&wimax_dev->mutex);
	d_fnend(3, dev, "(wimax_dev %p blocked %u) = %d\n",
		wimax_dev, blocked, result);
	return result;
}
Beispiel #13
0
/*
 * Read the MAC addr
 *
 * The position this function reads is fixed in device memory and
 * always available, even without firmware.
 *
 * Note we specify we want to read only six bytes, but provide space
 * for 16, as we always get it rounded up.
 */
int i2400m_read_mac_addr(struct i2400m *i2400m)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
	struct i2400m_bootrom_header *cmd;
	struct {
		struct i2400m_bootrom_header ack;
		u8 ack_pl[16];
	} __packed ack_buf;

	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	cmd = i2400m->bm_cmd_buf;
	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
	cmd->target_addr = cpu_to_le32(0x00203fe8);
	cmd->data_size = cpu_to_le32(6);
	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
			       &ack_buf.ack, sizeof(ack_buf), 0);
	if (result < 0) {
		dev_err(dev, "BM: read mac addr failed: %d\n", result);
		goto error_read_mac;
	}
	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
	if (i2400m->bus_bm_mac_addr_impaired == 1) {
		ack_buf.ack_pl[0] = 0x00;
		ack_buf.ack_pl[1] = 0x16;
		ack_buf.ack_pl[2] = 0xd3;
		get_random_bytes(&ack_buf.ack_pl[3], 3);
		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
			"mac addr is %pM\n", ack_buf.ack_pl);
		result = 0;
	}
	net_dev->addr_len = ETH_ALEN;
	memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
error_read_mac:
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
	return result;
}
static
void i2400ms_irq(struct sdio_func *func)
{
	int ret;
	struct i2400ms *i2400ms = sdio_get_drvdata(func);
	struct device *dev = &func->dev;
	int val;

	d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms);
	val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret);
	if (ret < 0) {
		dev_err(dev, "RX: Can't read interrupt status: %d\n", ret);
		goto error_no_irq;
	}
	if (!val) {
		dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n");
		goto error_no_irq;
	}
	i2400ms_rx(i2400ms);
error_no_irq:
	d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms);
}
Beispiel #15
0
Datei: fw.c Projekt: 020gzh/linux
/*
 * Initialize a non signed boot
 *
 * This implies sending some magic values to the device's memory. Note
 * we convert the values to little endian in the same array
 * declaration.
 */
static
int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
{
	unsigned i = 0;
	int ret = 0;
	struct device *dev = i2400m_dev(i2400m);
	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	if (i2400m->bus_bm_pokes_table) {
		while (i2400m->bus_bm_pokes_table[i].address) {
			ret = i2400m_download_chunk(
				i2400m,
				&i2400m->bus_bm_pokes_table[i].data,
				sizeof(i2400m->bus_bm_pokes_table[i].data),
				i2400m->bus_bm_pokes_table[i].address, 1, 1);
			if (ret < 0)
				break;
			i++;
		}
	}
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
	return ret;
}
Beispiel #16
0
static
int i2400mu_resume(struct usb_interface *iface)
{
	int ret = 0;
	struct device *dev = &iface->dev;
	struct i2400mu *i2400mu = usb_get_intfdata(iface);
	struct i2400m *i2400m = &i2400mu->i2400m;

	d_fnstart(3, dev, "(iface %p)\n", iface);
	if (i2400m->updown == 0) {
		d_printf(1, dev, "fw was down, no resume neeed\n");
		goto out;
	}
	d_printf(1, dev, "fw was up, resuming\n");
	i2400mu_notification_setup(i2400mu);
	/* USB has flow control, so we don't need to give it time to
	 * come back; otherwise, we'd use something like a get-state
	 * command... */
out:
	d_fnend(3, dev, "(iface %p) = %d\n", iface, ret);
	return ret;
}
int wimax_rfkill(struct wimax_dev *wimax_dev, enum wimax_rf_state state)
{
	int result;
	struct device *dev = wimax_dev_to_dev(wimax_dev);

	d_fnstart(3, dev, "(wimax_dev %p state %u)\n", wimax_dev, state);
	mutex_lock(&wimax_dev->mutex);
	result = wimax_dev_is_ready(wimax_dev);
	if (result < 0) {
		/*                                                     
                                                      
                                              
                                         */
		if (result == -ENOMEDIUM && state == WIMAX_RF_QUERY)
			result = WIMAX_RF_OFF << 1 | WIMAX_RF_OFF;
		goto error_not_ready;
	}
	switch (state) {
	case WIMAX_RF_ON:
	case WIMAX_RF_OFF:
		result = __wimax_rf_toggle_radio(wimax_dev, state);
		if (result < 0)
			goto error;
		rfkill_set_sw_state(wimax_dev->rfkill, state == WIMAX_RF_OFF);
		break;
	case WIMAX_RF_QUERY:
		break;
	default:
		result = -EINVAL;
		goto error;
	}
	result = wimax_dev->rf_sw << 1 | wimax_dev->rf_hw;
error:
error_not_ready:
	mutex_unlock(&wimax_dev->mutex);
	d_fnend(3, dev, "(wimax_dev %p state %u) = %d\n",
		wimax_dev, state, result);
	return result;
}
Beispiel #18
0
/**
 * Get the IEs that a radio controller is sending in its beacon
 *
 * @uwb_rc:  UWB Radio Controller
 * @returns: Size read from the system
 *
 * We don't need to lock the uwb_rc's mutex because we don't modify
 * anything. Once done with the iedata buffer, call
 * uwb_rc_ie_release(iedata). Don't call kfree on it.
 */
ssize_t uwb_rc_get_ie(struct uwb_rc *uwb_rc, struct uwb_rc_evt_get_ie **pget_ie)
{
	ssize_t result;
	struct device *dev = &uwb_rc->uwb_dev.dev;
	struct uwb_rccb *cmd = NULL;
	struct uwb_rceb *reply = NULL;
	struct uwb_rc_evt_get_ie *get_ie;

	d_fnstart(3, dev, "(%p, %p)\n", uwb_rc, pget_ie);
	result = -ENOMEM;
	cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
	if (cmd == NULL)
		goto error_kzalloc;
	cmd->bCommandType = UWB_RC_CET_GENERAL;
	cmd->wCommand = cpu_to_le16(UWB_RC_CMD_GET_IE);
	result = uwb_rc_vcmd(uwb_rc, "GET_IE", cmd, sizeof(*cmd),
			     UWB_RC_CET_GENERAL, UWB_RC_CMD_GET_IE,
			     &reply);
	if (result < 0)
		goto error_cmd;
	get_ie = container_of(reply, struct uwb_rc_evt_get_ie, rceb);
	if (result < sizeof(*get_ie)) {
		dev_err(dev, "not enough data returned for decoding GET IE "
			"(%zu bytes received vs %zu needed)\n",
			result, sizeof(*get_ie));
		result = -EINVAL;
	} else if (result < sizeof(*get_ie) + le16_to_cpu(get_ie->wIELength)) {
		dev_err(dev, "not enough data returned for decoding GET IE "
			"payload (%zu bytes received vs %zu needed)\n", result,
			sizeof(*get_ie) + le16_to_cpu(get_ie->wIELength));
		result = -EINVAL;
	} else
		*pget_ie = get_ie;
error_cmd:
	kfree(cmd);
error_kzalloc:
	d_fnend(3, dev, "(%p, %p) = %d\n", uwb_rc, pget_ie, (int)result);
	return result;
}
void i2400m_tx_msg_sent(struct i2400m *i2400m)
{
	unsigned n;
	unsigned long flags;
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
	spin_lock_irqsave(&i2400m->tx_lock, flags);
	if (i2400m->tx_buf == NULL)
		goto out_unlock;
	i2400m->tx_out += i2400m->tx_msg_size;
	d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
	i2400m->tx_msg_size = 0;
	BUG_ON(i2400m->tx_out > i2400m->tx_in);
	
	n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
	i2400m->tx_out %= I2400M_TX_BUF_SIZE;
	i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
out_unlock:
	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
Beispiel #20
0
/*
 * Cleanup resources acquired during i2400m_net_wake_tx()
 *
 * This is called by __i2400m_dev_stop and means we have to make sure
 * the workqueue is flushed from any pending work.
 */
void i2400m_net_wake_stop(struct i2400m *i2400m)
{
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
	/* See i2400m_hard_start_xmit(), references are taken there
	 * and here we release them if the work was still
	 * pending. Note we can't differentiate work not pending vs
	 * never scheduled, so the NULL check does that. */
	if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
	    && i2400m->wake_tx_skb != NULL) {
		unsigned long flags;
		struct sk_buff *wake_tx_skb;
		spin_lock_irqsave(&i2400m->tx_lock, flags);
		wake_tx_skb = i2400m->wake_tx_skb;	/* compat help */
		i2400m->wake_tx_skb = NULL;	/* compat help */
		spin_unlock_irqrestore(&i2400m->tx_lock, flags);
		i2400m_put(i2400m);
		kfree_skb(wake_tx_skb);
	}
	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}
Beispiel #21
0
/*
 * Transmit a packet to the base station on behalf of the network stack
 *
 *
 * Returns: NETDEV_TX_OK (always, even in case of error)
 *
 * In case of error, we just drop it. Reasons:
 *
 *  - we add a hw header to each skb, and if the network stack
 *    retries, we have no way to know if that skb has it or not.
 *
 *  - network protocols have their own drop-recovery mechanisms
 *
 *  - there is not much else we can do
 *
 * If the device is idle, we need to wake it up; that is an operation
 * that will sleep. See i2400m_net_wake_tx() for details.
 */
static
netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
					 struct net_device *net_dev)
{
	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
	struct device *dev = i2400m_dev(i2400m);
	int result;

	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
	if (skb_header_cloned(skb)) {
		/*
		 * Make tcpdump/wireshark happy -- if they are
		 * running, the skb is cloned and we will overwrite
		 * the mac fields in i2400m_tx_prep_header. Expand
		 * seems to fix this...
		 */
		result = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (result) {
			result = NETDEV_TX_BUSY;
			goto error_expand;
		}
	}

	if (i2400m->state == I2400M_SS_IDLE)
		result = i2400m_net_wake_tx(i2400m, net_dev, skb);
	else
		result = i2400m_net_tx(i2400m, net_dev, skb);
	if (result <  0)
		net_dev->stats.tx_dropped++;
	else {
		net_dev->stats.tx_packets++;
		net_dev->stats.tx_bytes += skb->len;
	}
	result = NETDEV_TX_OK;
error_expand:
	kfree_skb(skb);
	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
	return result;
}
Beispiel #22
0
/**
 * wimax_rfkill - Set the software RF switch state for a WiMAX device
 *
 * @wimax_dev: WiMAX device descriptor
 *
 * @state: New RF state.
 *
 * Returns:
 *
 * >= 0 toggle state if ok, < 0 errno code on error. The toggle state
 * is returned as a bitmap, bit 0 being the hardware RF state, bit 1
 * the software RF state.
 *
 * 0 means disabled (%WIMAX_RF_ON, radio on), 1 means enabled radio
 * off (%WIMAX_RF_OFF).
 *
 * Description:
 *
 * Called by the user when he wants to request the WiMAX radio to be
 * switched on (%WIMAX_RF_ON) or off (%WIMAX_RF_OFF). With
 * %WIMAX_RF_QUERY, just the current state is returned.
 *
 * NOTE:
 *
 * This call will block until the operation is complete.
 */
int wimax_rfkill(struct wimax_dev *wimax_dev, enum wimax_rf_state state)
{
	int result;
	struct device *dev = wimax_dev_to_dev(wimax_dev);

	d_fnstart(3, dev, "(wimax_dev %p state %u)\n", wimax_dev, state);
	mutex_lock(&wimax_dev->mutex);
	result = wimax_dev_is_ready(wimax_dev);
	if (result < 0) {
		/* While initializing, < 1.4.3 wimax-tools versions use
		 * this call to check if the device is a valid WiMAX
		 * device; so we allow it to proceed always,
		 * considering the radios are all off. */
		if (result == -ENOMEDIUM && state == WIMAX_RF_QUERY)
			result = WIMAX_RF_OFF << 1 | WIMAX_RF_OFF;
		goto error_not_ready;
	}
	switch (state) {
	case WIMAX_RF_ON:
	case WIMAX_RF_OFF:
		result = __wimax_rf_toggle_radio(wimax_dev, state);
		if (result < 0)
			goto error;
		rfkill_set_sw_state(wimax_dev->rfkill, state == WIMAX_RF_OFF);
		break;
	case WIMAX_RF_QUERY:
		break;
	default:
		result = -EINVAL;
		goto error;
	}
	result = wimax_dev->rf_sw << 1 | wimax_dev->rf_hw;
error:
error_not_ready:
	mutex_unlock(&wimax_dev->mutex);
	d_fnend(3, dev, "(wimax_dev %p state %u) = %d\n",
		wimax_dev, state, result);
	return result;
}
Beispiel #23
0
/*
 * Setup SDIO RX
 *
 * Hooks up the IRQ handler and then enables IRQs.
 */
int i2400ms_rx_setup(struct i2400ms *i2400ms)
{
	int result;
	struct sdio_func *func = i2400ms->func;
	struct device *dev = &func->dev;
	struct i2400m *i2400m = &i2400ms->i2400m;

	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);

	init_waitqueue_head(&i2400ms->bm_wfa_wq);
	spin_lock(&i2400m->rx_lock);
	i2400ms->bm_wait_result = -EINPROGRESS;
	/*
	 * Before we are about to enable the RX interrupt, make sure
	 * bm_ack_size is cleared to -EINPROGRESS which indicates
	 * no RX interrupt happened yet or the previous interrupt
	 * has been handled, we are ready to take the new interrupt
	 */
	i2400ms->bm_ack_size = -EINPROGRESS;
	spin_unlock(&i2400m->rx_lock);

	sdio_claim_host(func);
	result = sdio_claim_irq(func, i2400ms_irq);
	if (result < 0) {
		dev_err(dev, "Cannot claim IRQ: %d\n", result);
		goto error_irq_claim;
	}
	result = 0;
	sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result);
	if (result < 0) {
		sdio_release_irq(func);
		dev_err(dev, "Failed to enable interrupts %d\n", result);
	}
error_irq_claim:
	sdio_release_host(func);
	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
	return result;
}
Beispiel #24
0
/*
 * Exporting to user space over generic netlink
 *
 * Parse the reset command from user space, return error code.
 *
 * No attributes.
 */
int wimax_gnl_doit_reset(struct sk_buff *skb, struct genl_info *info)
{
	int result, ifindex;
	struct wimax_dev *wimax_dev;

	d_fnstart(3, NULL, "(skb %p info %p)\n", skb, info);
	result = -ENODEV;
	if (info->attrs[WIMAX_GNL_RESET_IFIDX] == NULL) {
		printk(KERN_ERR "WIMAX_GNL_OP_RFKILL: can't find IFIDX "
			"attribute\n");
		goto error_no_wimax_dev;
	}
	ifindex = nla_get_u32(info->attrs[WIMAX_GNL_RESET_IFIDX]);
	wimax_dev = wimax_dev_get_by_genl_info(info, ifindex);
	if (wimax_dev == NULL)
		goto error_no_wimax_dev;
	/* Execute the operation and send the result back to user space */
	result = wimax_reset(wimax_dev);
	dev_put(wimax_dev->net_dev);
error_no_wimax_dev:
	d_fnend(3, NULL, "(skb %p info %p) = %d\n", skb, info, result);
	return result;
}
/**
 * wimax_reset - Reset a WiMAX device
 *
 * @wimax_dev: WiMAX device descriptor
 *
 * Returns:
 *
 * %0 if ok and a warm reset was done (the device still exists in
 * the system).
 *
 * -%ENODEV if a cold/bus reset had to be done (device has
 * disconnected and reconnected, so current handle is not valid
 * any more).
 *
 * -%EINVAL if the device is not even registered.
 *
 * Any other negative error code shall be considered as
 * non-recoverable.
 *
 * Description:
 *
 * Called when wanting to reset the device for any reason. Device is
 * taken back to power on status.
 *
 * This call blocks; on successful return, the device has completed the
 * reset process and is ready to operate.
 */
int wimax_reset(struct wimax_dev *wimax_dev)
{
	int result = -EINVAL;
	struct device *dev = wimax_dev_to_dev(wimax_dev);
	enum wimax_st state;

	might_sleep();
	d_fnstart(3, dev, "(wimax_dev %p)\n", wimax_dev);
	mutex_lock(&wimax_dev->mutex);
	dev_hold(wimax_dev->net_dev);
	state = wimax_dev->state;
	mutex_unlock(&wimax_dev->mutex);

	if (state >= WIMAX_ST_DOWN) {
		mutex_lock(&wimax_dev->mutex_reset);
		result = wimax_dev->op_reset(wimax_dev);
		mutex_unlock(&wimax_dev->mutex_reset);
	}
	dev_put(wimax_dev->net_dev);

	d_fnend(3, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
	return result;
}
/*
 * Send a Report State Change message (as created with _alloc).
 *
 * @report_skb: as returned by wimax_gnl_re_state_change_alloc()
 * @header: as returned by wimax_gnl_re_state_change_alloc()
 *
 * Returns: 0 if ok, < 0 errno code on error.
 *
 * If the message is  NULL, pretend it didn't happen.
 */
static
int wimax_gnl_re_state_change_send(
	struct wimax_dev *wimax_dev, struct sk_buff *report_skb,
	void *header)
{
	int result = 0;
	struct device *dev = wimax_dev_to_dev(wimax_dev);
	d_fnstart(3, dev, "(wimax_dev %p report_skb %p)\n",
		  wimax_dev, report_skb);
	if (report_skb == NULL)
		goto out;
	genlmsg_end(report_skb, header);
	result = genlmsg_multicast(report_skb, 0, wimax_gnl_mcg.id, GFP_KERNEL);
	if (result == -ESRCH)	/* Nobody connected, ignore it */
		result = 0;	/* btw, the skb is freed already */
	if (result < 0) {
		dev_err(dev, "RE_STCH: Error sending: %d\n", result);
		nlmsg_free(report_skb);
	}
out:
	d_fnend(3, dev, "(wimax_dev %p report_skb %p) = %d\n",
		wimax_dev, report_skb, result);
	return result;
}
Beispiel #27
0
/*
 * Setup SDIO RX
 *
 * Hooks up the IRQ handler and then enables IRQs.
 */
int i2400ms_rx_setup(struct i2400ms *i2400ms)
{
	int result;
	struct sdio_func *func = i2400ms->func;
	struct device *dev = &func->dev;

	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
	sdio_claim_host(func);
	result = sdio_claim_irq(func, i2400ms_irq);
	if (result < 0) {
		dev_err(dev, "Cannot claim IRQ: %d\n", result);
		goto error_irq_claim;
	}
	result = 0;
	sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result);
	if (result < 0) {
		sdio_release_irq(func);
		dev_err(dev, "Failed to enable interrupts %d\n", result);
	}
error_irq_claim:
	sdio_release_host(func);
	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
	return result;
}
/*
 * Parse and act on a TLV Media Status sent by the device
 *
 * @i2400m: device descriptor
 * @ms: validated Media Status TLV
 *
 * This will set the carrier up on down based on the device's link
 * report. This is done asides of what the WiMAX stack does based on
 * the device's state as sometimes we need to do a link-renew (the BS
 * wants us to renew a DHCP lease, for example).
 *
 * In fact, doc says that everytime we get a link-up, we should do a
 * DHCP negotiation...
 */
static
void i2400m_report_tlv_media_status(struct i2400m *i2400m,
				    const struct i2400m_tlv_media_status *ms)
{
	struct device *dev = i2400m_dev(i2400m);
	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
	struct net_device *net_dev = wimax_dev->net_dev;
	enum i2400m_media_status status = le32_to_cpu(ms->media_status);

	d_fnstart(3, dev, "(i2400m %p ms %p [%u])\n", i2400m, ms, status);

	if (unlikely(i2400m->ready == 0))	/* act if up */
		goto out;
	switch (status) {
	case I2400M_MEDIA_STATUS_LINK_UP:
		netif_carrier_on(net_dev);
		break;
	case I2400M_MEDIA_STATUS_LINK_DOWN:
		netif_carrier_off(net_dev);
		break;
	/*
	 * This is the network telling us we need to retrain the DHCP
	 * lease -- so far, we are trusting the WiMAX Network Service
	 * in user space to pick this up and poke the DHCP client.
	 */
	case I2400M_MEDIA_STATUS_LINK_RENEW:
		netif_carrier_on(net_dev);
		break;
	default:
		dev_err(dev, "HW BUG? unknown media status %u\n",
			status);
	};
out:
	d_fnend(3, dev, "(i2400m %p ms %p [%u]) = void\n",
		i2400m, ms, status);
}
static
int wimax_gnl_doit_rfkill(struct sk_buff *skb, struct genl_info *info)
{
	int result, ifindex;
	struct wimax_dev *wimax_dev;
	struct device *dev;
	enum wimax_rf_state new_state;

	d_fnstart(3, NULL, "(skb %p info %p)\n", skb, info);
	result = -ENODEV;
	if (info->attrs[WIMAX_GNL_RFKILL_IFIDX] == NULL) {
		printk(KERN_ERR "WIMAX_GNL_OP_RFKILL: can't find IFIDX "
			"attribute\n");
		goto error_no_wimax_dev;
	}
	ifindex = nla_get_u32(info->attrs[WIMAX_GNL_RFKILL_IFIDX]);
	wimax_dev = wimax_dev_get_by_genl_info(info, ifindex);
	if (wimax_dev == NULL)
		goto error_no_wimax_dev;
	dev = wimax_dev_to_dev(wimax_dev);
	result = -EINVAL;
	if (info->attrs[WIMAX_GNL_RFKILL_STATE] == NULL) {
		dev_err(dev, "WIMAX_GNL_RFKILL: can't find RFKILL_STATE "
			"attribute\n");
		goto error_no_pid;
	}
	new_state = nla_get_u32(info->attrs[WIMAX_GNL_RFKILL_STATE]);

	/* Execute the operation and send the result back to user space */
	result = wimax_rfkill(wimax_dev, new_state);
error_no_pid:
	dev_put(wimax_dev->net_dev);
error_no_wimax_dev:
	d_fnend(3, NULL, "(skb %p info %p) = %d\n", skb, info, result);
	return result;
}
Beispiel #30
0
/*
 * Transmit a packet to the base station on behalf of the network stack
 *
 *
 * Returns: NETDEV_TX_OK (always, even in case of error)
 *
 * In case of error, we just drop it. Reasons:
 *
 *  - we add a hw header to each skb, and if the network stack
 *    retries, we have no way to know if that skb has it or not.
 *
 *  - network protocols have their own drop-recovery mechanisms
 *
 *  - there is not much else we can do
 *
 * If the device is idle, we need to wake it up; that is an operation
 * that will sleep. See i2400m_net_wake_tx() for details.
 */
static
int i2400m_hard_start_xmit(struct sk_buff *skb,
			   struct net_device *net_dev)
{
	int result;
	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
	if (i2400m->state == I2400M_SS_IDLE)
		result = i2400m_net_wake_tx(i2400m, net_dev, skb);
	else
		result = i2400m_net_tx(i2400m, net_dev, skb);
	if (result <  0)
		net_dev->stats.tx_dropped++;
	else {
		net_dev->stats.tx_packets++;
		net_dev->stats.tx_bytes += skb->len;
	}
	kfree_skb(skb);
	result = NETDEV_TX_OK;
	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
	return result;
}