//[[Rcpp::export]] Rcpp::List nnmf(const mat & A, const unsigned int k, mat W, mat H, umat Wm, umat Hm, const vec & alpha, const vec & beta, const unsigned int max_iter, const double rel_tol, const int n_threads, const int verbose, const bool show_warning, const unsigned int inner_max_iter, const double inner_rel_tol, const int method, unsigned int trace) { /****************************************************************************************************** * Non-negative Matrix Factorization(NNMF) using alternating scheme * ---------------------------------------------------------------- * Description: * Decompose matrix A such that * A = W H * Arguments: * A : Matrix to be decomposed * W, H : Initial matrices of W and H, where ncol(W) = nrow(H) = k. # of rows/columns of W/H could be 0 * Wm, Hm : Masks of W and H, s.t. masked entries are no-updated and fixed to initial values * alpha : [L2, angle, L1] regularization on W (non-masked entries) * beta : [L2, angle, L1] regularization on H (non-masked entries) * max_iter : Maximum number of iteration * rel_tol : Relative tolerance between two successive iterations, = |e2-e1|/avg(e1, e2) * n_threads : Number of threads (openMP) * verbose : Either 0 = no any tracking, 1 == progression bar, 2 == print iteration info * show_warning : If to show warning if targeted `tol` is not reached * inner_max_iter : Maximum number of iterations passed to each inner W or H matrix updating loop * inner_rel_tol : Relative tolerance passed to inner W or H matrix updating loop, = |e2-e1|/avg(e1, e2) * method : Integer of 1, 2, 3 or 4, which encodes methods * : 1 = sequential coordinate-wise minimization using square loss * : 2 = Lee's multiplicative update with square loss, which is re-scaled gradient descent * : 3 = sequentially quadratic approximated minimization with KL-divergence * : 4 = Lee's multiplicative update with KL-divergence, which is re-scaled gradient descent * trace : A positive integer, error will be checked very 'trace' iterations. Computing WH can be very expansive, * : so one may not want to check error A-WH every single iteration * Return: * A list (Rcpp::List) of * W, H : resulting W and H matrices * mse_error : a vector of mean square error (divided by number of non-missings) * mkl_error : a vector (length = number of iterations) of mean KL-distance * target_error : a vector of loss (0.5*mse or mkl), plus constraints * average_epoch : a vector of average epochs (one complete swap over W and H) * Author: * Eric Xihui Lin <*****@*****.**> * Version: * 2015-12-11 ******************************************************************************************************/ unsigned int n = A.n_rows; unsigned int m = A.n_cols; //int k = H.n_rows; // decomposition rank k unsigned int N_non_missing = n*m; if (trace < 1) trace = 1; unsigned int err_len = (unsigned int)std::ceil(double(max_iter)/double(trace)) + 1; vec mse_err(err_len), mkl_err(err_len), terr(err_len), ave_epoch(err_len); // check progression bool show_progress = false; if (verbose == 1) show_progress = true; Progress prgrss(max_iter, show_progress); double rel_err = rel_tol + 1; double terr_last = 1e99; uvec non_missing; bool any_missing = !A.is_finite(); if (any_missing) { non_missing = find_finite(A); N_non_missing = non_missing.n_elem; mkl_err.fill(mean((A.elem(non_missing)+TINY_NUM) % log(A.elem(non_missing)+TINY_NUM) - A.elem(non_missing))); } else mkl_err.fill(mean(mean((A+TINY_NUM) % log(A+TINY_NUM) - A))); // fixed part in KL-dist, mean(A log(A) - A) if (Wm.empty()) Wm.resize(0, n); else inplace_trans(Wm); if (Hm.empty()) Hm.resize(0, m); if (W.empty()) { W.randu(k, n); W *= 0.01; if (!Wm.empty()) W.elem(find(Wm > 0)).fill(0.0); } else inplace_trans(W); if (H.empty()) { H.randu(k, m); H *= 0.01; if (!Hm.empty()) H.elem(find(Hm > 0)).fill(0.0); } if (verbose == 2) { Rprintf("\n%10s | %10s | %10s | %10s | %10s\n", "Iteration", "MSE", "MKL", "Target", "Rel. Err."); Rprintf("--------------------------------------------------------------\n"); } int total_raw_iter = 0; unsigned int i = 0; unsigned int i_e = 0; // index for error checking for(; i < max_iter && std::abs(rel_err) > rel_tol; i++) { Rcpp::checkUserInterrupt(); prgrss.increment(); if (any_missing) { // update W total_raw_iter += update_with_missing(W, H, A.t(), Wm, alpha, inner_max_iter, inner_rel_tol, n_threads, method); // update H total_raw_iter += update_with_missing(H, W, A, Hm, beta, inner_max_iter, inner_rel_tol, n_threads, method); if (i % trace == 0) { const mat & Ahat = W.t()*H; mse_err(i_e) = mean(square((A - Ahat).eval().elem(non_missing))); mkl_err(i_e) += mean((-(A+TINY_NUM) % log(Ahat+TINY_NUM) + Ahat).eval().elem(non_missing)); } } else { // update W total_raw_iter += update(W, H, A.t(), Wm, alpha, inner_max_iter, inner_rel_tol, n_threads, method); // update H total_raw_iter += update(H, W, A, Hm, beta, inner_max_iter, inner_rel_tol, n_threads, method); if (i % trace == 0) { const mat & Ahat = W.t()*H; mse_err(i_e) = mean(mean(square((A - Ahat)))); mkl_err(i_e) += mean(mean(-(A+TINY_NUM) % log(Ahat+TINY_NUM) + Ahat)); } } if (i % trace == 0) { ave_epoch(i_e) = double(total_raw_iter)/(n+m); if (method < 3) // mse based terr(i_e) = 0.5*mse_err(i_e); else // KL based terr(i_e) = mkl_err(i_e); add_penalty(i_e, terr, W, H, N_non_missing, alpha, beta); rel_err = 2*(terr_last - terr(i_e)) / (terr_last + terr(i_e) + TINY_NUM ); terr_last = terr(i_e); if (verbose == 2) Rprintf("%10d | %10.4f | %10.4f | %10.4f | %10.g\n", i+1, mse_err(i_e), mkl_err(i_e), terr(i_e), rel_err); total_raw_iter = 0; // reset to 0 ++i_e; } } // compute error of the last iteration if ((i-1) % trace != 0) { if (any_missing) { const mat & Ahat = W.t()*H; mse_err(i_e) = mean(square((A - Ahat).eval().elem(non_missing))); mkl_err(i_e) += mean((-(A+TINY_NUM) % log(Ahat+TINY_NUM) + Ahat).eval().elem(non_missing)); } else { const mat & Ahat = W.t()*H; mse_err(i_e) = mean(mean(square((A - Ahat)))); mkl_err(i_e) += mean(mean(-(A+TINY_NUM) % log(Ahat+TINY_NUM) + Ahat)); } ave_epoch(i_e) = double(total_raw_iter)/(n+m); if (method < 3) // mse based terr(i_e) = 0.5*mse_err(i_e); else // KL based terr(i_e) = mkl_err(i_e); add_penalty(i_e, terr, W, H, N_non_missing, alpha, beta); rel_err = 2*(terr_last - terr(i_e)) / (terr_last + terr(i_e) + TINY_NUM ); terr_last = terr(i_e); if (verbose == 2) Rprintf("%10d | %10.4f | %10.4f | %10.4f | %10.g\n", i+1, mse_err(i_e), mkl_err(i_e), terr(i_e), rel_err); ++i_e; } if (verbose == 2) { Rprintf("--------------------------------------------------------------\n"); Rprintf("%10s | %10s | %10s | %10s | %10s\n\n", "Iteration", "MSE", "MKL", "Target", "Rel. Err."); } if (i_e < err_len) { mse_err.resize(i_e); mkl_err.resize(i_e); terr.resize(i_e); ave_epoch.resize(i_e); } if (show_warning && rel_err > rel_tol) Rcpp::warning("Target tolerance not reached. Try a larger max.iter."); return Rcpp::List::create( Rcpp::Named("W") = W.t(), Rcpp::Named("H") = H, Rcpp::Named("mse_error") = mse_err, Rcpp::Named("mkl_error") = mkl_err, Rcpp::Named("target_error") = terr, Rcpp::Named("average_epoch") = ave_epoch, Rcpp::Named("n_iteration") = i ); }
//[[Rcpp::export]] Rcpp::List nmf_brunet(const mat & A, int k, int max_iter , double rel_tol, int n_threads, bool show_progress, bool show_warning) { /* * Description: * An implment of Brunet's multiplicative updates based on KL divergence for non-negative matrix factorization. * Arguments: * V: a matrix to be decomposed, such that V ~ W*H * k: rank * Return: * A list of W, H, error, steps (= iteration until convergent or max_iter reached) * Complexity: * O(max_iter x k x V.n_row x V.n_col) * Author: * Eric Xihui Lin <*****@*****.**> * Version: * 2015-10-31 */ mat W = randu(A.n_rows, k), H = randu(k, A.n_cols); mat Abar = W*H; // current W*H rowvec w, ha; // W/h = col/row sum of W/H colvec h, wa; // ha/wa = previous H.row/W.col for fast update of Abar vec err(max_iter), trgt_err(max_iter); trgt_err.fill(-1); // check progression Progress prgrss(max_iter, show_progress); int i = 0; for(; i < max_iter; i++) { Rcpp::checkUserInterrupt(); prgrss.increment(); w = sum(W); h = sum(H, 1); for (int a = 0; a < k; a++) { wa = W.col(a); W.col(a) %= (A / Abar) * H.row(a).t() / h.at(a); Abar += (W.col(a) - wa) * H.row(a); ha = H.row(a); H.row(a) %= W.col(a).t() * (A / Abar) / w.at(a); Abar += W.col(a) * (H.row(a) - ha); } err.at(i) = std::sqrt(mean(mean(square(A - Abar)))); trgt_err.at(i) = accu(A % (arma::trunc_log(A) - arma::trunc_log(Abar)) - A - Abar); if (i > 0 && std::abs(trgt_err.at(i) - trgt_err.at(i-1))/(std::abs(trgt_err.at(i-1)) + 1e-6) < rel_tol) break; } if (show_warning && max_iter <= i) Rcpp::warning("Target tolerance not reached. Try a larger max.iter."); err.resize(i < max_iter ? i+1 : max_iter); trgt_err.resize(err.n_elem); return Rcpp::List::create( Rcpp::Named("W") = W, Rcpp::Named("H") = H, Rcpp::Named("error") = err, Rcpp::Named("target_error") = trgt_err ); }