void Visualization::updateCameraVelocity(float dt, bool forward, bool backward, bool left, bool right, bool fast)
{
    float cameraKeySpeed = 22.0f;
    if (fast)
    {
        cameraKeySpeed *= 4.0f;
    }
    
    float cameraKeyAcceleration = 100.f;
    
    if (forward) //Forward
    {
        m_cameraVelocity[2] -= dt * cameraKeyAcceleration;
        m_cameraVelocity[2] = rcMax(m_cameraVelocity[2],-cameraKeySpeed);
    }
    else if (backward) // Backward
    {
        m_cameraVelocity[2] += dt * cameraKeyAcceleration;
        m_cameraVelocity[2] =  rcMin(m_cameraVelocity[2],cameraKeySpeed);
    }
    else if (m_cameraVelocity[2] > 0)
    {
        m_cameraVelocity[2] -= dt * cameraKeyAcceleration;
        m_cameraVelocity[2] =  rcMax(m_cameraVelocity[2],0.f);
    }
    else
    {
        m_cameraVelocity[2] += dt * cameraKeyAcceleration;
        m_cameraVelocity[2] =  rcMin(m_cameraVelocity[2],0.f);
    }
    
    if (right) // Right
    {
        m_cameraVelocity[0] += dt * cameraKeyAcceleration;
        m_cameraVelocity[0] =  rcMin(m_cameraVelocity[0],cameraKeySpeed);
    }
    else if (left) // Left
    {
        m_cameraVelocity[0] -= dt * cameraKeyAcceleration;
        m_cameraVelocity[0] = rcMax(m_cameraVelocity[0],-cameraKeySpeed);
    }
    else if (m_cameraVelocity[0] > 0)
    {
        m_cameraVelocity[0] -= dt * cameraKeyAcceleration;
        m_cameraVelocity[0] =  rcMax(m_cameraVelocity[0],0.f);
    }
    else
    {
        m_cameraVelocity[0] += dt * cameraKeyAcceleration;
        m_cameraVelocity[0] =  rcMin(m_cameraVelocity[0],0.f);
    }
}
Beispiel #2
0
void CProgressCtrlX::OnPaint() 
{
	CPaintDC dc(this); // device context for painting

	// TODO: Add your message handler code here
	CDrawInfo info;
	GetClientRect(&info.rcClient);

	// retrieve current position and range
	info.nCurPos = GetPos();
	GetRange(info.nLower, info.nUpper);
	
	// Draw to memory DC
	CMemDC memDC(&dc);
	info.pDC = &memDC;
	
	// fill background 
	if(m_pbrBk)
		memDC.FillRect(&info.rcClient, m_pbrBk);
	else
		memDC.FillSolidRect(&info.rcClient, m_clrBk);

	// apply borders
	info.rcClient.DeflateRect(m_rcBorders);
		
	// if current pos is out of range return
	if (info.nCurPos < info.nLower || info.nCurPos > info.nUpper)
		return;

	info.dwStyle = GetStyle();
	BOOL fVert = info.dwStyle&PBS_VERTICAL;
	BOOL fSnake = info.dwStyle&PBS_SNAKE;
	BOOL fRubberBar = info.dwStyle&PBS_RUBBER_BAR;

	// calculate visible gradient width
	CRect rcBar(0,0,0,0);
	CRect rcMax(0,0,0,0);
	rcMax.right = fVert ? info.rcClient.Height() : info.rcClient.Width();
	rcBar.right = (int)((float)(info.nCurPos-info.nLower) * rcMax.right / ((info.nUpper-info.nLower == 0) ? 1 : info.nUpper-info.nLower));
	if(fSnake)
		rcBar.left = (int)((float)(m_nTail-info.nLower) * rcMax.right / ((info.nUpper-info.nLower == 0) ? 1 : info.nUpper-info.nLower));
	
	// draw bar
	if(m_pbrBar)
		memDC.FillRect(&ConvertToReal(info, rcBar), m_pbrBar);
	else
		DrawMultiGradient(info, fRubberBar ? rcBar : rcMax, rcBar);

	// Draw text
	DrawText(info, rcMax, rcBar);

	// Do not call CProgressCtrl::OnPaint() for painting messages
}
static int fixupCorridor(dtPolyRef* path, const int npath, const int maxPath,
						 const dtPolyRef* visited, const int nvisited)
{
	int furthestPath = -1;
	int furthestVisited = -1;
	
	// Find furthest common polygon.
	for (int i = npath-1; i >= 0; --i)
	{
		bool found = false;
		for (int j = nvisited-1; j >= 0; --j)
		{
			if (path[i] == visited[j])
			{
				furthestPath = i;
				furthestVisited = j;
				found = true;
			}
		}
		if (found)
			break;
	}

	// If no intersection found just return current path. 
	if (furthestPath == -1 || furthestVisited == -1)
		return npath;
	
	// Concatenate paths.	

	// Adjust beginning of the buffer to include the visited.
	const int req = nvisited - furthestVisited;
	const int orig = rcMin(furthestPath+1, npath);
	int size = rcMax(0, npath-orig);
	if (req+size > maxPath)
		size = maxPath-req;
	if (size)
		memmove(path+req, path+orig, size*sizeof(dtPolyRef));
	
	// Store visited
	for (int i = 0; i < req; ++i)
		path[i] = visited[(nvisited-1)-i];				
	
	return req+size;
}
// Calculate minimum extend of the polygon.
static float polyMinExtent(const float* verts, const int nverts)
{
	float minDist = FLT_MAX;
	for (int i = 0; i < nverts; i++)
	{
		const int ni = (i+1) % nverts;
		const float* p1 = &verts[i*3];
		const float* p2 = &verts[ni*3];
		float maxEdgeDist = 0;
		for (int j = 0; j < nverts; j++)
		{
			if (j == i || j == ni) continue;
			float d = distancePtSeg2d(&verts[j*3], p1,p2);
			maxEdgeDist = rcMax(maxEdgeDist, d);
		}
		minDist = rcMin(minDist, maxEdgeDist);
	}
	return rcSqrt(minDist);
}
/// @par
/// 
/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
/// Contours will form simple polygons.
/// 
/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
/// re-assigned to the zero (null) region.
/// 
/// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors. 
/// @p mergeRegionArea helps reduce unecessarily small regions.
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// The region data will be available via the rcCompactHeightfield::maxRegions
/// and rcCompactSpan::reg fields.
/// 
/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
/// 
/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
					const int borderSize, const int minRegionArea, const int mergeRegionArea)
{
	rcAssert(ctx);
	
	ctx->startTimer(RC_TIMER_BUILD_REGIONS);
	
	rcScopedDelete<unsigned short> spanBuf4 = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP);
	if (!spanBuf4)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'spanBuf4' (%d).", chf.spanCount*4);
		return false;
	}

	ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);

	unsigned short* srcReg = spanBuf4;
	if (!rcGatherRegionsNoFilter(ctx, chf, borderSize, spanBuf4))
		return false;

	ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);	
	ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
	
	// Filter out small regions.
	const int chunkSize = rcMax(chf.width, chf.height);
	if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chunkSize, chf.maxRegions, chf, srcReg))
		return false;
	
	ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
		
	// Write the result out.
	for (int i = 0; i < chf.spanCount; ++i)
		chf.spans[i].reg = srcReg[i];
	
	ctx->stopTimer(RC_TIMER_BUILD_REGIONS);
	
	return true;
}
Beispiel #6
0
void rcFilterLedgeSpans(const int walkableHeight,
						const int walkableClimb,
						rcHeightfield& solid)
{
	rcTimeVal startTime = rcGetPerformanceTimer();

	const int w = solid.width;
	const int h = solid.height;
	const int MAX_HEIGHT = 0xffff;
	
	// Mark border spans.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
			{
				// Skip non walkable spans.
				if ((s->flags & RC_WALKABLE) == 0)
					continue;
				
				const int bot = (int)(s->smax);
				const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
				
				// Find neighbours minimum height.
				int minh = MAX_HEIGHT;

				// Min and max height of accessible neighbours.
				int asmin = s->smax;
				int asmax = s->smax;

				for (int dir = 0; dir < 4; ++dir)
				{
					int dx = x + rcGetDirOffsetX(dir);
					int dy = y + rcGetDirOffsetY(dir);
					// Skip neighbours which are out of bounds.
					if (dx < 0 || dy < 0 || dx >= w || dy >= h)
					{
						minh = rcMin(minh, -walkableClimb - bot);
						continue;
					}

					// From minus infinity to the first span.
					rcSpan* ns = solid.spans[dx + dy*w];
					int nbot = -walkableClimb;
					int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
					// Skip neightbour if the gap between the spans is too small.
					if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
						minh = rcMin(minh, nbot - bot);
					
					// Rest of the spans.
					for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
					{
						nbot = (int)ns->smax;
						ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
						// Skip neightbour if the gap between the spans is too small.
						if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
						{
							minh = rcMin(minh, nbot - bot);
						
							// Find min/max accessible neighbour height. 
							if (rcAbs(nbot - bot) <= walkableClimb)
							{
								if (nbot < asmin) asmin = nbot;
								if (nbot > asmax) asmax = nbot;
							}
							
						}
					}
				}
				
				// The current span is close to a ledge if the drop to any
				// neighbour span is less than the walkableClimb.
				if (minh < -walkableClimb)
					s->flags |= RC_LEDGE;
					
				// If the difference between all neighbours is too large,
				// we are at steep slope, mark the span as ledge.
				if ((asmax - asmin) > walkableClimb)
				{
					s->flags |= RC_LEDGE;
				}
			}
		}
	}
	
	rcTimeVal endTime = rcGetPerformanceTimer();
//	if (rcGetLog())
//		rcGetLog()->log(RC_LOG_PROGRESS, "Filter border: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
	if (rcGetBuildTimes())
		rcGetBuildTimes()->filterBorder += rcGetDeltaTimeUsec(startTime, endTime);
}	
Beispiel #7
0
static bool CollectLayerRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize,
										unsigned short* srcReg, rcLayerRegionMonotone*& regs, int& nregs)
{
	const int w = chf.width;
	const int h = chf.height;

	const int nsweeps = chf.width;
	rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
	if (!sweeps)
	{
		ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
		return false;
	}

	// Partition walkable area into monotone regions.
	rcIntArray prev(256);
	unsigned short regId = 0;

	for (int y = borderSize; y < h-borderSize; ++y)
	{
		prev.resize(regId+1);
		memset(&prev[0],0,sizeof(int)*regId);
		unsigned short sweepId = 0;

		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];

			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;

				unsigned short sid = 0xffff;

				// -x
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xffff)
						sid = srcReg[ai];
				}

				if (sid == 0xffff)
				{
					sid = sweepId++;
					sweeps[sid].nei = 0xffff;
					sweeps[sid].ns = 0;
				}

				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					const unsigned short nr = srcReg[ai];
					if (nr != 0xffff)
					{
						// Set neighbour when first valid neighbour is encoutered.
						if (sweeps[sid].ns == 0)
							sweeps[sid].nei = nr;

						if (sweeps[sid].nei == nr)
						{
							// Update existing neighbour
							sweeps[sid].ns++;
							prev[nr]++;
						}
						else
						{
							// This is hit if there is nore than one neighbour.
							// Invalidate the neighbour.
							sweeps[sid].nei = 0xffff;
						}
					}
				}

				srcReg[i] = sid;
			}
		}

		// Create unique ID.
		for (int i = 0; i < sweepId; ++i)
		{
			// If the neighbour is set and there is only one continuous connection to it,
			// the sweep will be merged with the previous one, else new region is created.
			if (sweeps[i].nei != 0xffff && prev[sweeps[i].nei] == sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				sweeps[i].id = regId++;
			}
		}

		// Remap local sweep ids to region ids.
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] != 0xffff)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	// Allocate and init layer regions.
	nregs = (int)regId;
	regs = (rcLayerRegionMonotone*)rcAlloc(sizeof(rcLayerRegionMonotone)*nregs, RC_ALLOC_TEMP);
	if (!regs)
	{
		ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'regs' (%d).", nregs);
		return false;
	}
	memset(regs, 0, sizeof(rcLayerRegionMonotone)*nregs);
	for (int i = 0; i < nregs; ++i)
	{
		regs[i].layerId = 0xffff;
		regs[i].ymin = 0xffff;
		regs[i].ymax = 0;
	}

	rcIntArray lregs(64);

	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			lregs.resize(0);

			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned short ri = srcReg[i];
				if (ri == 0xffff) continue;

				regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
				regs[ri].ymax = rcMax(regs[ri].ymax, s.y);

				// Collect all region layers.
				lregs.push(ri);

				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned short rai = srcReg[ai];
						if (rai != 0xffff && rai != ri)
							addUnique(regs[ri].neis, rai);
					}
				}

			}

			// Update overlapping regions.
			const int nlregs = lregs.size();
			for (int i = 0; i < nlregs-1; ++i)
			{
				for (int j = i+1; j < nlregs; ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcLayerRegionMonotone& ri = regs[lregs[i]];
						rcLayerRegionMonotone& rj = regs[lregs[j]];
						addUnique(ri.layers, lregs[j]);
						addUnique(rj.layers, lregs[i]);
					}
				}
			}
		}
	}

	return true;
}
bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
						   const float sampleDist, const float sampleMaxError,
						   rcPolyMeshDetail& dmesh)
{
	rcTimeVal startTime = rcGetPerformanceTimer();
	
	if (mesh.nverts == 0 || mesh.npolys == 0)
		return true;
	
	const int nvp = mesh.nvp;
	const float cs = mesh.cs;
	const float ch = mesh.ch;
	const float* orig = mesh.bmin;
	
	rcIntArray edges(64);
	rcIntArray tris(512);
	rcIntArray idx(512);
	rcIntArray stack(512);
	rcIntArray samples(512);
	float verts[256*3];
	float* poly = 0;
	int* bounds = 0;
	rcHeightPatch hp;
	int nPolyVerts = 0;
	int maxhw = 0, maxhh = 0;
	
	bounds = new int[mesh.npolys*4];
	if (!bounds)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
		goto failure;
	}
	poly = new float[nvp*3];
	if (!bounds)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
		goto failure;
	}
	
	// Find max size for a polygon area.
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		int& xmin = bounds[i*4+0];
		int& xmax = bounds[i*4+1];
		int& ymin = bounds[i*4+2];
		int& ymax = bounds[i*4+3];
		xmin = chf.width;
		xmax = 0;
		ymin = chf.height;
		ymax = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == 0xffff) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			xmin = rcMin(xmin, (int)v[0]);
			xmax = rcMax(xmax, (int)v[0]);
			ymin = rcMin(ymin, (int)v[2]);
			ymax = rcMax(ymax, (int)v[2]);
			nPolyVerts++;
		}
		xmin = rcMax(0,xmin-1);
		xmax = rcMin(chf.width,xmax+1);
		ymin = rcMax(0,ymin-1);
		ymax = rcMin(chf.height,ymax+1);
		if (xmin >= xmax || ymin >= ymax) continue;
		maxhw = rcMax(maxhw, xmax-xmin);
		maxhh = rcMax(maxhh, ymax-ymin);
	}
	
	hp.data = new unsigned short[maxhw*maxhh];
	if (!hp.data)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
		goto failure;
	}
		
	dmesh.nmeshes = mesh.npolys;
	dmesh.nverts = 0;
	dmesh.ntris = 0;
	dmesh.meshes = new unsigned short[dmesh.nmeshes*4];
	if (!dmesh.meshes)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
		goto failure;
	}

	int vcap = nPolyVerts+nPolyVerts/2;
	int tcap = vcap*2;

	dmesh.nverts = 0;
	dmesh.verts = new float[vcap*3];
	if (!dmesh.verts)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
		goto failure;
	}
	dmesh.ntris = 0;
	dmesh.tris = new unsigned char[tcap*4];
	if (!dmesh.tris)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
		goto failure;
	}
	
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		
		// Find polygon bounding box.
		int npoly = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == 0xffff) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			poly[j*3+0] = orig[0] + v[0]*cs;
			poly[j*3+1] = orig[1] + v[1]*ch;
			poly[j*3+2] = orig[2] + v[2]*cs;
			npoly++;
		}
		
		// Get the height data from the area of the polygon.
		hp.xmin = bounds[i*4+0];
		hp.ymin = bounds[i*4+2];
		hp.width = bounds[i*4+1]-bounds[i*4+0];
		hp.height = bounds[i*4+3]-bounds[i*4+2];
		getHeightData(chf, p, npoly, mesh.verts, hp, stack);
		
		// Build detail mesh.
		int nverts = 0;
		if (!buildPolyDetail(poly, npoly, mesh.regs[i],
							 sampleDist, sampleMaxError,
							 chf, hp, verts, nverts, tris,
							 edges, idx, samples))
		{
			goto failure;
		}

		// Offset detail vertices, unnecassary?
		for (int j = 0; j < nverts; ++j)
			verts[j*3+1] += chf.ch;
	
		// Store detail submesh.
		const int ntris = tris.size()/4;
		
		dmesh.meshes[i*4+0] = dmesh.nverts;
		dmesh.meshes[i*4+1] = (unsigned short)nverts;
		dmesh.meshes[i*4+2] = dmesh.ntris;
		dmesh.meshes[i*4+3] = (unsigned short)ntris;
		
		// Store vertices, allocate more memory if necessary.
		if (dmesh.nverts+nverts > vcap)
		{
			while (dmesh.nverts+nverts > vcap)
				vcap += 256;
				
			float* newv = new float[vcap*3];
			if (!newv)
			{
				if (rcGetLog())
					rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
				goto failure;
			}
			if (dmesh.nverts)
				memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
			delete [] dmesh.verts;
			dmesh.verts = newv;
		}
		for (int j = 0; j < nverts; ++j)
		{
			dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
			dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
			dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
			dmesh.nverts++;
		}
		
		// Store triangles, allocate more memory if necessary.
		if (dmesh.ntris+ntris > tcap)
		{
			while (dmesh.ntris+ntris > tcap)
				tcap += 256;
			unsigned char* newt = new unsigned char[tcap*4];
			if (!newt)
			{
				if (rcGetLog())
					rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
				goto failure;
			}
			if (dmesh.ntris)
				memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
			delete [] dmesh.tris;
			dmesh.tris = newt;
		}
		for (int j = 0; j < ntris; ++j)
		{
			const int* t = &tris[j*4];
			dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
			dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
			dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
			dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
			dmesh.ntris++;
		}
	}
	
	delete [] bounds;
	delete [] poly;
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
	if (rcGetBuildTimes())
		rcGetBuildTimes()->buildDetailMesh += rcGetDeltaTimeUsec(startTime, endTime);

	return true;

failure:

	delete [] bounds;
	delete [] poly;

	return false;
}
static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist)
{
    const int w = chf.width;
    const int h = chf.height;
    
    // Init distance and points.
    for (int i = 0; i < chf.spanCount; ++i)
        src[i] = 0xffff;
    
    // Mark boundary cells.
    for (int y = 0; y < h; ++y)
    {
        for (int x = 0; x < w; ++x)
        {
            const rcCompactCell& c = chf.cells[x+y*w];
            for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
            {
                const rcCompactSpan& s = chf.spans[i];
                const unsigned char area = chf.areas[i];
                
                int nc = 0;
                for (int dir = 0; dir < 4; ++dir)
                {
                    if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
                    {
                        const int ax = x + rcGetDirOffsetX(dir);
                        const int ay = y + rcGetDirOffsetY(dir);
                        const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
                        if (area == chf.areas[ai])
                            nc++;
                    }
                }
                if (nc != 4)
                    src[i] = 0;
            }
        }
    }
    
            
    // Pass 1
    for (int y = 0; y < h; ++y)
    {
        for (int x = 0; x < w; ++x)
        {
            const rcCompactCell& c = chf.cells[x+y*w];
            for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
            {
                const rcCompactSpan& s = chf.spans[i];
                
                if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
                {
                    // (-1,0)
                    const int ax = x + rcGetDirOffsetX(0);
                    const int ay = y + rcGetDirOffsetY(0);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
                    const rcCompactSpan& as = chf.spans[ai];
                    if (src[ai]+2 < src[i])
                        src[i] = src[ai]+2;
                    
                    // (-1,-1)
                    if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
                    {
                        const int aax = ax + rcGetDirOffsetX(3);
                        const int aay = ay + rcGetDirOffsetY(3);
                        const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
                        if (src[aai]+3 < src[i])
                            src[i] = src[aai]+3;
                    }
                }
                if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
                {
                    // (0,-1)
                    const int ax = x + rcGetDirOffsetX(3);
                    const int ay = y + rcGetDirOffsetY(3);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
                    const rcCompactSpan& as = chf.spans[ai];
                    if (src[ai]+2 < src[i])
                        src[i] = src[ai]+2;
                    
                    // (1,-1)
                    if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
                    {
                        const int aax = ax + rcGetDirOffsetX(2);
                        const int aay = ay + rcGetDirOffsetY(2);
                        const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
                        if (src[aai]+3 < src[i])
                            src[i] = src[aai]+3;
                    }
                }
            }
        }
    }
    
    // Pass 2
    for (int y = h-1; y >= 0; --y)
    {
        for (int x = w-1; x >= 0; --x)
        {
            const rcCompactCell& c = chf.cells[x+y*w];
            for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
            {
                const rcCompactSpan& s = chf.spans[i];
                
                if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
                {
                    // (1,0)
                    const int ax = x + rcGetDirOffsetX(2);
                    const int ay = y + rcGetDirOffsetY(2);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
                    const rcCompactSpan& as = chf.spans[ai];
                    if (src[ai]+2 < src[i])
                        src[i] = src[ai]+2;
                    
                    // (1,1)
                    if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
                    {
                        const int aax = ax + rcGetDirOffsetX(1);
                        const int aay = ay + rcGetDirOffsetY(1);
                        const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
                        if (src[aai]+3 < src[i])
                            src[i] = src[aai]+3;
                    }
                }
                if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
                {
                    // (0,1)
                    const int ax = x + rcGetDirOffsetX(1);
                    const int ay = y + rcGetDirOffsetY(1);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
                    const rcCompactSpan& as = chf.spans[ai];
                    if (src[ai]+2 < src[i])
                        src[i] = src[ai]+2;
                    
                    // (-1,1)
                    if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
                    {
                        const int aax = ax + rcGetDirOffsetX(0);
                        const int aay = ay + rcGetDirOffsetY(0);
                        const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
                        if (src[aai]+3 < src[i])
                            src[i] = src[aai]+3;
                    }
                }
            }
        }
    }    
    
    maxDist = 0;
    for (int i = 0; i < chf.spanCount; ++i)
        maxDist = rcMax(src[i], maxDist);
    
}
static int getCornerHeight(int x, int y, int i, int dir,
						   const rcCompactHeightfield& chf,
						   bool& isBorderVertex)
{
	const rcCompactSpan& s = chf.spans[i];
	int ch = (int)s.minY;
	int dirp = (dir+1) & 0x3;
	
	struct CornerId
	{
		uint64_t		areaMask;
		unsigned short	region;

		bool No0() const
		{
			return areaMask != 0 && region != 0;
		}

		CornerId( unsigned short reg = 0, uint64_t area = 0 )
			: areaMask( area )
			, region( reg )
		{
		}
	};

	CornerId regs[ 4 ];
	
	// Combine region and area codes in order to prevent
	// border vertices which are in between two areas to be removed. 
	regs[ 0 ] = CornerId( chf.spans[ i ].regionID, chf.areaMasks[ i ] );
	
	if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
	{
		const int ax = x + rcGetDirOffsetX(dir);
		const int ay = y + rcGetDirOffsetY(dir);
		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
		const rcCompactSpan& as = chf.spans[ai];
		ch = rcMax(ch, (int)as.minY);
		regs[ 1 ] = CornerId( chf.spans[ ai ].regionID, chf.areaMasks[ ai ] );
		if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
		{
			const int ax2 = ax + rcGetDirOffsetX(dirp);
			const int ay2 = ay + rcGetDirOffsetY(dirp);
			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
			const rcCompactSpan& as2 = chf.spans[ai2];
			ch = rcMax(ch, (int)as2.minY);
			regs[ 2 ] = CornerId( chf.spans[ ai2 ].regionID, chf.areaMasks[ ai2 ] );
		}
	}
	if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
	{
		const int ax = x + rcGetDirOffsetX(dirp);
		const int ay = y + rcGetDirOffsetY(dirp);
		const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
		const rcCompactSpan& as = chf.spans[ai];
		ch = rcMax(ch, (int)as.minY);
		regs[ 3 ] = CornerId( chf.spans[ ai ].regionID, chf.areaMasks[ ai ] );
		if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
		{
			const int ax2 = ax + rcGetDirOffsetX(dir);
			const int ay2 = ay + rcGetDirOffsetY(dir);
			const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
			const rcCompactSpan& as2 = chf.spans[ai2];
			ch = rcMax(ch, (int)as2.minY);
			regs[ 2 ] = CornerId( chf.spans[ ai2 ].regionID, chf.areaMasks[ ai2 ] );
		}
	}

	// Check if the vertex is special edge vertex, these vertices will be removed later.
	for (int j = 0; j < 4; ++j)
	{
		const int a = j;
		const int b = (j+1) & 0x3;
		const int c = (j+2) & 0x3;
		const int d = (j+3) & 0x3;
		
		// The vertex is a border vertex there are two same exterior cells in a row,
		// followed by two interior cells and none of the regions are out of bounds.
		const bool twoSameExts = ( regs[ a ].region & regs[ b ].region & RC_BORDER_REG ) != 0 && regs[ a ].region == regs[ b ].region;
		const bool twoInts = ( ( regs[ c ].region | regs[ d ].region ) & RC_BORDER_REG ) == 0;
		const bool intsSameArea = ( regs[ c ].areaMask ) == ( regs[ d ].areaMask );
		const bool noZeros = regs[ a ].No0() && regs[ b ].No0() && regs[ c ].No0() && regs[ d ].No0();
		if (twoSameExts && twoInts && intsSameArea && noZeros)
		{
			isBorderVertex = true;
			break;
		}
	}
	
	return ch;
}
Beispiel #11
0
/// @par
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
							  const int borderSize, const int walkableHeight,
							  rcHeightfieldLayerSet& lset)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
	
	const int w = chf.width;
	const int h = chf.height;
	
	rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
	if (!srcReg)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
		return false;
	}
	memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
	
	const int nsweeps = chf.width;
	rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
	if (!sweeps)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
		return false;
	}
	
	
	// Partition walkable area into monotone regions.
	int prevCount[256];
	unsigned char regId = 0;

	for (int y = borderSize; y < h-borderSize; ++y)
	{
		memset(prevCount,0,sizeof(int)*regId);
		unsigned char sweepId = 0;
		
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;

				unsigned char sid = 0xff;

				// -x
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
						sid = srcReg[ai];
				}
				
				if (sid == 0xff)
				{
					sid = sweepId++;
					sweeps[sid].nei = 0xff;
					sweeps[sid].ns = 0;
				}
				
				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					const unsigned char nr = srcReg[ai];
					if (nr != 0xff)
					{
						// Set neighbour when first valid neighbour is encoutered.
						if (sweeps[sid].ns == 0)
							sweeps[sid].nei = nr;
						
						if (sweeps[sid].nei == nr)
						{
							// Update existing neighbour
							sweeps[sid].ns++;
							prevCount[nr]++;
						}
						else
						{
							// This is hit if there is nore than one neighbour.
							// Invalidate the neighbour.
							sweeps[sid].nei = 0xff;
						}
					}
				}
				
				srcReg[i] = sid;
			}
		}
		
		// Create unique ID.
		for (int i = 0; i < sweepId; ++i)
		{
			// If the neighbour is set and there is only one continuous connection to it,
			// the sweep will be merged with the previous one, else new region is created.
			if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				if (regId == 255)
				{
					ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
					return false;
				}
				sweeps[i].id = regId++;
			}
		}
		
		// Remap local sweep ids to region ids.
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] != 0xff)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	// Allocate and init layer regions.
	const int nregs = (int)regId;
	rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
	if (!regs)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
		return false;
	}
	memset(regs, 0, sizeof(rcLayerRegion)*nregs);
	for (int i = 0; i < nregs; ++i)
	{
		regs[i].layerId = 0xff;
		regs[i].ymin = 0xffff;
		regs[i].ymax = 0;
	}
	
	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			unsigned char lregs[RC_MAX_LAYERS];
			int nlregs = 0;
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned char ri = srcReg[i];
				if (ri == 0xff) continue;
				
				regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
				regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
				
				// Collect all region layers.
				if (nlregs < RC_MAX_LAYERS)
					lregs[nlregs++] = ri;
				
				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned char rai = srcReg[ai];
						if (rai != 0xff && rai != ri)
						{
							// Don't check return value -- if we cannot add the neighbor
							// it will just cause a few more regions to be created, which
							// is fine.
							addUnique(regs[ri].neis, regs[ri].nneis, RC_MAX_NEIS, rai);
						}
					}
				}
				
			}
			
			// Update overlapping regions.
			for (int i = 0; i < nlregs-1; ++i)
			{
				for (int j = i+1; j < nlregs; ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcLayerRegion& ri = regs[lregs[i]];
						rcLayerRegion& rj = regs[lregs[j]];

						if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, lregs[j]) ||
							!addUnique(rj.layers, rj.nlayers, RC_MAX_LAYERS, lregs[i]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}
				}
			}
			
		}
	}
	
	// Create 2D layers from regions.
	unsigned char layerId = 0;
	
	static const int MAX_STACK = 64;
	unsigned char stack[MAX_STACK];
	int nstack = 0;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& root = regs[i];
		// Skip already visited.
		if (root.layerId != 0xff)
			continue;

		// Start search.
		root.layerId = layerId;
		root.base = 1;
		
		nstack = 0;
		stack[nstack++] = (unsigned char)i;
		
		while (nstack)
		{
			// Pop front
			rcLayerRegion& reg = regs[stack[0]];
			nstack--;
			for (int j = 0; j < nstack; ++j)
				stack[j] = stack[j+1];
			
			const int nneis = (int)reg.nneis;
			for (int j = 0; j < nneis; ++j)
			{
				const unsigned char nei = reg.neis[j];
				rcLayerRegion& regn = regs[nei];
				// Skip already visited.
				if (regn.layerId != 0xff)
					continue;
				// Skip if the neighbour is overlapping root region.
				if (contains(root.layers, root.nlayers, nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(root.ymin, regn.ymin);
				const int ymax = rcMax(root.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					 continue;

				if (nstack < MAX_STACK)
				{
					// Deepen
					stack[nstack++] = (unsigned char)nei;
					
					// Mark layer id
					regn.layerId = layerId;
					// Merge current layers to root.
					for (int k = 0; k < regn.nlayers; ++k)
					{
						if (!addUnique(root.layers, root.nlayers, RC_MAX_LAYERS, regn.layers[k]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}
					root.ymin = rcMin(root.ymin, regn.ymin);
					root.ymax = rcMax(root.ymax, regn.ymax);
				}
			}
		}
		
		layerId++;
	}
	
	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& ri = regs[i];
		if (!ri.base) continue;
		
		unsigned char newId = ri.layerId;
		
		for (;;)
		{
			unsigned char oldId = 0xff;
			
			for (int j = 0; j < nregs; ++j)
			{
				if (i == j) continue;
				rcLayerRegion& rj = regs[j];
				if (!rj.base) continue;
				
				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMax(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
				  continue;
						  
				// Make sure that there is no overlap when merging 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nregs; ++k)
				{
					if (regs[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (contains(ri.layers,ri.nlayers, (unsigned char)k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;
				
				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}
			
			// Could not find anything to merge with, stop.
			if (oldId == 0xff)
				break;
			
			// Merge
			for (int j = 0; j < nregs; ++j)
			{
				rcLayerRegion& rj = regs[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.nlayers; ++k)
					{
						if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, rj.layers[k]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}

					// Update height bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}
	
	// Compact layerIds
	unsigned char remap[256];
	memset(remap, 0, 256);

	// Find number of unique layers.
	layerId = 0;
	for (int i = 0; i < nregs; ++i)
		remap[regs[i].layerId] = 1;
	for (int i = 0; i < 256; ++i)
	{
		if (remap[i])
			remap[i] = layerId++;
		else
			remap[i] = 0xff;
	}
	// Remap ids.
	for (int i = 0; i < nregs; ++i)
		regs[i].layerId = remap[regs[i].layerId];
	
	// No layers, return empty.
	if (layerId == 0)
		return true;
	
	// Create layers.
	rcAssert(lset.layers == 0);
	
	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;
	
	lset.nlayers = (int)layerId;
	
	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);

	
	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned char curId = (unsigned char)i;

		rcHeightfieldLayer* layer = &lset.layers[i];

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);
		
		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nregs; ++j)
		{
			if (regs[j].base && regs[j].layerId == curId)
			{
				hmin = (int)regs[j].ymin;
				hmax = (int)regs[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;
		
		// Adjust the bbox to fit the heightfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;
		
		// Copy height and area from compact heightfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0xff)
						continue;
					// Skip of does nto belong to current layer.
					unsigned char lid = regs[srcReg[j]].layerId;
					if (lid != curId)
						continue;
					
					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);
					
					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];
					
					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
									con |= (unsigned char)(1<<dir);
							}
						}
					}
					
					layer->cons[idx] = (portal << 4) | con;
				}
			}
		}
		
		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}
	
	return true;
}
Beispiel #12
0
bool rcBuildRegionsMonotone(rcCompactHeightfield& chf,
							int borderSize, int minRegionSize, int mergeRegionSize)
{
	rcTimeVal startTime = rcGetPerformanceTimer();
	
	const int w = chf.width;
	const int h = chf.height;
	unsigned short id = 1;
	
	if (chf.regs)
	{
		delete [] chf.regs;
		chf.regs = 0;
	}
	
	rcScopedDelete<unsigned short> srcReg = new unsigned short[chf.spanCount];
	if (!srcReg)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
		return false;
	}
	memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);

	rcScopedDelete<rcSweepSpan> sweeps = new rcSweepSpan[rcMax(chf.width,chf.height)];
	if (!sweeps)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", chf.width);
		return false;
	}
	
	
	// Mark border regions.
	if (borderSize)
	{
		paintRectRegion(0, borderSize, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
		paintRectRegion(w-borderSize, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
		paintRectRegion(0, w, 0, borderSize, id|RC_BORDER_REG, chf, srcReg); id++;
		paintRectRegion(0, w, h-borderSize, h, id|RC_BORDER_REG, chf, srcReg); id++;
	}
	
	rcIntArray prev(256);

	// Sweep one line at a time.
	for (int y = borderSize; y < h-borderSize; ++y)
	{
		// Collect spans from this row.
		prev.resize(id+1);
		memset(&prev[0],0,sizeof(int)*id);
		unsigned short rid = 1;
		
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;
				
				// -x
				unsigned short previd = 0;
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
						previd = srcReg[ai];
				}
				
				if (!previd)
				{
					previd = rid++;
					sweeps[previd].rid = previd;
					sweeps[previd].ns = 0;
					sweeps[previd].nei = 0;
				}

				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
					{
						unsigned short nr = srcReg[ai];
						if (!sweeps[previd].nei || sweeps[previd].nei == nr)
						{
							sweeps[previd].nei = nr;
							sweeps[previd].ns++;
							prev[nr]++;
						}
						else
						{
							sweeps[previd].nei = RC_NULL_NEI;
						}
					}
				}

				srcReg[i] = previd;
			}
		}
		
		// Create unique ID.
		for (int i = 1; i < rid; ++i)
		{
			if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
				prev[sweeps[i].nei] == (int)sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				sweeps[i].id = id++;
			}
		}
		
		// Remap IDs
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] > 0 && srcReg[i] < rid)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	rcTimeVal filterStartTime = rcGetPerformanceTimer();

	// Filter out small regions.
	chf.maxRegions = id;
	if (!filterSmallRegions(minRegionSize, mergeRegionSize, chf.maxRegions, chf, srcReg))
		return false;

	rcTimeVal filterEndTime = rcGetPerformanceTimer();
	
	// Store the result out.
	chf.regs = srcReg;
	srcReg = 0;
	
	rcTimeVal endTime = rcGetPerformanceTimer();

	if (rcGetBuildTimes())
	{
		rcGetBuildTimes()->buildRegions += rcGetDeltaTimeUsec(startTime, endTime);
		rcGetBuildTimes()->buildRegionsFilter += rcGetDeltaTimeUsec(filterStartTime, filterEndTime);
	}

	return true;
}
bool rcMarkReachableSpans(const int walkableHeight,
						  const int walkableClimb,
						  rcHeightfield& solid)
{
	const int w = solid.width;
	const int h = solid.height;
	const int MAX_HEIGHT = 0xffff;
	
	rcTimeVal startTime = rcGetPerformanceTimer();
	
	// Build navigable space.
	const int MAX_SEEDS = w*h;
	rcReachableSeed* stack = new rcReachableSeed[MAX_SEEDS];
	if (!stack)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMarkReachableSpans: Out of memory 'stack' (%d).", MAX_SEEDS);
		return false;
	}
	int stackSize = 0;
	
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			rcSpan* topSpan = solid.spans[x + y*w];
			if (!topSpan)
				continue;
			while (topSpan->next)
				topSpan = topSpan->next;
			
			// If the span is not walkable, skip it.
			if ((topSpan->flags & RC_WALKABLE) == 0)
				continue;
			// If the span has been visited already, skip it.
			if (topSpan->flags & RC_REACHABLE)
				continue;
			
			// Start flood fill.
			topSpan->flags |= RC_REACHABLE;
			stackSize = 0;
			stack[stackSize].set(x, y, topSpan);
			stackSize++;
			
			while (stackSize)
			{
				// Pop a seed from the stack.
				stackSize--;
				rcReachableSeed cur = stack[stackSize];
				
				const int bot = (int)cur.s->smax;
				const int top = (int)cur.s->next ? (int)cur.s->next->smin : MAX_HEIGHT;
				
				// Visit neighbours in all 4 directions.
				for (int dir = 0; dir < 4; ++dir)
				{
					int dx = (int)cur.x + rcGetDirOffsetX(dir);
					int dy = (int)cur.y + rcGetDirOffsetY(dir);
					// Skip neighbour which are out of bounds.
					if (dx < 0 || dy < 0 || dx >= w || dy >= h)
						continue;
					for (rcSpan* ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
					{
						// Skip neighbour if it is not walkable.
						if ((ns->flags & RC_WALKABLE) == 0)
							continue;
						// Skip the neighbour if it has been visited already.
						if (ns->flags & RC_REACHABLE)
							continue;
						
						const int nbot = (int)ns->smax;
						const int ntop = (int)ns->next ? (int)ns->next->smin : MAX_HEIGHT;
						// Skip neightbour if the gap between the spans is too small.
						if (rcMin(top,ntop) - rcMax(bot,nbot) < walkableHeight)
							continue;
						// Skip neightbour if the climb height to the neighbour is too high.
						if (rcAbs(nbot - bot) >= walkableClimb)
							continue;
						
						// This neighbour has not been visited yet.
						// Mark it as reachable and add it to the seed stack.
						ns->flags |= RC_REACHABLE;
						if (stackSize < MAX_SEEDS)
						{
							stack[stackSize].set(dx, dy, ns);
							stackSize++;
						}
					}
				}
			}
		}
	}
	
	delete [] stack;	
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
//	if (rcGetLog())
//		rcGetLog()->log(RC_LOG_PROGRESS, "Mark reachable: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
	if (rcGetBuildTimes())
		rcGetBuildTimes()->filterMarkReachable += rcGetDeltaTimeUsec(startTime, endTime);
	
	return true;
}
bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
							   unsigned char flags, rcHeightfield& hf,
							   rcCompactHeightfield& chf)
{
	rcTimeVal startTime = rcGetPerformanceTimer();
	
	const int w = hf.width;
	const int h = hf.height;
	const int spanCount = getSpanCount(flags, hf);

	// Fill in header.
	chf.width = w;
	chf.height = h;
	chf.spanCount = spanCount;
	chf.walkableHeight = walkableHeight;
	chf.walkableClimb = walkableClimb;
	chf.maxRegions = 0;
	vcopy(chf.bmin, hf.bmin);
	vcopy(chf.bmax, hf.bmax);
	chf.bmax[1] += walkableHeight*hf.ch;
	chf.cs = hf.cs;
	chf.ch = hf.ch;
	chf.cells = new rcCompactCell[w*h];
	if (!chf.cells)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
		return false;
	}
	memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
	chf.spans = new rcCompactSpan[spanCount];
	if (!chf.spans)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
		return false;
	}
	memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
	
	const int MAX_HEIGHT = 0xffff;
	
	// Fill in cells and spans.
	int idx = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcSpan* s = hf.spans[x + y*w];
			// If there are no spans at this cell, just leave the data to index=0, count=0.
			if (!s) continue;
			rcCompactCell& c = chf.cells[x+y*w];
			c.index = idx;
			c.count = 0;
			while (s)
			{
				if (s->flags == flags)
				{
					const int bot = (int)s->smax;
					const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
					chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
					chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
					idx++;
					c.count++;
				}
				s = s->next;
			}
		}
	}

	// Find neighbour connections.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				rcCompactSpan& s = chf.spans[i];
				for (int dir = 0; dir < 4; ++dir)
				{
					setCon(s, dir, 0xf);
					const int nx = x + rcGetDirOffsetX(dir);
					const int ny = y + rcGetDirOffsetY(dir);
					// First check that the neighbour cell is in bounds.
					if (nx < 0 || ny < 0 || nx >= w || ny >= h)
						continue;
					// Iterate over all neighbour spans and check if any of the is
					// accessible from current cell.
					const rcCompactCell& nc = chf.cells[nx+ny*w];
					for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
					{
						const rcCompactSpan& ns = chf.spans[k];
						const int bot = rcMax(s.y, ns.y);
						const int top = rcMin(s.y+s.h, ns.y+ns.h);

						// Check that the gap between the spans is walkable,
						// and that the climb height between the gaps is not too high.
						if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
						{
							// Mark direction as walkable.
							setCon(s, dir, k - (int)nc.index);
							break;
						}
					}
				}
			}
		}
	}
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
	if (rcGetBuildTimes())
		rcGetBuildTimes()->buildCompact += rcGetDeltaTimeUsec(startTime, endTime);
	
	return true;
}
bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh)
{
	rcTimeVal startTime = rcGetPerformanceTimer();

	vcopy(mesh.bmin, cset.bmin);
	vcopy(mesh.bmax, cset.bmax);
	mesh.cs = cset.cs;
	mesh.ch = cset.ch;
	
	int maxVertices = 0;
	int maxTris = 0;
	int maxVertsPerCont = 0;
	for (int i = 0; i < cset.nconts; ++i)
	{
		maxVertices += cset.conts[i].nverts;
		maxTris += cset.conts[i].nverts - 2;
		maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
	}
	
	if (maxVertices >= 0xfffe)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
		return false;
	}
	
	unsigned char* vflags = 0;
	int* nextVert = 0;
	int* firstVert = 0;
	int* indices = 0;
	int* tris = 0;
	unsigned short* polys = 0;
	
	vflags = new unsigned char[maxVertices];
	if (!vflags)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
		goto failure;
	}
	memset(vflags, 0, maxVertices);
	
	mesh.verts = new unsigned short[maxVertices*3];
	if (!mesh.verts)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
		goto failure;
	}
	mesh.polys = new unsigned short[maxTris*nvp*2];
	if (!mesh.polys)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
		goto failure;
	}
	mesh.regs = new unsigned short[maxTris];
	if (!mesh.regs)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
		goto failure;
	}
	mesh.nverts = 0;
	mesh.npolys = 0;
	mesh.nvp = nvp;
	
	memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
	memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
	
	nextVert = new int[maxVertices];
	if (!nextVert)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
		goto failure;
	}
	memset(nextVert, 0, sizeof(int)*maxVertices);
	
	firstVert = new int[VERTEX_BUCKET_COUNT];
	if (!firstVert)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
		goto failure;
	}
	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
		firstVert[i] = -1;
	
	indices = new int[maxVertsPerCont];
	if (!indices)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
		goto failure;
	}
	tris = new int[maxVertsPerCont*3];
	if (!tris)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
		goto failure;
	}
	polys = new unsigned short[(maxVertsPerCont+1)*nvp];
	if (!polys)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
		goto failure;
	}
	unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp];

	for (int i = 0; i < cset.nconts; ++i)
	{
		rcContour& cont = cset.conts[i];
		
		// Skip empty contours.
		if (cont.nverts < 3)
			continue;
		
		// Triangulate contour
		for (int j = 0; j < cont.nverts; ++j)
			indices[j] = j;
			
		int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
		if (ntris <= 0)
		{
			// Bad triangulation, should not happen.
/*			for (int k = 0; k < cont.nverts; ++k)
			{
				const int* v = &cont.verts[k*4];
				printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
				if (nBadPos < 100)
				{
					badPos[nBadPos*3+0] = v[0];
					badPos[nBadPos*3+1] = v[1];
					badPos[nBadPos*3+2] = v[2];
					nBadPos++;
				}
			}*/
			ntris = -ntris;
		}
		// Add and merge vertices.
		for (int j = 0; j < cont.nverts; ++j)
		{
			const int* v = &cont.verts[j*4];
			indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
								   mesh.verts, firstVert, nextVert, mesh.nverts);
			if (v[3] & RC_BORDER_VERTEX)
			{
				// This vertex should be removed.
				vflags[indices[j]] = 1;
			}
		}
		
		// Build initial polygons.
		int npolys = 0;
		memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
		for (int j = 0; j < ntris; ++j)
		{
			int* t = &tris[j*3];
			if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
			{
				polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
				polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
				polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
				npolys++;
			}
		}
		if (!npolys)
			continue;
		
		// Merge polygons.
		if (nvp > 3)
		{
			while (true)
			{
				// Find best polygons to merge.
				int bestMergeVal = 0;
				int bestPa, bestPb, bestEa, bestEb;
				
				for (int j = 0; j < npolys-1; ++j)
				{
					unsigned short* pj = &polys[j*nvp];
					for (int k = j+1; k < npolys; ++k)
					{
						unsigned short* pk = &polys[k*nvp];
						int ea, eb;
						int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
						if (v > bestMergeVal)
						{
							bestMergeVal = v;
							bestPa = j;
							bestPb = k;
							bestEa = ea;
							bestEb = eb;
						}
					}
				}
				
				if (bestMergeVal > 0)
				{
					// Found best, merge.
					unsigned short* pa = &polys[bestPa*nvp];
					unsigned short* pb = &polys[bestPb*nvp];
					mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp);
					memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
					npolys--;
				}
				else
				{
					// Could not merge any polygons, stop.
					break;
				}
			}
		}
		
		
		// Store polygons.
		for (int j = 0; j < npolys; ++j)
		{
			unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
			unsigned short* q = &polys[j*nvp];
			for (int k = 0; k < nvp; ++k)
				p[k] = q[k];
			mesh.regs[mesh.npolys] = cont.reg;
			mesh.npolys++;
		}
	}
	
	
	// Remove edge vertices.
	for (int i = 0; i < mesh.nverts; ++i)
	{
		if (vflags[i])
		{
			if (!removeVertex(mesh, i, maxTris))
				goto failure;
			for (int j = i; j < mesh.nverts-1; ++j)
				vflags[j] = vflags[j+1];
			--i;
		}
	}

	delete [] vflags;
	delete [] firstVert;
	delete [] nextVert;
	delete [] indices;
	delete [] tris;
	
	// Calculate adjacency.
	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
		return false;
	}
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
//	if (rcGetLog())
//		rcGetLog()->log(RC_LOG_PROGRESS, "Build polymesh: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
	if (rcGetBuildTimes())
		rcGetBuildTimes()->buildPolymesh += rcGetDeltaTimeUsec(startTime, endTime);
	
	return true;

failure:
	delete [] vflags;
	delete [] tmpPoly;
	delete [] firstVert;
	delete [] nextVert;
	delete [] indices;
	delete [] tris;

	return false;
}
bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
{
	if (!nmeshes || !meshes)
		return true;

	rcTimeVal startTime = rcGetPerformanceTimer();

	int* nextVert = 0;
	int* firstVert = 0;
	unsigned short* vremap = 0;

	mesh.nvp = meshes[0]->nvp;
	mesh.cs = meshes[0]->cs;
	mesh.ch = meshes[0]->ch;
	vcopy(mesh.bmin, meshes[0]->bmin);
	vcopy(mesh.bmax, meshes[0]->bmax);

	int maxVerts = 0;
	int maxPolys = 0;
	int maxVertsPerMesh = 0;
	for (int i = 0; i < nmeshes; ++i)
	{
		vmin(mesh.bmin, meshes[i]->bmin);
		vmax(mesh.bmax, meshes[i]->bmax);
		maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
		maxVerts += meshes[i]->nverts;
		maxPolys += meshes[i]->npolys;
	}
	
	mesh.nverts = 0;
	mesh.verts = new unsigned short[maxVerts*3];
	if (!mesh.verts)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
		return false;
	}

	mesh.npolys = 0;
	mesh.polys = new unsigned short[maxPolys*2*mesh.nvp];
	if (!mesh.polys)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
		return false;
	}
	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);

	mesh.regs = new unsigned short[maxPolys];
	if (!mesh.regs)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
		return false;
	}
	memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
	
	nextVert = new int[maxVerts];
	if (!nextVert)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
		goto failure;
	}
	memset(nextVert, 0, sizeof(int)*maxVerts);
	
	firstVert = new int[VERTEX_BUCKET_COUNT];
	if (!firstVert)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
		goto failure;
	}
	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
		firstVert[i] = -1;

	vremap = new unsigned short[maxVertsPerMesh];
	if (!vremap)
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
		goto failure;
	}
	memset(nextVert, 0, sizeof(int)*maxVerts);
	
	for (int i = 0; i < nmeshes; ++i)
	{
		const rcPolyMesh* pmesh = meshes[i];
		
		const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
		const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
		
		for (int j = 0; j < pmesh->nverts; ++j)
		{
			unsigned short* v = &pmesh->verts[j*3];
			vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
						   mesh.verts, firstVert, nextVert, mesh.nverts);
		}
		
		for (int j = 0; j < pmesh->npolys; ++j)
		{
			unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
			unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
			mesh.regs[mesh.npolys] = pmesh->regs[j];
			mesh.npolys++;
			for (int k = 0; k < mesh.nvp; ++k)
			{
				if (src[k] == 0xffff) break;
				tgt[k] = vremap[src[k]];
			}
		}
	}

	// Calculate adjacency.
	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
	{
		if (rcGetLog())
			rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
		return false;
	}
		

	delete [] firstVert;
	delete [] nextVert;
	delete [] vremap;
	
	rcTimeVal endTime = rcGetPerformanceTimer();
	
	if (rcGetBuildTimes())
		rcGetBuildTimes()->mergePolyMesh += rcGetDeltaTimeUsec(startTime, endTime);
	
	return true;
	
failure:
	delete [] firstVert;
	delete [] nextVert;
	delete [] vremap;
	
	return false;
}
Beispiel #17
0
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
	rcHeightfield& solid)
{
	rcAssert(ctx);

	ctx->startTimer(RC_TIMER_FILTER_BORDER);

	const int w = solid.width;
	const int h = solid.height;
	const int MAX_HEIGHT = 0xffff;

	// Mark border spans.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
			{
				// Skip non walkable spans.
				if (s->area == RC_NULL_AREA)
					continue;

				const int bot = (int)(s->smax);
				const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;

				// Find neighbours minimum height.
				int minh = MAX_HEIGHT;

				// Min and max height of accessible neighbours.
				int asmin = s->smax;
				int asmax = s->smax;

				for (int dir = 0; dir < 4; ++dir)
				{
					int dx = x + rcGetDirOffsetX(dir);
					int dy = y + rcGetDirOffsetY(dir);
					// Skip neighbours which are out of bounds.
					if (dx < 0 || dy < 0 || dx >= w || dy >= h)
					{
						minh = rcMin(minh, -walkableClimb - bot);
						continue;
					}

					// From minus infinity to the first span.
					rcSpan* ns = solid.spans[dx + dy*w];
					int nbot = -walkableClimb;
					int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
					// Skip neightbour if the gap between the spans is too small.
					if (rcMin(top, ntop) - rcMax(bot, nbot) > walkableHeight)
						minh = rcMin(minh, nbot - bot);

					// Rest of the spans.
					for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
					{
						nbot = (int)ns->smax;
						ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
						// Skip neightbour if the gap between the spans is too small.
						if (rcMin(top, ntop) - rcMax(bot, nbot) > walkableHeight)
						{
							minh = rcMin(minh, nbot - bot);

							// Find min/max accessible neighbour height.
							if (rcAbs(nbot - bot) <= walkableClimb)
							{
								if (nbot < asmin) asmin = nbot;
								if (nbot > asmax) asmax = nbot;
							}
						}
					}
				}

				// The current span is close to a ledge if the drop to any
				// neighbour span is less than the walkableClimb.
				if (minh < -walkableClimb)
					s->area = RC_NULL_AREA;

				// If the difference between all neighbours is too large,
				// we are at steep slope, mark the span as ledge.
				if ((asmax - asmin) > walkableClimb)
				{
					s->area = RC_NULL_AREA;
				}
			}
		}
	}

	ctx->stopTimer(RC_TIMER_FILTER_BORDER);
}
/// @par
///
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
/// parameters control how closely the simplified contours will match the raw contours.
///
/// Simplified contours are generated such that the vertices for portals between areas match up.
/// (They are considered mandatory vertices.)
///
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
					 const float maxError, const int maxEdgeLen,
					 rcContourSet& cset, const int buildFlags)
{
	rcAssert(ctx);
	
	const int w = chf.width;
	const int h = chf.height;
	const int borderSize = chf.borderSize;
	
	ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
	
	rcVcopy(cset.bmin, chf.bmin);
	rcVcopy(cset.bmax, chf.bmax);
	if (borderSize > 0)
	{
		// If the heightfield was build with bordersize, remove the offset.
		const float pad = borderSize*chf.cs;
		cset.bmin[0] += pad;
		cset.bmin[2] += pad;
		cset.bmax[0] -= pad;
		cset.bmax[2] -= pad;
	}
	cset.cellSizeXZ = chf.cs;
	cset.cellSizeY = chf.ch;
	cset.width = chf.width - chf.borderSize*2;
	cset.height = chf.height - chf.borderSize*2;
	cset.borderSize = chf.borderSize;
	
	int maxContours = rcMax((int)chf.maxRegions, 8);
	cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
	if (!cset.conts)
		return false;
	cset.nconts = 0;
	
	rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
	if (!flags)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
		return false;
	}
	
	ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
	
	// Mark boundaries.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				unsigned char res = 0;
				const rcCompactSpan& s = chf.spans[i];
				if (!chf.spans[i].regionID || (chf.spans[i].regionID & RC_BORDER_REG))
				{
					flags[i] = 0;
					continue;
				}
				for (int dir = 0; dir < 4; ++dir)
				{
					unsigned short r = 0;
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						r = chf.spans[ai].regionID;
					}
					if (r == chf.spans[i].regionID)
						res |= (1 << dir);
				}
				flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
			}
		}
	}
	
	ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
	
	rcIntArray verts(256);
	rcIntArray simplified(64);
	
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (flags[i] == 0 || flags[i] == 0xf)
				{
					flags[i] = 0;
					continue;
				}
				const unsigned short reg = chf.spans[i].regionID;
				if (!reg || (reg & RC_BORDER_REG))
					continue;
				const navAreaMask areaMask = chf.areaMasks[ i ];
				
				verts.resize(0);
				simplified.resize(0);

				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
				walkContour(x, y, i, chf, flags, verts);
				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);

				ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
				simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
				removeDegenerateSegments(simplified);
				ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
				

				// Store region->contour remap info.
				// Create contour.
				if (simplified.size()/4 >= 3)
				{
					if (cset.nconts >= maxContours)
					{
						// Allocate more contours.
						// This happens when a region has holes.
						const int oldMax = maxContours;
						maxContours *= 2;
						rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
						for (int j = 0; j < cset.nconts; ++j)
						{
							newConts[j] = cset.conts[j];
							// Reset source pointers to prevent data deletion.
							cset.conts[j].verts = 0;
							cset.conts[j].rverts = 0;
						}
						rcFree(cset.conts);
						cset.conts = newConts;
					
						ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
					}
					
					rcContour* cont = &cset.conts[cset.nconts++];
					
					cont->nverts = simplified.size()/4;
					cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
					if (!cont->verts)
					{
						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
						return false;
					}
					memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
					if (borderSize > 0)
					{
						// If the heightfield was build with bordersize, remove the offset.
						for (int j = 0; j < cont->nverts; ++j)
						{
							int* v = &cont->verts[j*4];
							v[0] -= borderSize;
							v[2] -= borderSize;
						}
					}
					
					cont->nrverts = verts.size()/4;
					cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
					if (!cont->rverts)
					{
						ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
						return false;
					}
					memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
					if (borderSize > 0)
					{
						// If the heightfield was build with bordersize, remove the offset.
						for (int j = 0; j < cont->nrverts; ++j)
						{
							int* v = &cont->rverts[j*4];
							v[0] -= borderSize;
							v[2] -= borderSize;
						}
					}
					
					cont->reg = reg;
					cont->areaMask = areaMask;
				}
			}
		}
	}
	
	// Merge holes if needed.
	if (cset.nconts > 0)
	{
		// Calculate winding of all polygons.
		rcScopedDelete<char> winding = (char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP);
		if (!winding)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
			return false;
		}
		int nholes = 0;
	for (int i = 0; i < cset.nconts; ++i)
	{
		rcContour& cont = cset.conts[i];
			// If the contour is wound backwards, it is a hole.
			winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
			if (winding[i] < 0)
				nholes++;
		}
		
		if (nholes > 0)
		{
			// Collect outline contour and holes contours per region.
			// We assume that there is one outline and multiple holes.
			const int nregions = chf.maxRegions+1;
			rcScopedDelete<rcContourRegion> regions = (rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP);
			if (!regions)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
				return false;
			}
			memset(regions, 0, sizeof(rcContourRegion)*nregions);
			
			rcScopedDelete<rcContourHole> holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP);
			if (!holes)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
				return false;
			}
			memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
			
			for (int i = 0; i < cset.nconts; ++i)
			{
				rcContour& cont = cset.conts[i];
				// Positively would contours are outlines, negative holes.
				if (winding[i] > 0)
				{
					if (regions[cont.reg].outline)
						ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
					regions[cont.reg].outline = &cont;
				}
				else
				{
					regions[cont.reg].nholes++;
				}
			}
			int index = 0;
			for (int i = 0; i < nregions; i++)
			{
				if (regions[i].nholes > 0)
				{
					regions[i].holes = &holes[index];
					index += regions[i].nholes;
					regions[i].nholes = 0;
				}
			}
			for (int i = 0; i < cset.nconts; ++i)
			{
				rcContour& cont = cset.conts[i];
				rcContourRegion& reg = regions[cont.reg];
				if (winding[i] < 0)
					reg.holes[reg.nholes++].contour = &cont;
			}
			
			// Finally merge each regions holes into the outline.
			for (int i = 0; i < nregions; i++)
			{
				rcContourRegion& reg = regions[i];
				if (!reg.nholes) continue;
				
				if (reg.outline)
				{
					mergeRegionHoles(ctx, reg);
				}
				else
				{
					// The region does not have an outline.
					// This can happen if the contour becaomes selfoverlapping because of
					// too aggressive simplification settings.
					ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
				}
			}
		}
		
	}
	
	ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
	
	return true;
}
Beispiel #19
0
static void rasterizeTri(const float* v0, const float* v1, const float* v2,
						 const unsigned char area, rcHeightfield& hf,
						 const float* bmin, const float* bmax,
						 const float cs, const float ics, const float ich,
						 const int flagMergeThr)
{
	const int w = hf.width;
	const int h = hf.height;
	float tmin[3], tmax[3];
	const float by = bmax[1] - bmin[1];
	
	// Calculate the bounding box of the triangle.
	rcVcopy(tmin, v0);
	rcVcopy(tmax, v0);
	rcVmin(tmin, v1);
	rcVmin(tmin, v2);
	rcVmax(tmax, v1);
	rcVmax(tmax, v2);
	
	// If the triangle does not touch the bbox of the heightfield, skip the triagle.
	if (!overlapBounds(bmin, bmax, tmin, tmax))
		return;
	
	// Calculate the footpring of the triangle on the grid.
	int x0 = (int)((tmin[0] - bmin[0])*ics);
	int y0 = (int)((tmin[2] - bmin[2])*ics);
	int x1 = (int)((tmax[0] - bmin[0])*ics);
	int y1 = (int)((tmax[2] - bmin[2])*ics);
	x0 = rcClamp(x0, 0, w-1);
	y0 = rcClamp(y0, 0, h-1);
	x1 = rcClamp(x1, 0, w-1);
	y1 = rcClamp(y1, 0, h-1);
	
	// Clip the triangle into all grid cells it touches.
	float in[7*3], out[7*3], inrow[7*3];
	
	for (int y = y0; y <= y1; ++y)
	{
		// Clip polygon to row.
		rcVcopy(&in[0], v0);
		rcVcopy(&in[1*3], v1);
		rcVcopy(&in[2*3], v2);
		int nvrow = 3;
		const float cz = bmin[2] + y*cs;
		nvrow = clipPoly(in, nvrow, out, 0, 1, -cz);
		if (nvrow < 3) continue;
		nvrow = clipPoly(out, nvrow, inrow, 0, -1, cz+cs);
		if (nvrow < 3) continue;
		
		for (int x = x0; x <= x1; ++x)
		{
			// Clip polygon to column.
			int nv = nvrow;
			const float cx = bmin[0] + x*cs;
			nv = clipPoly(inrow, nv, out, 1, 0, -cx);
			if (nv < 3) continue;
			nv = clipPoly(out, nv, in, -1, 0, cx+cs);
			if (nv < 3) continue;
			
			// Calculate min and max of the span.
			float smin = in[1], smax = in[1];
			for (int i = 1; i < nv; ++i)
			{
				smin = rcMin(smin, in[i*3+1]);
				smax = rcMax(smax, in[i*3+1]);
			}
			smin -= bmin[1];
			smax -= bmin[1];
			// Skip the span if it is outside the heightfield bbox
			if (smax < 0.0f) continue;
			if (smin > by) continue;
			// Clamp the span to the heightfield bbox.
			if (smin < 0.0f) smin = 0;
			if (smax > by) smax = by;
			
			// Snap the span to the heightfield height grid.
			unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
			unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
			
			addSpan(hf, x, y, ismin, ismax, area, flagMergeThr);
		}
	}
}
Beispiel #20
0
static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
									   unsigned short& maxRegionId,
									   rcCompactHeightfield& chf,
									   unsigned short* srcReg, rcIntArray& overlaps)
{
	const int w = chf.width;
	const int h = chf.height;
	
	const int nreg = maxRegionId+1;
	rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
	if (!regions)
	{
		ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
		return false;
	}
	
	// Construct regions
	for (int i = 0; i < nreg; ++i)
		new(&regions[i]) rcRegion((unsigned short)i);
	
	// Find region neighbours and overlapping regions.
	rcIntArray lregs(32);
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];

			lregs.resize(0);
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned short ri = srcReg[i];
				if (ri == 0 || ri >= nreg) continue;
				rcRegion& reg = regions[ri];
				
				reg.spanCount++;
				
				reg.ymin = rcMin(reg.ymin, s.y);
				reg.ymax = rcMax(reg.ymax, s.y);
				
				// Collect all region layers.
				lregs.push(ri);
				
				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned short rai = srcReg[ai];
						if (rai > 0 && rai < nreg && rai != ri)
							addUniqueConnection(reg, rai);
						if (rai & RC_BORDER_REG)
							reg.connectsToBorder = true;
					}
				}
				
			}
			
			// Update overlapping regions.
			for (int i = 0; i < lregs.size()-1; ++i)
			{
				for (int j = i+1; j < lregs.size(); ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcRegion& ri = regions[lregs[i]];
						rcRegion& rj = regions[lregs[j]];
						addUniqueFloorRegion(ri, lregs[j]);
						addUniqueFloorRegion(rj, lregs[i]);
					}
				}
			}
			
		}
	}

	// Create 2D layers from regions.
	unsigned short layerId = 1;

	for (int i = 0; i < nreg; ++i)
		regions[i].id = 0;

	// Merge montone regions to create non-overlapping areas.
	rcIntArray stack(32);
	for (int i = 1; i < nreg; ++i)
	{
		rcRegion& root = regions[i];
		// Skip already visited.
		if (root.id != 0)
			continue;
		
		// Start search.
		root.id = layerId;

		stack.resize(0);
		stack.push(i);
		
		while (stack.size() > 0)
		{
			// Pop front
			rcRegion& reg = regions[stack[0]];
			for (int j = 0; j < stack.size()-1; ++j)
				stack[j] = stack[j+1];
			stack.resize(stack.size()-1);
			
			const int ncons = (int)reg.connections.size();
			for (int j = 0; j < ncons; ++j)
			{
				const int nei = reg.connections[j];
				rcRegion& regn = regions[nei];
				// Skip already visited.
				if (regn.id != 0)
					continue;
				// Skip if the neighbour is overlapping root region.
				bool overlap = false;
				for (int k = 0; k < root.floors.size(); k++)
				{
					if (root.floors[k] == nei)
					{
						overlap = true;
						break;
					}
				}
				if (overlap)
					continue;
					
				// Deepen
				stack.push(nei);
					
				// Mark layer id
				regn.id = layerId;
				// Merge current layers to root.
				for (int k = 0; k < regn.floors.size(); ++k)
					addUniqueFloorRegion(root, regn.floors[k]);
				root.ymin = rcMin(root.ymin, regn.ymin);
				root.ymax = rcMax(root.ymax, regn.ymax);
				root.spanCount += regn.spanCount;
				regn.spanCount = 0;
				root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder;
			}
		}
		
		layerId++;
	}
	
	// Remove small regions
	for (int i = 0; i < nreg; ++i)
	{
		if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder)
		{
			unsigned short reg = regions[i].id;
			for (int j = 0; j < nreg; ++j)
				if (regions[j].id == reg)
					regions[j].id = 0;
		}
	}
	
	// Compress region Ids.
	for (int i = 0; i < nreg; ++i)
	{
		regions[i].remap = false;
		if (regions[i].id == 0) continue;				// Skip nil regions.
		if (regions[i].id & RC_BORDER_REG) continue;    // Skip external regions.
		regions[i].remap = true;
	}
	
	unsigned short regIdGen = 0;
	for (int i = 0; i < nreg; ++i)
	{
		if (!regions[i].remap)
			continue;
		unsigned short oldId = regions[i].id;
		unsigned short newId = ++regIdGen;
		for (int j = i; j < nreg; ++j)
		{
			if (regions[j].id == oldId)
			{
				regions[j].id = newId;
				regions[j].remap = false;
			}
		}
	}
	maxRegionId = regIdGen;
	
	// Remap regions.
	for (int i = 0; i < chf.spanCount; ++i)
	{
		if ((srcReg[i] & RC_BORDER_REG) == 0)
			srcReg[i] = regions[srcReg[i]].id;
	}
	
	for (int i = 0; i < nreg; ++i)
		regions[i].~rcRegion();
	rcFree(regions);
	
	return true;
}
/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
						   const float sampleDist, const float sampleMaxError,
						   rcPolyMeshDetail& dmesh)
{
	rcAssert(ctx);
	
	ctx->startTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
	
	if (mesh.nverts == 0 || mesh.npolys == 0)
		return true;
	
	const int nvp = mesh.nvp;
	const float cs = mesh.cs;
	const float ch = mesh.ch;
	const float* orig = mesh.bmin;
	const int borderSize = mesh.borderSize;
	
	rcIntArray edges(64);
	rcIntArray tris(512);
	rcIntArray stack(512);
	rcIntArray samples(512);
	float verts[256*3];
	rcHeightPatch hp;
	int nPolyVerts = 0;
	int maxhw = 0, maxhh = 0;
	
	rcScopedDelete<int> bounds = (int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP);
	if (!bounds)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
		return false;
	}
	rcScopedDelete<float> poly = (float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP);
	if (!poly)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
		return false;
	}
	
	// Find max size for a polygon area.
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		int& xmin = bounds[i*4+0];
		int& xmax = bounds[i*4+1];
		int& ymin = bounds[i*4+2];
		int& ymax = bounds[i*4+3];
		xmin = chf.width;
		xmax = 0;
		ymin = chf.height;
		ymax = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == RC_MESH_NULL_IDX) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			xmin = rcMin(xmin, (int)v[0]);
			xmax = rcMax(xmax, (int)v[0]);
			ymin = rcMin(ymin, (int)v[2]);
			ymax = rcMax(ymax, (int)v[2]);
			nPolyVerts++;
		}
		xmin = rcMax(0,xmin-1);
		xmax = rcMin(chf.width,xmax+1);
		ymin = rcMax(0,ymin-1);
		ymax = rcMin(chf.height,ymax+1);
		if (xmin >= xmax || ymin >= ymax) continue;
		maxhw = rcMax(maxhw, xmax-xmin);
		maxhh = rcMax(maxhh, ymax-ymin);
	}
	
	hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
	if (!hp.data)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
		return false;
	}
	
	dmesh.nmeshes = mesh.npolys;
	dmesh.nverts = 0;
	dmesh.ntris = 0;
	dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
	if (!dmesh.meshes)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
		return false;
	}
	
	int vcap = nPolyVerts+nPolyVerts/2;
	int tcap = vcap*2;
	
	dmesh.nverts = 0;
	dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
	if (!dmesh.verts)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
		return false;
	}
	dmesh.ntris = 0;
	dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
	if (!dmesh.tris)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
		return false;
	}
	
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		
		// Store polygon vertices for processing.
		int npoly = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == RC_MESH_NULL_IDX) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			poly[j*3+0] = v[0]*cs;
			poly[j*3+1] = v[1]*ch;
			poly[j*3+2] = v[2]*cs;
			npoly++;
		}
		
		// Get the height data from the area of the polygon.
		hp.xmin = bounds[i*4+0];
		hp.ymin = bounds[i*4+2];
		hp.width = bounds[i*4+1]-bounds[i*4+0];
		hp.height = bounds[i*4+3]-bounds[i*4+2];
		getHeightData(chf, p, npoly, mesh.verts, borderSize, hp, stack, mesh.regs[i]);
		
		// Build detail mesh.
		int nverts = 0;
		if (!buildPolyDetail(ctx, poly, npoly,
							 sampleDist, sampleMaxError,
							 chf, hp, verts, nverts, tris,
							 edges, samples))
		{
			return false;
		}
		
		// Move detail verts to world space.
		for (int j = 0; j < nverts; ++j)
		{
			verts[j*3+0] += orig[0];
			verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
			verts[j*3+2] += orig[2];
		}
		// Offset poly too, will be used to flag checking.
		for (int j = 0; j < npoly; ++j)
		{
			poly[j*3+0] += orig[0];
			poly[j*3+1] += orig[1];
			poly[j*3+2] += orig[2];
		}
		
		// Store detail submesh.
		const int ntris = tris.size()/4;
		
		dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
		dmesh.meshes[i*4+1] = (unsigned int)nverts;
		dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
		dmesh.meshes[i*4+3] = (unsigned int)ntris;
		
		// Store vertices, allocate more memory if necessary.
		if (dmesh.nverts+nverts > vcap)
		{
			while (dmesh.nverts+nverts > vcap)
				vcap += 256;
			
			float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
			if (!newv)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
				return false;
			}
			if (dmesh.nverts)
				memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
			rcFree(dmesh.verts);
			dmesh.verts = newv;
		}
		for (int j = 0; j < nverts; ++j)
		{
			dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
			dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
			dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
			dmesh.nverts++;
		}
		
		// Store triangles, allocate more memory if necessary.
		if (dmesh.ntris+ntris > tcap)
		{
			while (dmesh.ntris+ntris > tcap)
				tcap += 256;
			unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
			if (!newt)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
				return false;
			}
			if (dmesh.ntris)
				memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
			rcFree(dmesh.tris);
			dmesh.tris = newt;
		}
		for (int j = 0; j < ntris; ++j)
		{
			const int* t = &tris[j*4];
			dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
			dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
			dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
			dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
			dmesh.ntris++;
		}
	}
	
	ctx->stopTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
	
	return true;
}
Beispiel #22
0
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh)
{
	rcAssert(ctx);
	
	ctx->startTimer(RC_TIMER_BUILD_POLYMESH);

	rcVcopy(mesh.bmin, cset.bmin);
	rcVcopy(mesh.bmax, cset.bmax);
	mesh.cs = cset.cs;
	mesh.ch = cset.ch;
	
	int maxVertices = 0;
	int maxTris = 0;
	int maxVertsPerCont = 0;
	for (int i = 0; i < cset.nconts; ++i)
	{
		// Skip null contours.
		if (cset.conts[i].nverts < 3) continue;
		maxVertices += cset.conts[i].nverts;
		maxTris += cset.conts[i].nverts - 2;
		maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
	}
	
	if (maxVertices >= 0xfffe)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
		return false;
	}
		
	rcScopedDelete<unsigned char> vflags = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP);
	if (!vflags)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
		return false;
	}
	memset(vflags, 0, maxVertices);
	
	mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM);
	if (!mesh.verts)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
		return false;
	}
	mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2*2, RC_ALLOC_PERM);
	if (!mesh.polys)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
		return false;
	}
	mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM);
	if (!mesh.regs)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
		return false;
	}
	mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM);
	if (!mesh.areas)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris);
		return false;
	}
	
	mesh.nverts = 0;
	mesh.npolys = 0;
	mesh.nvp = nvp;
	mesh.maxpolys = maxTris;
	
	memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
	memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
	memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
	
	rcScopedDelete<int> nextVert = (int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP);
	if (!nextVert)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
		return false;
	}
	memset(nextVert, 0, sizeof(int)*maxVertices);
	
	rcScopedDelete<int> firstVert = (int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP);
	if (!firstVert)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
		return false;
	}
	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
		firstVert[i] = -1;
	
	rcScopedDelete<int> indices = (int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP);
	if (!indices)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
		return false;
	}
	rcScopedDelete<int> tris = (int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP);
	if (!tris)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
		return false;
	}
	rcScopedDelete<unsigned short> polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP);
	if (!polys)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
		return false;
	}
	unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp];

	for (int i = 0; i < cset.nconts; ++i)
	{
		rcContour& cont = cset.conts[i];
		
		// Skip null contours.
		if (cont.nverts < 3)
			continue;
		
		// Triangulate contour
		for (int j = 0; j < cont.nverts; ++j)
			indices[j] = j;
			
		int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
		if (ntris <= 0)
		{
			// Bad triangulation, should not happen.
/*			printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]);
			printf("\tconst float cs = %ff;\n", cset.cs);
			printf("\tconst float ch = %ff;\n", cset.ch);
			printf("\tconst int verts[] = {\n");
			for (int k = 0; k < cont.nverts; ++k)
			{
				const int* v = &cont.verts[k*4];
				printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
			}
			printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/
			ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i);
			ntris = -ntris;
		}
				
		// Add and merge vertices.
		for (int j = 0; j < cont.nverts; ++j)
		{
			const int* v = &cont.verts[j*4];
			indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
								   mesh.verts, firstVert, nextVert, mesh.nverts);
			if (v[3] & RC_BORDER_VERTEX)
			{
				// This vertex should be removed.
				vflags[indices[j]] = 1;
			}
		}
		
		// Build initial polygons.
		int npolys = 0;
		memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
		for (int j = 0; j < ntris; ++j)
		{
			int* t = &tris[j*3];
			if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
			{
				polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
				polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
				polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
				npolys++;
			}
		}
		if (!npolys)
			continue;
		
		// Merge polygons.
		if (nvp > 3)
		{
			for(;;)
			{
				// Find best polygons to merge.
				int bestMergeVal = 0;
				int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
				
				for (int j = 0; j < npolys-1; ++j)
				{
					unsigned short* pj = &polys[j*nvp];
					for (int k = j+1; k < npolys; ++k)
					{
						unsigned short* pk = &polys[k*nvp];
						int ea, eb;
						int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
						if (v > bestMergeVal)
						{
							bestMergeVal = v;
							bestPa = j;
							bestPb = k;
							bestEa = ea;
							bestEb = eb;
						}
					}
				}
				
				if (bestMergeVal > 0)
				{
					// Found best, merge.
					unsigned short* pa = &polys[bestPa*nvp];
					unsigned short* pb = &polys[bestPb*nvp];
					mergePolys(pa, pb, bestEa, bestEb, tmpPoly, nvp);
					memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
					npolys--;
				}
				else
				{
					// Could not merge any polygons, stop.
					break;
				}
			}
		}
		
		// Store polygons.
		for (int j = 0; j < npolys; ++j)
		{
			unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
			unsigned short* q = &polys[j*nvp];
			for (int k = 0; k < nvp; ++k)
				p[k] = q[k];
			mesh.regs[mesh.npolys] = cont.reg;
			mesh.areas[mesh.npolys] = cont.area;
			mesh.npolys++;
			if (mesh.npolys > maxTris)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
				return false;
			}
		}
	}
	
	
	// Remove edge vertices.
	for (int i = 0; i < mesh.nverts; ++i)
	{
		if (vflags[i])
		{
			if (!canRemoveVertex(ctx, mesh, (unsigned short)i))
				continue;
			if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris))
			{
				// Failed to remove vertex
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i);
				return false;
			}
			// Remove vertex
			// Note: mesh.nverts is already decremented inside removeVertex()!
			for (int j = i; j < mesh.nverts; ++j)
				vflags[j] = vflags[j+1];
			--i;
		}
	}
	
	// Calculate adjacency.
	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
		return false;
	}

	// Just allocate the mesh flags array. The user is resposible to fill it.
	mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM);
	if (!mesh.flags)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys);
		return false;
	}
	memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys);
	
	if (mesh.nverts > 0xffff)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
	}
	if (mesh.npolys > 0xffff)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
	}
	
	ctx->stopTimer(RC_TIMER_BUILD_POLYMESH);
	
	return true;
}
/// @par
/// 
/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
/// Contours will form simple polygons.
/// 
/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
/// re-assigned to the zero (null) region.
/// 
/// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps 
/// reduce unecessarily small regions.
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// The region data will be available via the rcCompactHeightfield::maxRegions
/// and rcCompactSpan::reg fields.
/// 
/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
/// 
/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
                            const int borderSize, const int minRegionArea, const int mergeRegionArea)
{
    rcAssert(ctx);
    
    ctx->startTimer(RC_TIMER_BUILD_REGIONS);
    
    const int w = chf.width;
    const int h = chf.height;
    unsigned short id = 1;
    
    rcScopedDelete<unsigned short> srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
    if (!srcReg)
    {
        ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
        return false;
    }
    memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);

    const int nsweeps = rcMax(chf.width,chf.height);
    rcScopedDelete<rcSweepSpan> sweeps = (rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP);
    if (!sweeps)
    {
        ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
        return false;
    }
    
    
    // Mark border regions.
    if (borderSize > 0)
    {
        // Make sure border will not overflow.
        const int bw = rcMin(w, borderSize);
        const int bh = rcMin(h, borderSize);
        // Paint regions
        paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
        paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
        paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
        paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
        
        chf.borderSize = borderSize;
    }
    
    rcIntArray prev(256);

    // Sweep one line at a time.
    for (int y = borderSize; y < h-borderSize; ++y)
    {
        // Collect spans from this row.
        prev.resize(id+1);
        memset(&prev[0],0,sizeof(int)*id);
        unsigned short rid = 1;
        
        for (int x = borderSize; x < w-borderSize; ++x)
        {
            const rcCompactCell& c = chf.cells[x+y*w];
            
            for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
            {
                const rcCompactSpan& s = chf.spans[i];
                if (chf.areas[i] == RC_NULL_AREA) continue;
                
                // -x
                unsigned short previd = 0;
                if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
                {
                    const int ax = x + rcGetDirOffsetX(0);
                    const int ay = y + rcGetDirOffsetY(0);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
                    if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
                        previd = srcReg[ai];
                }
                
                if (!previd)
                {
                    previd = rid++;
                    sweeps[previd].rid = previd;
                    sweeps[previd].ns = 0;
                    sweeps[previd].nei = 0;
                }

                // -y
                if (rcGetCon(s,3) != RC_NOT_CONNECTED)
                {
                    const int ax = x + rcGetDirOffsetX(3);
                    const int ay = y + rcGetDirOffsetY(3);
                    const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
                    if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
                    {
                        unsigned short nr = srcReg[ai];
                        if (!sweeps[previd].nei || sweeps[previd].nei == nr)
                        {
                            sweeps[previd].nei = nr;
                            sweeps[previd].ns++;
                            prev[nr]++;
                        }
                        else
                        {
                            sweeps[previd].nei = RC_NULL_NEI;
                        }
                    }
                }

                srcReg[i] = previd;
            }
        }
        
        // Create unique ID.
        for (int i = 1; i < rid; ++i)
        {
            if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
                prev[sweeps[i].nei] == (int)sweeps[i].ns)
            {
                sweeps[i].id = sweeps[i].nei;
            }
            else
            {
                sweeps[i].id = id++;
            }
        }
        
        // Remap IDs
        for (int x = borderSize; x < w-borderSize; ++x)
        {
            const rcCompactCell& c = chf.cells[x+y*w];
            
            for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
            {
                if (srcReg[i] > 0 && srcReg[i] < rid)
                    srcReg[i] = sweeps[srcReg[i]].id;
            }
        }
    }

    ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);

    // Filter out small regions.
    chf.maxRegions = id;
    if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg))
        return false;

    ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
    
    // Store the result out.
    for (int i = 0; i < chf.spanCount; ++i)
        chf.spans[i].reg = srcReg[i];
    
    ctx->stopTimer(RC_TIMER_BUILD_REGIONS);

    return true;
}
static bool addSpan(rcHeightfield& hf, const int x, const int y,
					const unsigned short smin, const unsigned short smax,
					const unsigned char area, const int flagMergeThr)
{
	
	int idx = x + y*hf.width;
	
	rcSpan* s = allocSpan(hf);
	if (!s)
		return false;
	s->smin = smin;
	s->smax = smax;
	s->area = area;
	s->next = 0;
	
	// Empty cell, add the first span.
	if (!hf.spans[idx])
	{
		hf.spans[idx] = s;
		return true;
	}
	rcSpan* prev = 0;
	rcSpan* cur = hf.spans[idx];
	
	// Insert and merge spans.
	while (cur)
	{
		if (cur->smin > s->smax)
		{
			// Current span is further than the new span, break.
			break;
		}
		else if (cur->smax < s->smin)
		{
			// Current span is before the new span advance.
			prev = cur;
			cur = cur->next;
		}
		else
		{
			// Merge spans.
			if (cur->smin < s->smin)
				s->smin = cur->smin;
			if (cur->smax > s->smax)
				s->smax = cur->smax;
			
			// Merge flags.
			if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
				s->area = rcMax(s->area, cur->area);
			
			// Remove current span.
			rcSpan* next = cur->next;
			freeSpan(hf, cur);
			if (prev)
				prev->next = next;
			else
				hf.spans[idx] = next;
			cur = next;
		}
	}
	
	// Insert new span.
	if (prev)
	{
		s->next = prev->next;
		prev->next = s;
	}
	else
	{
		s->next = hf.spans[idx];
		hf.spans[idx] = s;
	}

	return true;
}
Beispiel #25
0
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
{
	rcAssert(ctx);
	
	if (!nmeshes || !meshes)
		return true;

	ctx->startTimer(RC_TIMER_MERGE_POLYMESH);

	mesh.nvp = meshes[0]->nvp;
	mesh.cs = meshes[0]->cs;
	mesh.ch = meshes[0]->ch;
	rcVcopy(mesh.bmin, meshes[0]->bmin);
	rcVcopy(mesh.bmax, meshes[0]->bmax);

	int maxVerts = 0;
	int maxPolys = 0;
	int maxVertsPerMesh = 0;
	for (int i = 0; i < nmeshes; ++i)
	{
		rcVmin(mesh.bmin, meshes[i]->bmin);
		rcVmax(mesh.bmax, meshes[i]->bmax);
		maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
		maxVerts += meshes[i]->nverts;
		maxPolys += meshes[i]->npolys;
	}
	
	mesh.nverts = 0;
	mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM);
	if (!mesh.verts)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
		return false;
	}

	mesh.npolys = 0;
	mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM);
	if (!mesh.polys)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
		return false;
	}
	memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);

	mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
	if (!mesh.regs)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
		return false;
	}
	memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);

	mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM);
	if (!mesh.areas)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys);
		return false;
	}
	memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys);

	mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
	if (!mesh.flags)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys);
		return false;
	}
	memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys);
	
	rcScopedDelete<int> nextVert = (int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP);
	if (!nextVert)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
		return false;
	}
	memset(nextVert, 0, sizeof(int)*maxVerts);
	
	rcScopedDelete<int> firstVert = (int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP);
	if (!firstVert)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
		return false;
	}
	for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
		firstVert[i] = -1;

	rcScopedDelete<unsigned short> vremap = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM);
	if (!vremap)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
		return false;
	}
	memset(nextVert, 0, sizeof(int)*maxVerts);
	
	for (int i = 0; i < nmeshes; ++i)
	{
		const rcPolyMesh* pmesh = meshes[i];
		
		const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
		const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
		
		for (int j = 0; j < pmesh->nverts; ++j)
		{
			unsigned short* v = &pmesh->verts[j*3];
			vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
								  mesh.verts, firstVert, nextVert, mesh.nverts);
		}
		
		for (int j = 0; j < pmesh->npolys; ++j)
		{
			unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
			unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
			mesh.regs[mesh.npolys] = pmesh->regs[j];
			mesh.areas[mesh.npolys] = pmesh->areas[j];
			mesh.flags[mesh.npolys] = pmesh->flags[j];
			mesh.npolys++;
			for (int k = 0; k < mesh.nvp; ++k)
			{
				if (src[k] == RC_MESH_NULL_IDX) break;
				tgt[k] = vremap[src[k]];
			}
		}
	}

	// Calculate adjacency.
	if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
		return false;
	}

	if (mesh.nverts > 0xffff)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
	}
	if (mesh.npolys > 0xffff)
	{
		ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
	}
	
	ctx->stopTimer(RC_TIMER_MERGE_POLYMESH);
	
	return true;
}
// Based on Paul Bourke's triangulate.c
//  http://astronomy.swin.edu.au/~pbourke/terrain/triangulate/triangulate.c
static void delaunay(const int nv, float *verts, rcIntArray& idx, rcIntArray& tris, rcIntArray& edges)
{
	// Sort vertices
	idx.resize(nv);
	for (int i = 0; i < nv; ++i)
		idx[i] = i;
#ifdef WIN32
	qsort_s(&idx[0], idx.size(), sizeof(int), ptcmp, verts);
#else
	qsort_r(&idx[0], idx.size(), sizeof(int), verts, ptcmp);
#endif

	// Find the maximum and minimum vertex bounds.
	// This is to allow calculation of the bounding triangle
	float xmin = verts[0];
	float ymin = verts[2];
	float xmax = xmin;
	float ymax = ymin;
	for (int i = 1; i < nv; ++i)
	{
		xmin = rcMin(xmin, verts[i*3+0]);
		xmax = rcMax(xmax, verts[i*3+0]);
		ymin = rcMin(ymin, verts[i*3+2]);
		ymax = rcMax(ymax, verts[i*3+2]);
	}
	float dx = xmax - xmin;
	float dy = ymax - ymin;
	float dmax = (dx > dy) ? dx : dy;
	float xmid = (xmax + xmin) / 2.0f;
	float ymid = (ymax + ymin) / 2.0f;
	
	// Set up the supertriangle
	// This is a triangle which encompasses all the sample points.
	// The supertriangle coordinates are added to the end of the
	// vertex list. The supertriangle is the first triangle in
	// the triangle list.
	float sv[3*3];
	
	sv[0] = xmid - 20 * dmax;
	sv[1] = 0;
	sv[2] = ymid - dmax;
	
	sv[3] = xmid;
	sv[4] = 0;
	sv[5] = ymid + 20 * dmax;
	
	sv[6] = xmid + 20 * dmax;
	sv[7] = 0;
	sv[8] = ymid - dmax;
	
	tris.push(-3);
	tris.push(-2);
	tris.push(-1);
	tris.push(0); // not completed
	
	for (int i = 0; i < nv; ++i)
	{
		const float xp = verts[idx[i]*3+0];
		const float yp = verts[idx[i]*3+2];
		
		edges.resize(0);
		
		// Set up the edge buffer.
		// If the point (xp,yp) lies inside the circumcircle then the
		// three edges of that triangle are added to the edge buffer
		// and that triangle is removed.
		for (int j = 0; j < tris.size()/4; ++j)
		{
			int* t = &tris[j*4];
			if (t[3]) // completed?
				continue;
			const float* v1 = t[0] < 0 ? &sv[(t[0]+3)*3] : &verts[idx[t[0]]*3];
			const float* v2 = t[1] < 0 ? &sv[(t[1]+3)*3] : &verts[idx[t[1]]*3];
			const float* v3 = t[2] < 0 ? &sv[(t[2]+3)*3] : &verts[idx[t[2]]*3];
			float xc,yc,rsqr;
			int inside = circumCircle(xp,yp, v1[0],v1[2], v2[0],v2[2], v3[0],v3[2], xc,yc,rsqr);
			if (xc < xp && rcSqr(xp-xc) > rsqr)
				t[3] = 1;
			if (inside)
			{
				// Collect triangle edges.
				edges.push(t[0]);
				edges.push(t[1]);
				edges.push(t[1]);
				edges.push(t[2]);
				edges.push(t[2]);
				edges.push(t[0]);
				// Remove triangle j.
				t[0] = tris[tris.size()-4];
				t[1] = tris[tris.size()-3];
				t[2] = tris[tris.size()-2];
				t[3] = tris[tris.size()-1];
				tris.resize(tris.size()-4);
				j--;
			}
		}
		
		// Remove duplicate edges.
		const int ne = edges.size()/2;
		for (int j = 0; j < ne-1; ++j)
		{
			for (int k = j+1; k < ne; ++k)
			{
				// Dupe?, make null.
				if ((edges[j*2+0] == edges[k*2+1]) && (edges[j*2+1] == edges[k*2+0]))
				{
					edges[j*2+0] = 0;
					edges[j*2+1] = 0;
					edges[k*2+0] = 0;
					edges[k*2+1] = 0;
				}
			}
		}
		
		// Form new triangles for the current point
		// Skipping over any null.
		// All edges are arranged in clockwise order.
		for (int j = 0; j < ne; ++j)
		{
			if (edges[j*2+0] == edges[j*2+1]) continue;
			tris.push(edges[j*2+0]);
			tris.push(edges[j*2+1]);
			tris.push(i);
			tris.push(0); // not completed
		}
	}
	
	// Remove triangles with supertriangle vertices
	// These are triangles which have a vertex number greater than nv
	for (int i = 0; i < tris.size()/4; ++i)
	{
		int* t = &tris[i*4];
		if (t[0] < 0 || t[1] < 0 || t[2] < 0)
		{
			t[0] = tris[tris.size()-4];
			t[1] = tris[tris.size()-3];
			t[2] = tris[tris.size()-2];
			t[3] = tris[tris.size()-1];
			tris.resize(tris.size()-4);
			i--;
		}
	}
	// Triangle vertices are pointing to sorted vertices, remap indices.
	for (int i = 0; i < tris.size(); ++i)
		tris[i] = idx[tris[i]];
}
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
						 const unsigned char area, rcHeightfield& hf,
						 const float* bmin, const float* bmax,
						 const float cs, const float ics, const float ich,
						 const int flagMergeThr)
{
	const int w = hf.width;
	const int h = hf.height;
	float tmin[3], tmax[3];
	const float by = bmax[1] - bmin[1];
	
	// Calculate the bounding box of the triangle.
	rcVcopy(tmin, v0);
	rcVcopy(tmax, v0);
	rcVmin(tmin, v1);
	rcVmin(tmin, v2);
	rcVmax(tmax, v1);
	rcVmax(tmax, v2);
	
	// If the triangle does not touch the bbox of the heightfield, skip the triagle.
	if (!overlapBounds(bmin, bmax, tmin, tmax))
		return true;
	
	// Calculate the footprint of the triangle on the grid's y-axis
	int y0 = (int)((tmin[2] - bmin[2])*ics);
	int y1 = (int)((tmax[2] - bmin[2])*ics);
	y0 = rcClamp(y0, 0, h-1);
	y1 = rcClamp(y1, 0, h-1);
	
	// Clip the triangle into all grid cells it touches.
	float buf[7*3*4];
	float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;

	rcVcopy(&in[0], v0);
	rcVcopy(&in[1*3], v1);
	rcVcopy(&in[2*3], v2);
	int nvrow, nvIn = 3;
	
	for (int y = y0; y <= y1; ++y)
	{
		// Clip polygon to row. Store the remaining polygon as well
		const float cz = bmin[2] + y*cs;
		dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
		rcSwap(in, p1);
		if (nvrow < 3) continue;
		
		// find the horizontal bounds in the row
		float minX = inrow[0], maxX = inrow[0];
		for (int i=1; i<nvrow; ++i)
		{
			if (minX > inrow[i*3])	minX = inrow[i*3];
			if (maxX < inrow[i*3])	maxX = inrow[i*3];
		}
		int x0 = (int)((minX - bmin[0])*ics);
		int x1 = (int)((maxX - bmin[0])*ics);
		x0 = rcClamp(x0, 0, w-1);
		x1 = rcClamp(x1, 0, w-1);

		int nv, nv2 = nvrow;

		for (int x = x0; x <= x1; ++x)
		{
			// Clip polygon to column. store the remaining polygon as well
			const float cx = bmin[0] + x*cs;
			dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
			rcSwap(inrow, p2);
			if (nv < 3) continue;
			
			// Calculate min and max of the span.
			float smin = p1[1], smax = p1[1];
			for (int i = 1; i < nv; ++i)
			{
				smin = rcMin(smin, p1[i*3+1]);
				smax = rcMax(smax, p1[i*3+1]);
			}
			smin -= bmin[1];
			smax -= bmin[1];
			// Skip the span if it is outside the heightfield bbox
			if (smax < 0.0f) continue;
			if (smin > by) continue;
			// Clamp the span to the heightfield bbox.
			if (smin < 0.0f) smin = 0;
			if (smax > by) smax = by;
			
			// Snap the span to the heightfield height grid.
			unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
			unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
			
			if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
				return false;
		}
	}

	return true;
}
Beispiel #28
0
/// @par
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
	const int borderSize, const int walkableHeight,
	rcHeightfieldLayerSet& lset)
{
	rcAssert(ctx);

	ctx->startTimer(RC_TIMER_BUILD_LAYERS);

	rcScopedDelete<unsigned short> spanBuf4 = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP);
	if (!spanBuf4)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'spanBuf4' (%d).", chf.spanCount*4);
		return false;
	}

	ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);

	unsigned short* srcReg = spanBuf4;
	if (!rcGatherRegionsNoFilter(ctx, chf, borderSize, spanBuf4))
		return false;

	ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
	ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);

	const int w = chf.width;
	const int h = chf.height;
	const int nreg = chf.maxRegions + 1;
	rcLayerRegion* regions = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nreg, RC_ALLOC_TEMP);
	if (!regions)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regions' (%d).", nreg);
		return false;
	}

	// Construct regions
	memset(regions, 0, sizeof(rcLayerRegion)*nreg);
	for (int i = 0; i < nreg; ++i)
	{
		regions[i].layerId = (unsigned short)i;
		regions[i].ymax = 0;
		regions[i].ymin = 0xffff;
	}

	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned short ri = srcReg[i];
				if (ri == 0 || ri >= nreg)
					continue;

				rcLayerRegion& reg = regions[ri];
				reg.ymin = rcMin(reg.ymin, s.y);
				reg.ymax = rcMax(reg.ymax, s.y);
				reg.hasSpans = true;

				// Collect all region layers.
				for (int j = (int)c.index; j < ni; ++j)
				{
					unsigned short nri = srcReg[j];
					if (nri == 0 || nri >= nreg)
						continue;

					if (nri != ri)
					{
						addUniqueLayerRegion(reg, nri);
					}
				}

				// Have found contour
				if (reg.connections.size() > 0)
					continue;

				// Check if this cell is next to a border.
				int ndir = -1;
				for (int dir = 0; dir < 4; ++dir)
				{
					if (isSolidEdge(chf, srcReg, x, y, i, dir))
					{
						ndir = dir;
						break;
					}
				}

				if (ndir != -1)
				{
					// The cell is at border.
					// Walk around the contour to find all the neighbors.
					walkContour(x, y, i, ndir, chf, srcReg, reg.connections);
				}
			}
		}
	} 

	// Create 2D layers from regions. 
	unsigned short layerId = 0;
	rcIntArray stack(64);
	for (int i = 0; i < nreg; i++)
	{
		rcLayerRegion& reg = regions[i];
		if (reg.visited || !reg.hasSpans)
			continue;

		reg.layerId = layerId;
		reg.visited = true;
		reg.base = true;

		stack.resize(0);
		stack.push(i);

		while (stack.size())
		{
			int ri = stack.pop();
			rcLayerRegion& creg = regions[ri];
			for (int j = 0; j < creg.connections.size(); j++)
			{
				const unsigned short nei = (unsigned short)creg.connections[j];
				if (nei & RC_BORDER_REG)
					continue;

				rcLayerRegion& regn = regions[nei];
				// Skip already visited.
				if (regn.visited)
					continue;
				// Skip if the neighbor is overlapping root region.
				if (reg.layers.contains(nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(reg.ymin, regn.ymin);
				const int ymax = rcMin(reg.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// visit
				stack.push(nei);
				regn.visited = true;
				regn.layerId = layerId;
				// add layers to root
				for (int k = 0; k < regn.layers.size(); k++)
					addUniqueLayerRegion(reg, regn.layers[k]);
				reg.ymin = rcMin(reg.ymin, regn.ymin);
				reg.ymax = rcMax(reg.ymax, regn.ymax);
			}
		}

		layerId++;
	}

	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4; 
	for (int i = 0; i < nreg; i++)
	{
		rcLayerRegion& ri = regions[i];
		if (!ri.base) continue;

		unsigned short newId = ri.layerId;
		for (;;)
		{
			unsigned short oldId = 0xffff;
			for (int j = 0; j < nreg; j++)
			{
				if (i == j) continue;
				rcLayerRegion& rj = regions[j];
				if (!rj.base) continue;

				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMin(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// Make sure that there is no overlap when mergin 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nreg; ++k)
				{
					if (regions[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (ri.layers.contains(k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;

				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}

			// Could not find anything to merge with, stop.
			if (oldId == 0xffff)
				break;

			// Merge
			for (int j = 0; j < nreg; ++j)
			{
				rcLayerRegion& rj = regions[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.layers.size(); ++k)
						addUniqueLayerRegion(ri, rj.layers[k]);
					// Update height bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}

	// Compress layer Ids.
	for (int i = 0; i < nreg; ++i)
	{
		regions[i].remap = regions[i].hasSpans;
		if (!regions[i].hasSpans)
		{
			regions[i].layerId = 0xffff;
		}
	}

	unsigned short maxLayerId = 0;
	for (int i = 0; i < nreg; ++i)
	{
		if (!regions[i].remap)
			continue;
		unsigned short oldId = regions[i].layerId;
		unsigned short newId = maxLayerId;
		for (int j = i; j < nreg; ++j)
		{
			if (regions[j].layerId == oldId)
			{
				regions[j].layerId = newId;
				regions[j].remap = false;
			}
		}
		maxLayerId++;
	}

	ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);

	if (maxLayerId == 0)
	{
		ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
		return true;
	}

	// Create layers.
	rcAssert(lset.layers == 0);

	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;

	lset.nlayers = (int)maxLayerId;

	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);


	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned short curId = (unsigned short)i;

		// Allocate memory for the current layer.
		rcHeightfieldLayer* layer = &lset.layers[i];
		memset(layer, 0, sizeof(rcHeightfieldLayer));

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);

		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nreg; ++j)
		{
			if (regions[j].base && regions[j].layerId == curId)
			{
				hmin = (int)regions[j].ymin;
				hmax = (int)regions[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;

		// Adjust the bbox to fit the heighfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;

		// Copy height and area from compact heighfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0 || srcReg[j] >= nreg)
						continue;
					// Skip of does not belong to current layer.
					unsigned short lid = regions[srcReg[j]].layerId;
					if (lid != curId)
						continue;

					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);

					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];

					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned short alid = (srcReg[ai] < nreg) ? regions[srcReg[ai]].layerId : 0xffff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
									con |= (unsigned char)(1<<dir);
							}
						}
					}

					layer->cons[idx] = (portal << 4) | con;
				}
			}
		}

		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}

	ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
	return true;
}
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
	rcHeightfield& hf, rcCompactHeightfield& chf)
{
	rcAssert(ctx);

	ctx->startTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);

	const int w = hf.width;
	const int h = hf.height;
	const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);

	// Fill in header.
	chf.width = w;
	chf.height = h;
	chf.spanCount = spanCount;
	chf.walkableHeight = walkableHeight;
	chf.walkableClimb = walkableClimb;
	chf.maxRegions = 0;
	rcVcopy(chf.bmin, hf.bmin);
	rcVcopy(chf.bmax, hf.bmax);
	chf.bmax[1] += walkableHeight*hf.ch;
	chf.cs = hf.cs;
	chf.ch = hf.ch;
	chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
	if (!chf.cells)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
		return false;
	}
	memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
	chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
	if (!chf.spans)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
		return false;
	}
	memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
	chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
	if (!chf.areas)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
		return false;
	}
	memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);

	const int MAX_HEIGHT = 0xffff;

	// Fill in cells and spans.
	int idx = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcSpan* s = hf.spans[x + y*w];
			// If there are no spans at this cell, just leave the data to index=0, count=0.
			if (!s) continue;
			rcCompactCell& c = chf.cells[x + y*w];
			c.index = idx;
			c.count = 0;
			while (s)
			{
				if (s->area != RC_NULL_AREA)
				{
					const int bot = (int)s->smax;
					const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
					chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
					chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
					chf.areas[idx] = s->area;
					idx++;
					c.count++;
				}
				s = s->next;
			}
		}
	}

	// Find neighbour connections.
	const int MAX_LAYERS = RC_NOT_CONNECTED - 1;
	int tooHighNeighbour = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x + y*w];
			for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
			{
				rcCompactSpan& s = chf.spans[i];

				for (int dir = 0; dir < 4; ++dir)
				{
					rcSetCon(s, dir, RC_NOT_CONNECTED);
					const int nx = x + rcGetDirOffsetX(dir);
					const int ny = y + rcGetDirOffsetY(dir);
					// First check that the neighbour cell is in bounds.
					if (nx < 0 || ny < 0 || nx >= w || ny >= h)
						continue;

					// Iterate over all neighbour spans and check if any of the is
					// accessible from current cell.
					const rcCompactCell& nc = chf.cells[nx + ny*w];
					for (int k = (int)nc.index, nk = (int)(nc.index + nc.count); k < nk; ++k)
					{
						const rcCompactSpan& ns = chf.spans[k];
						const int bot = rcMax(s.y, ns.y);
						const int top = rcMin(s.y + s.h, ns.y + ns.h);

						// Check that the gap between the spans is walkable,
						// and that the climb height between the gaps is not too high.
						if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
						{
							// Mark direction as walkable.
							const int b = k - (int)nc.index;
							if (b < 0 || b > MAX_LAYERS)
							{
								tooHighNeighbour = rcMax(tooHighNeighbour, b);
								continue;
							}
							rcSetCon(s, dir, b);
							break;
						}
					}
				}
			}
		}
	}

	if (tooHighNeighbour > MAX_LAYERS)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
			tooHighNeighbour, MAX_LAYERS);
	}

	ctx->stopTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);

	return true;
}
Beispiel #30
0
static bool SplitAndStoreLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
									  const int borderSize, const int walkableHeight,
									  unsigned short* srcReg, rcLayerRegionMonotone* regs, const int nregs,
									  rcHeightfieldLayerSet& lset)
{
	// Create 2D layers from regions.
	unsigned short layerId = 0;

	rcIntArray stack(64);
	stack.resize(0);

	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegionMonotone& root = regs[i];
		// Skip already visited.
		if (root.layerId != 0xffff)
			continue;

		// Start search.
		root.layerId = layerId;
		root.base = 1;
		stack.push(i);

		while (stack.size())
		{
			// Pop front
			rcLayerRegionMonotone& reg = regs[stack[0]];
			for (int j = 1; j < stack.size(); ++j)
				stack[j - 1] = stack[j];
			stack.pop();

			const int nneis = (int)reg.neis.size();
			for (int j = 0; j < nneis; ++j)
			{
				const int nei = reg.neis[j];
				rcLayerRegionMonotone& regn = regs[nei];
				// Skip already visited.
				if (regn.layerId != 0xffff)
					continue;
				// Skip if the neighbour is overlapping root region.
				if (root.layers.contains(nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(root.ymin, regn.ymin);
				const int ymax = rcMin(root.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// Deepen
				stack.push(nei);

				// Mark layer id
				regn.layerId = layerId;
				// Merge current layers to root.
				for (int k = 0; k < regn.layers.size(); ++k)
					addUnique(root.layers, regn.layers[k]);
				root.ymin = rcMin(root.ymin, regn.ymin);
				root.ymax = rcMax(root.ymax, regn.ymax);
			}
		}

		layerId++;
	}

	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;

	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegionMonotone& ri = regs[i];
		if (!ri.base) continue;

		unsigned short newId = ri.layerId;

		for (;;)
		{
			unsigned short oldId = 0xffff;

			for (int j = 0; j < nregs; ++j)
			{
				if (i == j) continue;
				rcLayerRegionMonotone& rj = regs[j];
				if (!rj.base) continue;

				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMin(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// Make sure that there is no overlap when mergin 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nregs; ++k)
				{
					if (regs[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (ri.layers.contains(k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;

				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}

			// Could not find anything to merge with, stop.
			if (oldId == 0xffff)
				break;

			// Merge
			for (int j = 0; j < nregs; ++j)
			{
				rcLayerRegionMonotone& rj = regs[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.layers.size(); ++k)
						addUnique(ri.layers, rj.layers[k]);
					// Update heigh bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}

	// Compact layerIds
	layerId = 0;
	if (nregs < 256)
	{
		// Compact ids.
		unsigned short remap[256];
		memset(remap, 0, sizeof(unsigned short)*256);
		// Find number of unique regions.
		for (int i = 0; i < nregs; ++i)
			remap[regs[i].layerId] = 1;
		for (int i = 0; i < 256; ++i)
			if (remap[i])
				remap[i] = layerId++;
		// Remap ids.
		for (int i = 0; i < nregs; ++i)
			regs[i].layerId = remap[regs[i].layerId];
	}
	else
	{
		for (int i = 0; i < nregs; ++i)
			regs[i].remap = true;

		for (int i = 0; i < nregs; ++i)
		{
			if (!regs[i].remap)
				continue;
			unsigned short oldId = regs[i].layerId;
			unsigned short newId = ++layerId;
			for (int j = i; j < nregs; ++j)
			{
				if (regs[j].layerId == oldId)
				{
					regs[j].layerId = newId;
					regs[j].remap = false;
				}
			}
		}
	}

	// No layers, return empty.
	if (layerId == 0)
	{
		ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
		return true;
	}

	// Create layers.
	rcAssert(lset.layers == 0);

	const int w = chf.width;
	const int h = chf.height;
	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;

	lset.nlayers = (int)layerId;

	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);


	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned short curId = (unsigned short)i;

		// Allocate memory for the current layer.
		rcHeightfieldLayer* layer = &lset.layers[i];
		memset(layer, 0, sizeof(rcHeightfieldLayer));

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);

		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nregs; ++j)
		{
			if (regs[j].base && regs[j].layerId == curId)
			{
				hmin = (int)regs[j].ymin;
				hmax = (int)regs[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;

		// Adjust the bbox to fit the heighfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;

		// Copy height and area from compact heighfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0xffff)
						continue;
					// Skip of does nto belong to current layer.
					unsigned short lid = regs[srcReg[j]].layerId;
					if (lid != curId)
						continue;

					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);

					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];

					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned short alid = srcReg[ai] != 0xffff ? regs[srcReg[ai]].layerId : 0xffff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
								{
									con |= (unsigned char)(1 << dir);

									// [UE4: make sure that connections are bidirectional, otherwise contour tracing will stuck in infinite loop]
									const int nidx = nx + (ny * lw);
									layer->cons[nidx] |= (unsigned char)(1 << ((dir + 2) % 4));
								}
							}
						}
					}

					layer->cons[idx] |= (portal << 4) | con;
				}
			}
		}

		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}

	return true;
}