Beispiel #1
0
static int
attribute_cntl_a_sequences(void)
{
    BUFFER *bp = curbp;
    LINE *pastline;
    C_NUM offset;		/* offset in cur line of place to attribute */
    int count;

#if EFFICIENCY_HACK
    AREGION *orig_attribs = bp->b_attribs;
    AREGION *new_attribs;
#endif

    if ((pastline = setup_region()) == 0)
	return FALSE;

    while (DOT.l != pastline) {
	if (interrupted())
	    return FALSE;
	while (DOT.o < llength(DOT.l)) {
	    if (CharAtDot() == CONTROL_A) {
		offset = decode_attribute(lvalue(DOT.l),
					  (size_t) llength(DOT.l),
					  (size_t) DOT.o, &count);
		if (offset > DOT.o) {
#if EFFICIENCY_HACK
		    new_attribs = bp->b_attribs;
		    bp->b_attribs = orig_attribs;
		    ldel_bytes((B_COUNT) (offset - DOT.o), FALSE);
		    bp->b_attribs = new_attribs;
#else
		    ldel_bytes((B_COUNT) (offset - DOT.o), FALSE);
#endif
		}
		set_mark_after(count, len_record_sep(bp));
		if (apply_attribute())
		    (void) attributeregion();
	    } else {
		DOT.o += BytesAt(DOT.l, DOT.o);
	    }
	}
	DOT.l = lforw(DOT.l);
	DOT.o = 0;
    }
    return TRUE;
}
Beispiel #2
0
void execute(expr_list * ee)
{
    int verbose = isatty(2);
    expr_list *l;
    int count, n;

    setup_region();

    exprs = ee;
    G_add_error_handler(error_handler, NULL);

    for (l = ee; l; l = l->next) {
	expression *e = l->exp;
	const char *var;

	if (e->type != expr_type_binding && e->type != expr_type_function)
	    G_fatal_error("internal error: execute: invalid type: %d",
			  e->type);

	if (e->type != expr_type_binding)
	    continue;

	var = e->data.bind.var;

	if (!overwrite_flag && check_output_map(var))
	    G_fatal_error(_("output map <%s> exists. To overwrite, use the --overwrite flag"), var);
    }

    for (l = ee; l; l = l->next) {
	expression *e = l->exp;
	const char *var;
	expression *val;

	initialize(e);

	if (e->type != expr_type_binding)
	    continue;

	var = e->data.bind.var;
	val = e->data.bind.val;

	e->data.bind.fd = open_output_map(var, val->res_type);
    }

    setup_maps();

    count = rows * depths;
    n = 0;

    G_init_workers();

    for (current_depth = 0; current_depth < depths; current_depth++)
	for (current_row = 0; current_row < rows; current_row++) {
	    if (verbose)
		G_percent(n, count, 2);

	    for (l = ee; l; l = l->next) {
		expression *e = l->exp;
		int fd;

		evaluate(e);

		if (e->type != expr_type_binding)
		    continue;

		fd = e->data.bind.fd;
		put_map_row(fd, e->buf, e->res_type);
	    }

	    n++;
	}

    G_finish_workers();

    if (verbose)
	G_percent(n, count, 2);

    for (l = ee; l; l = l->next) {
	expression *e = l->exp;
	const char *var;
	expression *val;
	int fd;

	if (e->type != expr_type_binding)
	    continue;

	var = e->data.bind.var;
	val = e->data.bind.val;
	fd = e->data.bind.fd;

	close_output_map(fd);
	e->data.bind.fd = -1;

	if (val->type == expr_type_map) {
	    if (val->data.map.mod == 'M') {
		copy_cats(var, val->data.map.idx);
		copy_colors(var, val->data.map.idx);
	    }

	    copy_history(var, val->data.map.idx);
	}
	else
	    create_history(var, val);
    }

    G_unset_error_routine();
}
Beispiel #3
0
static int
attribute_from_filter(void)
{
    BUFFER *bp = curbp;
    LINE *pastline;
    int skip;
    size_t nbytes;
    size_t n;
    int done;
    int result = TRUE;
    int drained = FALSE;

    TRACE((T_CALLED "attribute_from_filter\n"));
    if ((pastline = setup_region()) == 0) {
	result = FALSE;

#ifdef MDHILITE
    } else if (!b_val(bp, MDHILITE)) {
	discard_syntax_highlighting();
#endif

    } else if (open_region_filter() == TRUE) {

	discard_syntax_highlighting();
	while (DOT.l != pastline) {

	    if (interrupted()) {
		result = FALSE;
		break;
	    }

	    if (ffgetline(&nbytes) > FIOSUC) {
		drained = TRUE;
		break;
	    }

	    DOT.o = 0;
	    for (n = 0; n < nbytes; n++) {
		if (fflinebuf[n] == CONTROL_A) {
		    done = decode_attribute(fflinebuf, nbytes, n, &skip);
		    if (done) {
			n = (size_t) (done - 1);
			set_mark_after(skip, 1);
			if (apply_attribute())
			    (void) attributeregion();
		    }
		} else {
		    DOT.o += BytesAt(DOT.l, DOT.o);
		}
	    }
	    DOT.l = lforw(DOT.l);
	}

	/* some pipes will hang if they're not drained */
	if (!drained) {
	    while (ffgetline(&nbytes) <= FIOSUC) {
		;
	    }
	}

	(void) ffclose();	/* Ignore errors.       */
	attach_attrib(selbufp, &selregion);
	attach_attrib(startbufp, &startregion);
#if OPT_HILITEMATCH
	if (bp->b_highlight & HILITE_ON) {
	    bp->b_highlight |= HILITE_DIRTY;
	    attrib_matches();
	}
#endif
    }
    returnCode(result);
}
Beispiel #4
0
/**
 * Init Queue Manager SUbSystem (QMSS)
 *  - Configure QMSS Driver
 * 	- Define Memory regions
 * 	-
 */
void init_qmss(int useMsmc){
	int i, result;
    Qmss_InitCfg 			qmss_initCfg;
	Cppi_CpDmaInitCfg 		cpdmaCfg;
	Qmss_GlobalConfigParams qmss_globalCfg;

    /* Descriptor base addresses */
    void* data_desc_base  = (void*)align((int)msmc_mem_base);
    void* ctrl_desc_base  = (void*)align((int)data_desc_base + DATA_DESC_NUM*DATA_DESC_SIZE);
    void* trace_desc_base = (void*)align((int)ctrl_desc_base + CTRL_DESC_NUM*CTRL_DESC_SIZE);
    void* fftc_desc_base  = (void*)align((int)trace_desc_base + TRACE_DESC_NUM*TRACE_DESC_SIZE);

    if(useMsmc){
    	data_mem_base = align((int)fftc_desc_base + FFTC_DESC_NUM*FFTC_DESC_SIZE);
    }else{
    	data_mem_base = align((int)ddr_mem_base);
    }

    /* Initialize QMSS Driver */
    memset (&qmss_initCfg, 0, sizeof (Qmss_InitCfg));

    /* Use internal linking RAM */
	qmss_initCfg.linkingRAM0Base  = 0;
	qmss_initCfg.linkingRAM0Size  = 0;
	qmss_initCfg.linkingRAM1Base  = 0;
	qmss_initCfg.maxDescNum       = DATA_DESC_NUM + CTRL_DESC_NUM + TRACE_DESC_NUM + FFTC_DESC_NUM;

	qmss_initCfg.pdspFirmware[0].pdspId   = Qmss_PdspId_PDSP1;
	qmss_initCfg.pdspFirmware[0].firmware = &acc48_le;
	qmss_initCfg.pdspFirmware[0].size     = sizeof (acc48_le);

    /* Bypass hardware initialization as it is done within Kernel */
    qmss_initCfg.qmssHwStatus     =   QMSS_HW_INIT_COMPLETE;

    qmss_globalCfg = qmssGblCfgParams;
    /* Convert address to Virtual address */
	for(i=0;i < (int)qmss_globalCfg.maxQueMgrGroups;i++){
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmConfigReg,       qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmDescReg,         qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_descriptor_region_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtReg,      qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_managementRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtProxyReg, qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_managementRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueStatReg,      qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_status_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmStatusRAM,       qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_Queue_Status*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtDataReg,  qmss_cfg_regs-CSL_QMSS_DATA_BASE,   CSL_Qm_queue_managementRegs*);

		/* not supported on k2 hardware, and not used by lld */
		qmss_globalCfg.groupRegs[i].qmQueMgmtProxyDataReg = 0;
	}

	for(i=0;i < QMSS_MAX_INTD;i++)
		TranslateAddress(qmss_globalCfg.regs.qmQueIntdReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, CSL_Qm_intdRegs*);


	for(i=0;i < QMSS_MAX_PDSP;i++){
		TranslateAddress(qmss_globalCfg.regs.qmPdspCmdReg[i],  qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
		TranslateAddress(qmss_globalCfg.regs.qmPdspCtrlReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, CSL_PdspRegs*);
		TranslateAddress(qmss_globalCfg.regs.qmPdspIRamReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
	}

	TranslateAddress(qmss_globalCfg.regs.qmLinkingRAMReg, 	qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
	TranslateAddress(qmss_globalCfg.regs.qmBaseAddr, 		qmss_cfg_regs-CSL_QMSS_CFG_BASE, void*);

	if ((result = Qmss_init (&qmss_initCfg, &qmss_globalCfg)) != QMSS_SOK){
		printf ("initQmss: Error initializing Queue Manager SubSystem, Error code : %d\n", result);
		abort();
	}

	if ((result = Qmss_start ()) != QMSS_SOK){
		printf ("initQmss: Error starting Queue Manager SubSystem, Error code : %d\n", result);
		abort();
	}

	Cppi_GlobalCPDMAConfigParams translatedCppiGblCpdmaCfgParams[Cppi_CpDma_LAST+1];
	Cppi_GlobalConfigParams translatedCppiGblCfgParams = cppiGblCfgParams;

	translatedCppiGblCfgParams.cpDmaCfgs = translatedCppiGblCpdmaCfgParams;

#define translateCpdma(reg, type) (translatedCppiGblCfgParams.reg = (type)(((int) cppiGblCfgParams.reg ) +  cppi_regs - CPPI_BASE_REG))

	Cppi_CpDma cpdma;
	for(cpdma = Cppi_CpDma_SRIO_CPDMA; cpdma <= Cppi_CpDma_LAST; cpdma++){
		translatedCppiGblCfgParams.cpDmaCfgs[cpdma] = cppiGblCfgParams.cpDmaCfgs[cpdma];
		translateCpdma(cpDmaCfgs[cpdma].gblCfgRegs,	CSL_Cppidma_global_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].txChRegs, 	CSL_Cppidma_tx_channel_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].rxChRegs, 	CSL_Cppidma_rx_channel_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].txSchedRegs,CSL_Cppidma_tx_scheduler_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].rxFlowRegs, CSL_Cppidma_rx_flow_configRegs*);
	}

    if ((result = Cppi_init (&translatedCppiGblCfgParams)) != CPPI_SOK){
        printf ("Error initializing CPPI LLD, Error code : %d\n", result);
        abort();
    }

	/* Setup memory regions */
	/* Setup DATA region */
	result = setup_region(
			data_desc_base,
			DATA_DESC_SIZE, DATA_DESC_NUM,
			0,
			DATA_REG_NUM);
	if (result) abort();

	/* Setup CTRL region */
	result = setup_region(
			ctrl_desc_base,
			CTRL_DESC_SIZE, CTRL_DESC_NUM,
			DATA_DESC_NUM,
			CTRL_REG_NUM);
	if (result) abort();

	/* Setup TRACE region */
	result = setup_region(
			trace_desc_base,
			TRACE_DESC_SIZE, TRACE_DESC_NUM,
			DATA_DESC_NUM+CTRL_DESC_NUM,
			TRACE_REG_NUM);
	if (result) abort();

	/* Setup FFTC region */
	result = setup_region(
			fftc_desc_base,
			FFTC_DESC_SIZE, FFTC_DESC_NUM,
			DATA_DESC_NUM+CTRL_DESC_NUM+TRACE_DESC_NUM,
			FFTC_REG_NUM);
	if (result) abort();

    /* Setup the driver for this FFTC peripheral instance number. */
	/* Set up the FFTC CPDMA configuration */
	memset (&cpdmaCfg, 0, sizeof (Cppi_CpDmaInitCfg));
	cpdmaCfg.dmaNum = Cppi_CpDma_FFTC_A_CPDMA;

	/* Initialize FFTC CPDMA */
	if ((hCppi[0] = Cppi_open (&cpdmaCfg)) == NULL){
		printf ("Error initializing CPPI for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	/* Disable FFTC CDMA loopback */
	if (Cppi_setCpdmaLoopback (hCppi[0], 0) != CPPI_SOK){
		printf ("Error disabling loopback for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	memset (&cpdmaCfg, 0, sizeof (Cppi_CpDmaInitCfg));
	cpdmaCfg.dmaNum = Cppi_CpDma_FFTC_B_CPDMA;
	if ((hCppi[1] = Cppi_open (&cpdmaCfg)) == NULL){
		printf ("Error initializing CPPI for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	/* Disable FFTC CDMA loopback */
	if (Cppi_setCpdmaLoopback (hCppi[1], 0) != CPPI_SOK){
		printf ("Error disabling loopback for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	fftc_a_cfg_regs->CONFIG = 0;
	fftc_b_cfg_regs->CONFIG = 0;
//						CSL_FMK (FFTC_CONFIG_Q3_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q2_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q1_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q0_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_STARVATION_PERIOD, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_3_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_2_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_1_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_0_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_FFT_DISABLE, 0);

	/* Emptying Queues */
	/* Tx FFTC */
    Qmss_queueEmpty(QMSS_FFTC_A_QUEUE_BASE);
    for(i=QUEUE_FIRST; i<=QUEUE_LAST; i++){
        Qmss_queueEmpty(i);
    }

    /* Populate free queues */
    for(i=0; i<DATA_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)data_desc_base + i*DATA_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, DATA_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC,  mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, DATA_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, DATA_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_DATA, mono_pkt, DATA_DESC_SIZE);
    }

    for(i=0; i<CTRL_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)ctrl_desc_base + i*CTRL_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, CTRL_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC,  mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, CTRL_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, CTRL_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_CTRL, mono_pkt, CTRL_DESC_SIZE);
    }

    for(i=0; i<TRACE_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)trace_desc_base + i*TRACE_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, TRACE_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC, mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, TRACE_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, TRACE_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_TRACE, mono_pkt, TRACE_DESC_SIZE);
    }

    for(i=0; i<FFTC_DESC_NUM; i++){
    	Cppi_Desc * host_pkt = (Cppi_Desc *) ((int)fftc_desc_base + i*FFTC_DESC_SIZE);

    	Osal_DescBeginMemAccess(host_pkt, FFTC_DESC_SIZE);
    	memset(host_pkt, 0, FFTC_DESC_SIZE);

    	Qmss_Queue queue = {0, QUEUE_FREE_FFTC};
    	Cppi_setDescType(								host_pkt, Cppi_DescType_HOST);
    	Cppi_setReturnPolicy(		Cppi_DescType_HOST, host_pkt, Cppi_ReturnPolicy_RETURN_BUFFER);
    	Cppi_setReturnPushPolicy(	Cppi_DescType_HOST, host_pkt, Qmss_Location_TAIL);
    	Cppi_setPSLocation(			Cppi_DescType_HOST, host_pkt, Cppi_PSLoc_PS_IN_DESC);
    	Cppi_setReturnQueue(		Cppi_DescType_HOST, host_pkt, queue);
    	((Cppi_HostDesc*)host_pkt)->nextBDPtr = 0;

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(host_pkt, FFTC_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_FFTC,host_pkt,FFTC_DESC_SIZE);
    }

	configureRxFlow(0);
	configureRxFlow(1);

	configureTxChan(0);
	configureTxChan(1);

	configureRxChan(0);
	configureRxChan(1);

	/* Finally, enable the Tx channel so that we can start sending
	 * data blocks to FFTC engine.
	 */
	Cppi_channelEnable (hCppiTxChan[0]);
	Cppi_channelEnable (hCppiTxChan[1]);
	Cppi_channelEnable (hCppiRxChan[0]);
	Cppi_channelEnable (hCppiRxChan[1]);

	configureFFTRegs(fftc_a_cfg_regs);
	configureFFTRegs(fftc_b_cfg_regs);
}