Beispiel #1
0
int Address::CompareFileAddress(const Address &a, const Address &b) {
  addr_t a_file_addr = a.GetFileAddress();
  addr_t b_file_addr = b.GetFileAddress();
  if (a_file_addr < b_file_addr)
    return -1;
  if (a_file_addr > b_file_addr)
    return +1;
  return 0;
}
Beispiel #2
0
bool lldb_private::operator>(const Address &lhs, const Address &rhs) {
  ModuleSP lhs_module_sp(lhs.GetModule());
  ModuleSP rhs_module_sp(rhs.GetModule());
  Module *lhs_module = lhs_module_sp.get();
  Module *rhs_module = rhs_module_sp.get();
  if (lhs_module == rhs_module) {
    // Addresses are in the same module, just compare the file addresses
    return lhs.GetFileAddress() > rhs.GetFileAddress();
  } else {
    // The addresses are from different modules, just use the module
    // pointer value to get consistent ordering
    return lhs_module > rhs_module;
  }
}
Beispiel #3
0
bool
Variable::LocationIsValidForAddress (const Address &address)
{
    // Be sure to resolve the address to section offset prior to 
    // calling this function.
    if (address.IsSectionOffset())
    {
        SymbolContext sc;
        CalculateSymbolContext(&sc);
        if (sc.module_sp == address.GetModule())
        {
            // Is the variable is described by a single location?
            if (!m_location.IsLocationList())
            {
                // Yes it is, the location is valid. 
                return true;
            }
            
            if (sc.function)
            {
                addr_t loclist_base_file_addr = sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
                if (loclist_base_file_addr == LLDB_INVALID_ADDRESS)
                    return false;
                // It is a location list. We just need to tell if the location
                // list contains the current address when converted to a load
                // address
                return m_location.LocationListContainsAddress (loclist_base_file_addr, 
                                                               address.GetFileAddress());
            }
        }
    }
    return false;
}
Beispiel #4
0
FuncUnwindersSP
UnwindTable::GetFuncUnwindersContainingAddress(const Address &addr,
                                               SymbolContext &sc) {
  Initialize();

  std::lock_guard<std::mutex> guard(m_mutex);

  // There is an UnwindTable per object file, so we can safely use file handles
  addr_t file_addr = addr.GetFileAddress();
  iterator end = m_unwinds.end();
  iterator insert_pos = end;
  if (!m_unwinds.empty()) {
    insert_pos = m_unwinds.lower_bound(file_addr);
    iterator pos = insert_pos;
    if ((pos == m_unwinds.end()) ||
        (pos != m_unwinds.begin() &&
         pos->second->GetFunctionStartAddress() != addr))
      --pos;

    if (pos->second->ContainsAddress(addr))
      return pos->second;
  }

  auto range_or = GetAddressRange(addr, sc);
  if (!range_or)
    return nullptr;

  FuncUnwindersSP func_unwinder_sp(new FuncUnwinders(*this, *range_or));
  m_unwinds.insert(insert_pos,
                   std::make_pair(range_or->GetBaseAddress().GetFileAddress(),
                                  func_unwinder_sp));
  return func_unwinder_sp;
}
Beispiel #5
0
int Address::CompareModulePointerAndOffset(const Address &a, const Address &b) {
  ModuleSP a_module_sp(a.GetModule());
  ModuleSP b_module_sp(b.GetModule());
  Module *a_module = a_module_sp.get();
  Module *b_module = b_module_sp.get();
  if (a_module < b_module)
    return -1;
  if (a_module > b_module)
    return +1;
  // Modules are the same, just compare the file address since they should
  // be unique
  addr_t a_file_addr = a.GetFileAddress();
  addr_t b_file_addr = b.GetFileAddress();
  if (a_file_addr < b_file_addr)
    return -1;
  if (a_file_addr > b_file_addr)
    return +1;
  return 0;
}
Beispiel #6
0
uint32_t
Module::ResolveSymbolContextForAddress (const Address& so_addr, uint32_t resolve_scope, SymbolContext& sc)
{
    Mutex::Locker locker (m_mutex);
    uint32_t resolved_flags = 0;

    // Clear the result symbol context in case we don't find anything
    sc.Clear();

    // Get the section from the section/offset address.
    const Section *section = so_addr.GetSection();

    // Make sure the section matches this module before we try and match anything
    if (section && section->GetModule() == this)
    {
        // If the section offset based address resolved itself, then this
        // is the right module.
        sc.module_sp = GetSP();
        resolved_flags |= eSymbolContextModule;

        // Resolve the compile unit, function, block, line table or line
        // entry if requested.
        if (resolve_scope & eSymbolContextCompUnit    ||
            resolve_scope & eSymbolContextFunction    ||
            resolve_scope & eSymbolContextBlock       ||
            resolve_scope & eSymbolContextLineEntry   )
        {
            SymbolVendor *symbols = GetSymbolVendor ();
            if (symbols)
                resolved_flags |= symbols->ResolveSymbolContext (so_addr, resolve_scope, sc);
        }

        // Resolve the symbol if requested, but don't re-look it up if we've already found it.
        if (resolve_scope & eSymbolContextSymbol && !(resolved_flags & eSymbolContextSymbol))
        {
            ObjectFile* ofile = GetObjectFile();
            if (ofile)
            {
                Symtab *symtab = ofile->GetSymtab();
                if (symtab)
                {
                    if (so_addr.IsSectionOffset())
                    {
                        sc.symbol = symtab->FindSymbolContainingFileAddress(so_addr.GetFileAddress());
                        if (sc.symbol)
                            resolved_flags |= eSymbolContextSymbol;
                    }
                }
            }
        }
    }
    return resolved_flags;
}
bool EmulateInstruction::SetInstruction(const Opcode &opcode,
                                        const Address &inst_addr,
                                        Target *target) {
  m_opcode = opcode;
  m_addr = LLDB_INVALID_ADDRESS;
  if (inst_addr.IsValid()) {
    if (target != nullptr)
      m_addr = inst_addr.GetLoadAddress(target);
    if (m_addr == LLDB_INVALID_ADDRESS)
      m_addr = inst_addr.GetFileAddress();
  }
  return true;
}
Beispiel #8
0
uint32_t
SymbolFileSymtab::ResolveSymbolContext (const Address& so_addr, uint32_t resolve_scope, SymbolContext& sc)
{
    if (m_obj_file->GetSymtab() == NULL)
        return 0;

    uint32_t resolved_flags = 0;
    if (resolve_scope & eSymbolContextSymbol)
    {
        sc.symbol = m_obj_file->GetSymtab()->FindSymbolContainingFileAddress(so_addr.GetFileAddress());
        if (sc.symbol)
            resolved_flags |= eSymbolContextSymbol;
    }
    return resolved_flags;
}
bool
DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
{
    FDEEntryMap::Entry fde_entry;

    // Make sure that the Address we're searching for is the same object file
    // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
    ModuleSP module_sp = addr.GetModule();
    if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || module_sp->GetObjectFile() != &m_objfile)
        return false;

    if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
        return false;
    return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
}
Beispiel #10
0
bool AddressRange::ContainsFileAddress(const Address &addr) const {
  if (addr.GetSection() == m_base_addr.GetSection())
    return (addr.GetOffset() - m_base_addr.GetOffset()) < GetByteSize();
  addr_t file_base_addr = GetBaseAddress().GetFileAddress();
  if (file_base_addr == LLDB_INVALID_ADDRESS)
    return false;

  addr_t file_addr = addr.GetFileAddress();
  if (file_addr == LLDB_INVALID_ADDRESS)
    return false;

  if (file_base_addr <= file_addr)
    return (file_addr - file_base_addr) < GetByteSize();

  return false;
}
Beispiel #11
0
  void Materialize(lldb::StackFrameSP &frame_sp, IRMemoryMap &map,
                   lldb::addr_t process_address, Status &err) override {
    Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));

    const lldb::addr_t load_addr = process_address + m_offset;

    if (log) {
      log->Printf("EntitySymbol::Materialize [address = 0x%" PRIx64
                  ", m_symbol = %s]",
                  (uint64_t)load_addr, m_symbol.GetName().AsCString());
    }

    const Address sym_address = m_symbol.GetAddress();

    ExecutionContextScope *exe_scope = map.GetBestExecutionContextScope();

    lldb::TargetSP target_sp;

    if (exe_scope)
      target_sp = map.GetBestExecutionContextScope()->CalculateTarget();

    if (!target_sp) {
      err.SetErrorStringWithFormat(
          "couldn't resolve symbol %s because there is no target",
          m_symbol.GetName().AsCString());
      return;
    }

    lldb::addr_t resolved_address = sym_address.GetLoadAddress(target_sp.get());

    if (resolved_address == LLDB_INVALID_ADDRESS)
      resolved_address = sym_address.GetFileAddress();

    Status pointer_write_error;

    map.WritePointerToMemory(load_addr, resolved_address, pointer_write_error);

    if (!pointer_write_error.Success()) {
      err.SetErrorStringWithFormat(
          "couldn't write the address of symbol %s: %s",
          m_symbol.GetName().AsCString(), pointer_write_error.AsCString());
      return;
    }
  }
Beispiel #12
0
bool
Variable::DumpLocationForAddress (Stream *s, const Address &address)
{
    // Be sure to resolve the address to section offset prior to 
    // calling this function.
    if (address.IsSectionOffset())
    {
        SymbolContext sc;
        CalculateSymbolContext(&sc);
        if (sc.module_sp == address.GetModule())
        {
            ABI *abi = nullptr;
            if (m_owner_scope)
            {
                ModuleSP module_sp (m_owner_scope->CalculateSymbolContextModule());
                if (module_sp)
                    abi = ABI::FindPlugin (module_sp->GetArchitecture()).get();
            }

            const addr_t file_addr = address.GetFileAddress();
            if (sc.function)
            {
                if (sc.function->GetAddressRange().ContainsFileAddress(address))
                {
                    addr_t loclist_base_file_addr = sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
                    if (loclist_base_file_addr == LLDB_INVALID_ADDRESS)
                        return false;
                    return m_location.DumpLocationForAddress (s, 
                                                              eDescriptionLevelBrief, 
                                                              loclist_base_file_addr, 
                                                              file_addr,
                                                              abi);
                }
            }
            return m_location.DumpLocationForAddress (s, 
                                                      eDescriptionLevelBrief, 
                                                      LLDB_INVALID_ADDRESS, 
                                                      file_addr,
                                                      abi);
        }
    }
    return false;
}
bool
DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
{

    // Make sure that the Address we're searching for is the same object file
    // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
    ModuleSP module_sp = addr.GetModule();
    if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || module_sp->GetObjectFile() != &m_objfile)
        return false;

    if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
        return false;
    GetFDEIndex();
    FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
    if (!fde_entry)
        return false;

    range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
    return true;
}
Beispiel #14
0
FuncUnwindersSP
UnwindTable::GetFuncUnwindersContainingAddress (const Address& addr, SymbolContext &sc)
{
    FuncUnwindersSP no_unwind_found;

    Initialize();

    // There is an UnwindTable per object file, so we can safely use file handles
    addr_t file_addr = addr.GetFileAddress();
    iterator end = m_unwinds.end ();
    iterator insert_pos = end;
    if (!m_unwinds.empty())
    {
        insert_pos = m_unwinds.lower_bound (file_addr);
        iterator pos = insert_pos;
        if ((pos == m_unwinds.end ()) || (pos != m_unwinds.begin() && pos->second->GetFunctionStartAddress() != addr))
            --pos;

        if (pos->second->ContainsAddress (addr))
            return pos->second;
    }

    AddressRange range;
    if (!sc.GetAddressRange(eSymbolContextFunction | eSymbolContextSymbol, 0, false, range) || !range.GetBaseAddress().IsValid())
    {
        // Does the eh_frame unwind info has a function bounds for this addr?
        if (m_eh_frame == NULL || !m_eh_frame->GetAddressRange (addr, range))
        {
            return no_unwind_found;
        }
    }

    FuncUnwindersSP func_unwinder_sp(new FuncUnwinders(*this, m_assembly_profiler, range));
    m_unwinds.insert (insert_pos, std::make_pair(range.GetBaseAddress().GetFileAddress(), func_unwinder_sp));
//    StreamFile s(stdout);
//    Dump (s);
    return func_unwinder_sp;
}
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc, 
                                        SymbolContext &next_frame_sc, 
                                        Address &next_frame_pc) const
{
    next_frame_sc.Clear(false);
    next_frame_pc.Clear();

    if (block)
    {
        //const addr_t curr_frame_file_addr = curr_frame_pc.GetFileAddress();
        
        // In order to get the parent of an inlined function we first need to
        // see if we are in an inlined block as "this->block" could be an 
        // inlined block, or a parent of "block" could be. So lets check if
        // this block or one of this blocks parents is an inlined function.
        Block *curr_inlined_block = block->GetContainingInlinedBlock();
        if (curr_inlined_block)
        {
            // "this->block" is contained in an inline function block, so to
            // get the scope above the inlined block, we get the parent of the
            // inlined block itself
            Block *next_frame_block = curr_inlined_block->GetParent();
            // Now calculate the symbol context of the containing block
            next_frame_block->CalculateSymbolContext (&next_frame_sc);
            
            // If we get here we weren't able to find the return line entry using the nesting of the blocks and
            // the line table.  So just use the call site info from our inlined block.
            
            AddressRange range;
            if (curr_inlined_block->GetRangeContainingAddress (curr_frame_pc, range))
            {
                // To see there this new frame block it, we need to look at the
                // call site information from 
                const InlineFunctionInfo* curr_inlined_block_inlined_info = curr_inlined_block->GetInlinedFunctionInfo();
                next_frame_pc = range.GetBaseAddress();
                next_frame_sc.line_entry.range.GetBaseAddress() = next_frame_pc;
                next_frame_sc.line_entry.file = curr_inlined_block_inlined_info->GetCallSite().GetFile();
                next_frame_sc.line_entry.line = curr_inlined_block_inlined_info->GetCallSite().GetLine();
                next_frame_sc.line_entry.column = curr_inlined_block_inlined_info->GetCallSite().GetColumn();
                return true;
            }
            else
            {
                Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));

                if (log)
                {
                    log->Printf ("warning: inlined block 0x%8.8" PRIx64 " doesn't have a range that contains file address 0x%" PRIx64,
                                 curr_inlined_block->GetID(), curr_frame_pc.GetFileAddress());
                }
#ifdef LLDB_CONFIGURATION_DEBUG
                else
                {
                    ObjectFile *objfile = NULL;
                    if (module_sp)
                    {
                        SymbolVendor *symbol_vendor = module_sp->GetSymbolVendor();
                        if (symbol_vendor)
                        {
                            SymbolFile *symbol_file = symbol_vendor->GetSymbolFile();
                            if (symbol_file)
                                objfile = symbol_file->GetObjectFile();
                        }
                    }
                    if (objfile)
                    {
                        Host::SystemLog (Host::eSystemLogWarning, 
                                         "warning: inlined block 0x%8.8" PRIx64 " doesn't have a range that contains file address 0x%" PRIx64 " in %s\n",
                                         curr_inlined_block->GetID(), 
                                         curr_frame_pc.GetFileAddress(),
                                         objfile->GetFileSpec().GetPath().c_str());
                    }
                    else
                    {
                        Host::SystemLog (Host::eSystemLogWarning, 
                                         "warning: inlined block 0x%8.8" PRIx64 " doesn't have a range that contains file address 0x%" PRIx64 "\n",
                                         curr_inlined_block->GetID(), 
                                         curr_frame_pc.GetFileAddress());
                    }
                }
#endif
            }
        }
    }
    
    return false;
}
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
{
    lldb::offset_t offset = dwarf_offset;
    lldb::offset_t current_entry = offset;

    if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
        return false;

    if (m_cfi_data_initialized == false)
        GetCFIData();

    uint32_t length = m_cfi_data.GetU32 (&offset);
    dw_offset_t cie_offset;
    bool is_64bit = (length == UINT32_MAX);
    if (is_64bit) {
        length = m_cfi_data.GetU64 (&offset);
        cie_offset = m_cfi_data.GetU64 (&offset);
    } else {
        cie_offset = m_cfi_data.GetU32 (&offset);
    }

    assert (cie_offset != 0 && cie_offset != UINT32_MAX);

    // Translate the CIE_id from the eh_frame format, which
    // is relative to the FDE offset, into a __eh_frame section
    // offset
    if (m_is_eh_frame)
    {
        unwind_plan.SetSourceName ("eh_frame CFI");
        cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    else
    {
        unwind_plan.SetSourceName ("DWARF CFI");
        // In theory the debug_frame info should be valid at all call sites
        // ("asynchronous unwind info" as it is sometimes called) but in practice
        // gcc et al all emit call frame info for the prologue and call sites, but
        // not for the epilogue or all the other locations during the function reliably.
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);

    const CIE *cie = GetCIE (cie_offset);
    assert (cie != nullptr);

    const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);

    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
    range.SetByteSize (range_len);

    addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;

    if (cie->augmentation[0] == 'z')
    {
        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
        if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit)
        {
            offset_t saved_offset = offset;
            lsda_data_file_address = m_cfi_data.GetGNUEHPointer(&offset, cie->lsda_addr_encoding, pc_rel_addr, text_addr, data_addr);
            if (offset - saved_offset != aug_data_len)
            {
                // There is more in the augmentation region than we know how to process;
                // don't read anything.
                lsda_data_file_address = LLDB_INVALID_ADDRESS;
            }
            offset = saved_offset;
        }
        offset += aug_data_len;
    }
    Address lsda_data;
    Address personality_function_ptr;

    if (lsda_data_file_address != LLDB_INVALID_ADDRESS && cie->personality_loc != LLDB_INVALID_ADDRESS)
    {
        m_objfile.GetModule()->ResolveFileAddress (lsda_data_file_address, lsda_data);
        m_objfile.GetModule()->ResolveFileAddress (cie->personality_loc, personality_function_ptr);
    }

    if (lsda_data.IsValid() && personality_function_ptr.IsValid())
    {
        unwind_plan.SetLSDAAddress (lsda_data);
        unwind_plan.SetPersonalityFunctionPtr (personality_function_ptr);
    }

    uint32_t code_align = cie->code_align;
    int32_t data_align = cie->data_align;

    unwind_plan.SetPlanValidAddressRange (range);
    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
    *cie_initial_row = cie->initial_row;
    UnwindPlan::RowSP row(cie_initial_row);

    unwind_plan.SetRegisterKind (m_reg_kind);
    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);

    std::vector<UnwindPlan::RowSP> stack;

    UnwindPlan::Row::RegisterLocation reg_location;
    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
    {
        uint8_t inst = m_cfi_data.GetU8(&offset);
        uint8_t primary_opcode  = inst & 0xC0;
        uint8_t extended_opcode = inst & 0x3F;

        if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, offset, *row))
        {
            if (primary_opcode)
            {
                switch (primary_opcode)
                {
                    case DW_CFA_advance_loc :   // (Row Creation Instruction)
                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
                        // takes a single argument that represents a constant delta. The
                        // required action is to create a new table row with a location
                        // value that is computed by taking the current entry's location
                        // value and adding (delta * code_align). All other
                        // values in the new row are initially identical to the current row.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset(extended_opcode * code_align);
                        break;
                    }

                    case DW_CFA_restore     :
                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
                        // takes a single argument that represents a register number. The
                        // required action is to change the rule for the indicated register
                        // to the rule assigned it by the initial_instructions in the CIE.
                        uint32_t reg_num = extended_opcode;
                        // We only keep enough register locations around to
                        // unwind what is in our thread, and these are organized
                        // by the register index in that state, so we need to convert our
                        // GCC register number from the EH frame info, to a register index

                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                        break;
                    }
                }
            }
            else
            {
                switch (extended_opcode)
                {
                    case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
                    {
                        // DW_CFA_set_loc takes a single argument that represents an address.
                        // The required action is to create a new table row using the
                        // specified address as the location. All other values in the new row
                        // are initially identical to the current row. The new location value
                        // should always be greater than the current one.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
                        break;
                    }

                    case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_restore_extended    : // 0x6
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. This instruction is identical to DW_CFA_restore except for
                        // the encoding and size of the register argument.
                        uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                        break;
                    }

                    case DW_CFA_remember_state      : // 0xA
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        stack.push_back (row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        break;
                    }

                    case DW_CFA_restore_state       : // 0xB
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        lldb::addr_t offset = row->GetOffset ();
                        row = stack.back ();
                        stack.pop_back ();
                        row->SetOffset (offset);
                        break;
                    }

                    case DW_CFA_val_offset          :   // 0x14
                    case DW_CFA_val_offset_sf       :   // 0x15
                    default:
                        break;
                }
            }
        }
    }
    unwind_plan.AppendRow(row);

    return true;
}
Beispiel #17
0
bool
CompactUnwindInfo::GetCompactUnwindInfoForFunction (Target &target, Address address, FunctionInfo &unwind_info)
{
    unwind_info.encoding = 0;
    unwind_info.lsda_address.Clear();
    unwind_info.personality_ptr_address.Clear();

    if (!IsValid (target.GetProcessSP()))
        return false;

    addr_t text_section_file_address = LLDB_INVALID_ADDRESS;
    SectionList *sl = m_objfile.GetSectionList ();
    if (sl)
    {
        SectionSP text_sect = sl->FindSectionByType (eSectionTypeCode, true);
        if (text_sect.get())
        {
           text_section_file_address = text_sect->GetFileAddress();
        }
    }
    if (text_section_file_address == LLDB_INVALID_ADDRESS)
        return false;

    addr_t function_offset = address.GetFileAddress() - m_objfile.GetHeaderAddress().GetFileAddress();
    
    UnwindIndex key;
    key.function_offset = function_offset;
    
    std::vector<UnwindIndex>::const_iterator it;
    it = std::lower_bound (m_indexes.begin(), m_indexes.end(), key);
    if (it == m_indexes.end())
    {
        return false;
    }

    if (it->function_offset != key.function_offset)
    {
        if (it != m_indexes.begin())
            --it;
    }

    if (it->sentinal_entry == true)
    {
        return false;
    }

    auto next_it = it + 1;
    if (next_it != m_indexes.end())
    {
        // initialize the function offset end range to be the start of the 
        // next index offset.  If we find an entry which is at the end of
        // the index table, this will establish the range end.
        unwind_info.valid_range_offset_end = next_it->function_offset;
    }

    offset_t second_page_offset = it->second_level;
    offset_t lsda_array_start = it->lsda_array_start;
    offset_t lsda_array_count = (it->lsda_array_end - it->lsda_array_start) / 8;

    offset_t offset = second_page_offset;
    uint32_t kind = m_unwindinfo_data.GetU32(&offset);  // UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED

    if (kind == UNWIND_SECOND_LEVEL_REGULAR)
    {
            // struct unwind_info_regular_second_level_page_header
            // {
            //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
            //     uint16_t    entryPageOffset;
            //     uint16_t    entryCount;

            // typedef uint32_t compact_unwind_encoding_t;
            // struct unwind_info_regular_second_level_entry 
            // {
            //     uint32_t                    functionOffset;
            //     compact_unwind_encoding_t    encoding;

        uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset
        uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);       // entryCount

        offset_t entry_offset = BinarySearchRegularSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
        if (entry_offset == LLDB_INVALID_OFFSET)
        {
            return false;
        }
        entry_offset += 4;                                              // skip over functionOffset
        unwind_info.encoding = m_unwindinfo_data.GetU32(&entry_offset); // encoding
        if (unwind_info.encoding & UNWIND_HAS_LSDA)
        {
            SectionList *sl = m_objfile.GetSectionList ();
            if (sl)
            {
                uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
                addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
                unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
            }
        }
        if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
        {
            uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);

            if (personality_index > 0)
            {
                personality_index--;
                if (personality_index < m_unwind_header.personality_array_count)
                {
                    offset_t offset = m_unwind_header.personality_array_offset;
                    offset += 4 * personality_index;
                    SectionList *sl = m_objfile.GetSectionList ();
                    if (sl)
                    {
                        uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
                        addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
                        unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
                    }
                }
            }
        }
        return true;
    }
    else if (kind == UNWIND_SECOND_LEVEL_COMPRESSED)
    {
            // struct unwind_info_compressed_second_level_page_header
            // {
            //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
            //     uint16_t    entryPageOffset;         // offset from this 2nd lvl page idx to array of entries
            //                                          // (an entry has a function offset and index into the encodings)
            //                                          // NB function offset from the entry in the compressed page 
            //                                          // must be added to the index's functionOffset value.
            //     uint16_t    entryCount;             
            //     uint16_t    encodingsPageOffset;     // offset from this 2nd lvl page idx to array of encodings
            //     uint16_t    encodingsCount;

        uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset);     // entryPageOffset
        uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);           // entryCount
        uint16_t encodings_page_offset = m_unwindinfo_data.GetU16(&offset); // encodingsPageOffset
        uint16_t encodings_count = m_unwindinfo_data.GetU16(&offset);       // encodingsCount

        uint32_t encoding_index = BinarySearchCompressedSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, it->function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
        if (encoding_index == UINT32_MAX || encoding_index >= encodings_count + m_unwind_header.common_encodings_array_count)
        {
            return false;
        }
        uint32_t encoding = 0;
        if (encoding_index < m_unwind_header.common_encodings_array_count)
        {
            offset = m_unwind_header.common_encodings_array_offset + (encoding_index * sizeof (uint32_t));
            encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the commonEncodingsArray
        }
        else 
        {
            uint32_t page_specific_entry_index = encoding_index - m_unwind_header.common_encodings_array_count;
            offset = second_page_offset + encodings_page_offset + (page_specific_entry_index * sizeof (uint32_t));
            encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the page-specific encoding array
        }
        if (encoding == 0)
            return false;

        unwind_info.encoding = encoding;
        if (unwind_info.encoding & UNWIND_HAS_LSDA)
        {
            SectionList *sl = m_objfile.GetSectionList ();
            if (sl)
            {
                uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
                addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
                unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
            }
        }
        if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
        {
            uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);

            if (personality_index > 0)
            {
                personality_index--;
                if (personality_index < m_unwind_header.personality_array_count)
                {
                    offset_t offset = m_unwind_header.personality_array_offset;
                    offset += 4 * personality_index;
                    SectionList *sl = m_objfile.GetSectionList ();
                    if (sl)
                    {
                        uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
                        addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
                        unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
                    }
                }
            }
        }
        return true;
    }
    return false;
}
Beispiel #18
0
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
{
    dw_offset_t current_entry = offset;

    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
        return false;

    if (m_cfi_data_initialized == false)
        GetCFIData();

    uint32_t length = m_cfi_data.GetU32 (&offset);
    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);

    assert (cie_offset != 0 && cie_offset != UINT32_MAX);

    // Translate the CIE_id from the eh_frame format, which
    // is relative to the FDE offset, into a __eh_frame section
    // offset
    if (m_is_eh_frame)
    {
        unwind_plan.SetSourceName ("eh_frame CFI");
        cie_offset = current_entry + 4 - cie_offset;
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    else
    {
        unwind_plan.SetSourceName ("DWARF CFI");
        // In theory the debug_frame info should be valid at all call sites
        // ("asynchronous unwind info" as it is sometimes called) but in practice
        // gcc et al all emit call frame info for the prologue and call sites, but
        // not for the epilogue or all the other locations during the function reliably.
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);

    const CIE *cie = GetCIE (cie_offset);
    assert (cie != NULL);

    const dw_offset_t end_offset = current_entry + length + 4;

    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
    range.SetByteSize (range_len);

    if (cie->augmentation[0] == 'z')
    {
        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
        offset += aug_data_len;
    }

    uint32_t reg_num = 0;
    int32_t op_offset = 0;
    uint32_t code_align = cie->code_align;
    int32_t data_align = cie->data_align;

    unwind_plan.SetPlanValidAddressRange (range);
    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
    *cie_initial_row = cie->initial_row;
    UnwindPlan::RowSP row(cie_initial_row);

    unwind_plan.SetRegisterKind (m_reg_kind);
    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);

    UnwindPlan::Row::RegisterLocation reg_location;
    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
    {
        uint8_t inst = m_cfi_data.GetU8(&offset);
        uint8_t primary_opcode  = inst & 0xC0;
        uint8_t extended_opcode = inst & 0x3F;

        if (primary_opcode)
        {
            switch (primary_opcode)
            {
                case DW_CFA_advance_loc :   // (Row Creation Instruction)
                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
                        // takes a single argument that represents a constant delta. The
                        // required action is to create a new table row with a location
                        // value that is computed by taking the current entry's location
                        // value and adding (delta * code_align). All other
                        // values in the new row are initially identical to the current row.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset(extended_opcode * code_align);
                    }
                    break;

                case DW_CFA_offset      :
                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
                        // takes two arguments: an unsigned LEB128 constant representing a
                        // factored offset and a register number. The required action is to
                        // change the rule for the register indicated by the register number
                        // to be an offset(N) rule with a value of
                        // (N = factored offset * data_align).
                        reg_num = extended_opcode;
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_restore     :
                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
                        // takes a single argument that represents a register number. The
                        // required action is to change the rule for the indicated register
                        // to the rule assigned it by the initial_instructions in the CIE.
                        reg_num = extended_opcode;
                        // We only keep enough register locations around to
                        // unwind what is in our thread, and these are organized
                        // by the register index in that state, so we need to convert our
                        // GCC register number from the EH frame info, to a register index

                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;
            }
        }
        else
        {
            switch (extended_opcode)
            {
                case DW_CFA_nop                 : // 0x0
                    break;

                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
                    {
                        // DW_CFA_set_loc takes a single argument that represents an address.
                        // The required action is to create a new table row using the
                        // specified address as the location. All other values in the new row
                        // are initially identical to the current row. The new location value
                        // should always be greater than the current one.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
                    }
                    break;

                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
                    }
                    break;

                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
                    }
                    break;

                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
                    }
                    break;

                case DW_CFA_offset_extended     : // 0x5
                    {
                        // takes two unsigned LEB128 arguments representing a register number
                        // and a factored offset. This instruction is identical to DW_CFA_offset
                        // except for the encoding and size of the register argument.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_restore_extended    : // 0x6
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. This instruction is identical to DW_CFA_restore except for
                        // the encoding and size of the register argument.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_undefined           : // 0x7
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. The required action is to set the rule for the specified
                        // register to undefined.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetUndefined();
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_same_value          : // 0x8
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. The required action is to set the rule for the specified
                        // register to same value.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetSame();
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_register            : // 0x9
                    {
                        // takes two unsigned LEB128 arguments representing register numbers.
                        // The required action is to set the rule for the first register to be
                        // the second register.

                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetInRegister(other_reg_num);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_remember_state      : // 0xA
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        unwind_plan.AppendRow (row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                    }
                    break;

                case DW_CFA_restore_state       : // 0xB
                    // These instructions define a stack of information. Encountering the
                    // DW_CFA_remember_state instruction means to save the rules for every
                    // register on the current row on the stack. Encountering the
                    // DW_CFA_restore_state instruction means to pop the set of rules off
                    // the stack and place them in the current row. (This operation is
                    // useful for compilers that move epilogue code into the body of a
                    // function.)
                    {
                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
                    }
                    break;

                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
                    {
                        // Takes two unsigned LEB128 operands representing a register
                        // number and a (non-factored) offset. The required action
                        // is to define the current CFA rule to use the provided
                        // register and offset.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFARegister (reg_num);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
                    {
                        // takes a single unsigned LEB128 argument representing a register
                        // number. The required action is to define the current CFA rule to
                        // use the provided register (but to keep the old offset).
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFARegister (reg_num);
                    }
                    break;

                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
                    {
                        // Takes a single unsigned LEB128 operand representing a
                        // (non-factored) offset. The required action is to define
                        // the current CFA rule to use the provided offset (but
                        // to keep the old register).
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
                    {
                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
                        offset += (uint32_t)block_len;
                    }
                    break;

                case DW_CFA_expression          : // 0x10
                    {
                        // Takes two operands: an unsigned LEB128 value representing
                        // a register number, and a DW_FORM_block value representing a DWARF
                        // expression. The required action is to change the rule for the
                        // register indicated by the register number to be an expression(E)
                        // rule where E is the DWARF expression. That is, the DWARF
                        // expression computes the address. The value of the CFA is
                        // pushed on the DWARF evaluation stack prior to execution of
                        // the DWARF expression.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);

                        reg_location.SetAtDWARFExpression(block_data, block_len);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_offset_extended_sf  : // 0x11
                    {
                        // takes two operands: an unsigned LEB128 value representing a
                        // register number and a signed LEB128 factored offset. This
                        // instruction is identical to DW_CFA_offset_extended except
                        //that the second operand is signed and factored.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
                    {
                        // Takes two operands: an unsigned LEB128 value representing
                        // a register number and a signed LEB128 factored offset.
                        // This instruction is identical to DW_CFA_def_cfa except
                        // that the second operand is signed and factored.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        row->SetCFARegister (reg_num);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
                    {
                        // takes a signed LEB128 operand representing a factored
                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
                        // except that the operand is signed and factored.
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_val_expression      :   // 0x16
                    {
                        // takes two operands: an unsigned LEB128 value representing a register
                        // number, and a DW_FORM_block value representing a DWARF expression.
                        // The required action is to change the rule for the register indicated
                        // by the register number to be a val_expression(E) rule where E is the
                        // DWARF expression. That is, the DWARF expression computes the value of
                        // the given register. The value of the CFA is pushed on the DWARF
                        // evaluation stack prior to execution of the DWARF expression.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
//#if defined(__i386__) || defined(__x86_64__)
//                      // The EH frame info for EIP and RIP contains code that looks for traps to
//                      // be a specific type and increments the PC.
//                      // For i386:
//                      // DW_CFA_val_expression where:
//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
//                      //       DW_OP_and, DW_OP_plus
//                      // This basically does a:
//                      // eip = ucontenxt.mcontext32->gpr.eip;
//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
//                      //   eip++;
//                      //
//                      // For x86_64:
//                      // DW_CFA_val_expression where:
//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
//                      // This basically does a:
//                      // rip = ucontenxt.mcontext64->gpr.rip;
//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
//                      //   rip++;
//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
//                      // is expected to point at least past the instruction that causes the fault/trap. So we
//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
//                      {
//                          if (thread->Is64Bit())
//                          {
//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
//                                  block_len = 8;
//                          }
//                          else
//                          {
//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
//                                  block_len = 7;
//                          }
//                      }
//#endif
                        reg_location.SetIsDWARFExpression(block_data, block_len);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_val_offset          :   // 0x14
                case DW_CFA_val_offset_sf       :   // 0x15
                default:
                    break;
            }
        }
    }
    unwind_plan.AppendRow(row);

    return true;
}