Beispiel #1
0
int main( )
{
  //construct two non-intersecting nested polygons  
  Polygon_2 polygon1;
  polygon1.push_back(Point(0,0));
  polygon1.push_back(Point(2,0));
  polygon1.push_back(Point(2,2));
  polygon1.push_back(Point(0,2));
  Polygon_2 polygon2;
  polygon2.push_back(Point(0.5,0.5));
  polygon2.push_back(Point(1.5,0.5));
  polygon2.push_back(Point(1.5,1.5));
  polygon2.push_back(Point(0.5,1.5));
  
  //Insert the polygons into a constrained triangulation
  CDT cdt;
  cdt.insert_constraint(polygon1.vertices_begin(), polygon1.vertices_end(), true);
  cdt.insert_constraint(polygon2.vertices_begin(), polygon2.vertices_end(), true);
  
  //Mark facets that are inside the domain bounded by the polygon
  mark_domains(cdt);
  
  int count=0;
  for (CDT::Finite_faces_iterator fit=cdt.finite_faces_begin();
                                  fit!=cdt.finite_faces_end();++fit)
  {
    if ( fit->info().in_domain() ) ++count;
  }
  
  std::cout << "There are " << count << " facets in the domain." << std::endl;

  return 0;
}
Beispiel #2
0
void cdt2_to_face_graph(const CDT& cdt, TriangleMesh& tm, int constant_coordinate_index, double constant_coordinate)
{
  typedef typename boost::graph_traits<Polyhedron>::vertex_descriptor vertex_descriptor;

  typedef std::map<typename CDT::Vertex_handle, vertex_descriptor> Map;
  Map descriptors;
  for (typename CDT::Finite_faces_iterator fit=cdt.finite_faces_begin(),
                                           fit_end=cdt.finite_faces_end();
                                           fit!=fit_end; ++fit)
  {
    if (!fit->is_in_domain()) continue;
    CGAL::cpp11::array<vertex_descriptor,3> vds;
    for(int i=0; i<3; ++i)
    {
      typename Map::iterator it;
      bool insert_ok;
      boost::tie(it,insert_ok) =
        descriptors.insert(std::make_pair(fit->vertex(i),vertex_descriptor()));
      if (insert_ok){
        const Kernel::Point_3& pt=fit->vertex(i)->point();
        double coords[3] = {pt[0], pt[1], pt[2]};
        coords[constant_coordinate_index]=constant_coordinate;
        it->second = add_vertex(Kernel::Point_3(coords[0],coords[1],coords[2]), tm);
      }
      vds[i]=it->second;
    }

    CGAL::Euler::add_face(vds, tm);
  }
}
Beispiel #3
0
 void FixedPlaneMesh::TrianglatePolygon(const double3& normal, std::vector<Point3D>& pts, ListOfvertices& results)
 {
    if (pts.size() < 3)
        return ; 
    if (pts.size() ==3)
    {
       VertexInfo vi1(pts[0], normal, mColor);
       VertexInfo vi2(pts[1], normal, mColor);
       VertexInfo vi3(pts[2], normal, mColor);
       results.push_back(vi1);
       results.push_back(vi2);
       results.push_back(vi3);
       return ;
    }
    typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

    typedef CGAL::Triangulation_vertex_base_2<K>                     Vb;
    typedef CGAL::Constrained_triangulation_face_base_2<K>           Fb;
    typedef CGAL::Triangulation_data_structure_2<Vb,Fb>              TDS;
     //typedef CGAL::Exact_predicates_tag                               Itag;
    typedef CGAL::Constrained_Delaunay_triangulation_2<K, TDS, CGAL::No_intersection_tag> CDT;

    vec3<double> origin = pts[0];
    vec3<double>  N = normal;
    vec3<double>  U = normalize(pts[1] - origin);
    vec3<double>  V = cross(N, U);
    CDT cdt;
    CDT::Vertex_handle vh1, vh2, vh3;
    vec3<double> v0 = PosToLocal(U, V, N, origin, pts[0]);
    CDT::Point p0(v0.x, v0.y);
    vh1 = vh3 = cdt.insert(p0);
    for ( int i = 1; i< pts.size() ; i++)
    {
        vec3<double> v1 = PosToLocal(U, V, N, origin, pts[i]);
        CDT::Point p1(v1.x, v1.y);
        vh2 = cdt.insert(p1);
        cdt.insert_constraint(vh1, vh2);
        vh1 = vh2;
    }
    cdt.insert_constraint(vh2, vh3);
    int count = cdt.number_of_faces() ; 
    results.reserve(count*3);
    for (CDT::Finite_faces_iterator fit = cdt.finite_faces_begin();
       fit != cdt.finite_faces_end(); ++fit)
   {
	   vec2<double> v0(fit->vertex(2)->point().x(),fit->vertex(2)->point().y() );
	   vec2<double> v1(fit->vertex(1)->point().x(),fit->vertex(1)->point().y() );
	   vec2<double> v2(fit->vertex(0)->point().x(),fit->vertex(0)->point().y() );   
	   if (IsEqual(cross(v0- v2, v1-v2), (double)0.,  (double)EPSF ))
		   continue; //
       vec3<double > p0(v0, 0.0);
       vec3<double > p1(v1, 0.0);
       vec3<double > p2(v2, 0.0);
       p0 = PosToGlobal(U, V, N, origin, p0);
       p1 = PosToGlobal(U, V, N, origin, p1);
       p2 = PosToGlobal(U, V, N, origin, p2);
       VertexInfo vi1(p0, N, mColor);
       VertexInfo vi2(p1, N, mColor);
       VertexInfo vi3(p2, N, mColor);
       results.push_back(vi1);
       results.push_back(vi2);
       results.push_back(vi3);
   }
  
 }
Beispiel #4
0
void triangulate(const Polygon_2& polygon, 
		 Cut_iter cuts_begin, Cut_iter cuts_end,
		 const boost::unordered_map<Point_3, boost::unordered_set<Segment_3_undirected> >& point2edges,
		 Out_iter triangles)
{
  typedef CGAL::Triangulation_vertex_base_2<Kernel>                     Vb;
  typedef CGAL::Triangulation_vertex_base_with_info_2<Point_3, Kernel, Vb>     Info;
  typedef CGAL::Constrained_triangulation_face_base_2<Kernel>           Fb;
  typedef CGAL::Triangulation_data_structure_2<Info,Fb>              TDS;
  typedef CGAL::Exact_predicates_tag                               Itag;
  typedef CGAL::Constrained_Delaunay_triangulation_2<Kernel, TDS, Itag> CDT;
  typedef CDT::Vertex_handle Vertex_handle;

  static log4cplus::Logger logger = log4cplus::Logger::getInstance("polygon_utils");

  Polygon_2 p(polygon);
  LOG4CPLUS_TRACE(logger, "Triangulating " << pp(p));
  if (p.size() < 3) return;

  bool vertical = is_vertical(p);
  if (vertical)
  {
    LOG4CPLUS_TRACE(logger, "Polygon is vertical.  Rotating.");
    p = yz_swap_neg(p);
  }

  bool reverse = !p.is_counterclockwise_oriented();
  if (reverse)
    p.reverse_orientation();

  CDT cdt;

  boost::unordered_map<Point_3, Vertex_handle> point2handle;
  for (Polygon_2::Vertex_iterator it = p.vertices_begin(); it != p.vertices_end(); ++it)
  {
    Vertex_handle h = cdt.insert(*it);
    point2handle[*it] = h;
    h->info() = *it;//it->z();
  }

  Polygon_2::Vertex_circulator start = p.vertices_circulator();
  Polygon_2::Vertex_circulator c = start;
  Polygon_2::Vertex_circulator n = c;
  ++n;
  do
  {
    Vertex_handle ch = point2handle[*c];//cdt.insert(*c);
    Vertex_handle nh = point2handle[*n];//cdt.insert(*n);
//     ch->info() = c->z();
//     nh->info() = n->z();
//     cdt.insert_constraint(*c, *n);
    cdt.insert_constraint(ch, nh);
    ++c;
    ++n;
  } while (c != start);

  for (Cut_iter c_it = cuts_begin; c_it != cuts_end; ++c_it)
  {
    Polyline_2 cut = *c_it;
    LOG4CPLUS_TRACE(logger, "Adding cut: " << pp(cut));
    if (vertical)
      cut = yz_swap_neg(cut);
    for (Polyline_2::const_iterator c = cut.begin(); c != cut.end(); ++c)
    {
      Polyline_2::const_iterator n = c;
      ++n;
      if (n != cut.end())
      {
	const Point_3& cp = *c;
	const Point_3& np = *n;
	if (point2handle.find(cp) == point2handle.end())
	{
	  Vertex_handle h = cdt.insert(cp);
	  point2handle[cp] = h;
	  h->info() = cp;//cp.z();
	}
	if (point2handle.find(np) == point2handle.end())
	{
	  Vertex_handle h = cdt.insert(np);
	  point2handle[np] = h;
	  h->info() = np;//np.z();
	}

	Vertex_handle ch = point2handle[*c];//cdt.insert(*c);
	Vertex_handle nh = point2handle[*n];//cdt.insert(*n);
// 	ch->info() = c->z();
// 	nh->info() = n->z();
// 	cdt.insert_constraint(*c, *n);
	cdt.insert_constraint(ch, nh);
	LOG4CPLUS_TRACE(logger, "  " << pp(Segment_2(*c, *n)));
      }
    }
  }

  // Loop through the triangulation and store the vertices of each triangle
  for (CDT::Finite_faces_iterator ffi = cdt.finite_faces_begin();
       ffi != cdt.finite_faces_end();
       ++ffi)
  {
    Triangle t;
    Point_3 center = centroid(ffi->vertex(0)->info(), ffi->vertex(1)->info(), ffi->vertex(2)->info());
    if (p.has_on_bounded_side(center) && 
	is_legal(ffi->vertex(0)->info(), ffi->vertex(1)->info(), ffi->vertex(2)->info(), point2edges))
    {
      for (int i = 0; i < 3; ++i)
      {
	int idx = reverse ? 2-i : i;
	if (!vertical)
	{
// 	  Point_3 p(ffi->vertex(i)->point());
// 	  p = Point_3(p.x(), p.y(), ffi->vertex(i)->info());
	  Point_3 p(ffi->vertex(i)->info());
	  t[idx] = p;
	}
	else
	{
// 	  Point_3 p(ffi->vertex(i)->point());
// 	  p = Point_3(p.x(), p.y(), ffi->vertex(i)->info());
	  Point_3 p(ffi->vertex(i)->info());
	  t[idx] = yz_swap_pos(p);
	}
      }
      LOG4CPLUS_TRACE(logger, "Adding tile: " << pp_tri(t));
      *triangles++ = t;
    }
  }
}
Beispiel #5
0
void triangulate(const Polygon& polygon, Triangle_iter triangles, 
		 const boost::unordered_map<Point_3, boost::unordered_set<Segment_3_undirected> >& point2edges)
{
  typedef CGAL::Triangulation_vertex_base_2<Kernel>                     Vb;
  typedef CGAL::Triangulation_vertex_base_with_info_2<bool, Kernel, Vb>     Info;
  typedef CGAL::Constrained_triangulation_face_base_2<Kernel>           Fb;
  typedef CGAL::Triangulation_data_structure_2<Info,Fb>              TDS;
  typedef CGAL::Exact_predicates_tag                               Itag;
  typedef CGAL::Constrained_Delaunay_triangulation_2<Kernel, TDS, Itag> CDT;

  static log4cplus::Logger tlogger = log4cplus::Logger::getInstance("polygon_utils");

  LOG4CPLUS_TRACE(tlogger, "Triangulating " << pp(polygon));

  if (polygon.size() < 3) return;

  Polygon p = polygon;
  bool vertical = is_vertical(p);
  if (vertical)
  {
    LOG4CPLUS_TRACE(tlogger, "Polygon is vertical.  Rotating.");
    p = yz_swap_neg(p);
  }

  bool reverse = !p.is_counterclockwise_oriented();

  // THIS IS BAD, BAD, BAD!
  {
    typename Polygon::Vertex_circulator start = p.vertices_circulator();
    typename Polygon::Vertex_circulator c = start;
    typename Polygon::Vertex_circulator n = c;
    typename Polygon::Vertex_circulator prev = c;
    ++n;
    --prev;
    Polygon_2 newp;
    do
    {
      if (!CGAL::collinear(*prev, *c, *n))
	newp.push_back(*c);
      ++prev;
      ++c;
      ++n;
    } while (c != start);
    p = newp;
  }

  CDT cdt;
  typename Polygon::Vertex_circulator start = p.vertices_circulator();
  typename Polygon::Vertex_circulator c = start;
  typename Polygon::Vertex_circulator n = c;
  do
  {
    cdt.insert_constraint(*c, *n);
    ++c;
    ++n;
  } while (c != start);

  // Loop through the triangulation and store the vertices of each triangle
  for (CDT::Finite_faces_iterator ffi = cdt.finite_faces_begin();
       ffi != cdt.finite_faces_end();
       ++ffi)
  {
    Triangle t;
    Point_3 center = centroid(ffi->vertex(0)->point(), ffi->vertex(1)->point(), ffi->vertex(2)->point());
    if (p.has_on_bounded_side(center) && 
	is_legal(ffi->vertex(0)->point(), ffi->vertex(1)->point(), ffi->vertex(2)->point(), point2edges))
    {
      for (int i = 0; i < 3; ++i)
      {
	int idx = reverse ? 2-i : i;
	if (!vertical)
	  t[idx] = ffi->vertex(i)->point();
	else
	  t[idx] = yz_swap_pos(ffi->vertex(i)->point());
      }
      LOG4CPLUS_TRACE(tlogger, "Adding tile: " << pp_tri(t));
      *triangles = t;
      ++triangles;
    }
  }
}
Beispiel #6
0
void convert_to_dealii_format(CDT &cdt, dealii::Triangulation<2> &triangulation)
{
    
    std::vector<dealii::Point<2> > vertex_in_grid;
    std::vector<dealii::CellData<2> > cell_in_grid;

    for(auto fit = cdt.finite_faces_begin(); fit != cdt.finite_faces_end(); ++fit)
    {
        CDT::Triangle trg = cdt.triangle(fit);

        // location of points on the triangle
        //
        //                    2
        //                   / \
        //                  /   \
        //                 /     \
        //                /       \
        //             5 /         \ 4
        //              /\         /\
        //             /  \       /  \
        //            /    \     /    \
        //           /      \   /      \
        //          /         6         \
        //         /          |          \
        //        /           |           \
        //       /            |            \
        //      0___________________________1
        //                    3
        //

        dealii::Point<2> p[7] =
        {
            dealii::Point<2>(trg[0].x(), trg[0].y()),
            dealii::Point<2>(trg[1].x(), trg[1].y()),
            dealii::Point<2>(trg[2].x(), trg[2].y()),

            (p[0] + p[1]) / 2.0,
            (p[1] + p[2]) / 2.0,
            (p[2] + p[0]) / 2.0,

            (p[0] + p[1] + p[2]) / 3.0
        };

        struct IndexPoint { u32 index; bool point_already_exist = false; };

        IndexPoint index_point[7];

        FOR(i, 0, 7)
            FOR(j, 0, vertex_in_grid.size())
                if (p[i].distance (vertex_in_grid[j]) < 1.e-10)
                {
                    index_point[i].index = j;
                    index_point[i].point_already_exist = true;
                };

        FOR(i, 0, 7)
            if (not index_point[i].point_already_exist)
            {
                vertex_in_grid .push_back (p[i]);
                index_point[i].index = vertex_in_grid.size() - 1;
                index_point[i].point_already_exist = true;
            };

        u8 mat_id = fit->is_in_domain() ? 0 : 1;

        auto add_cell = [&cell_in_grid, &index_point, mat_id] (arr<st, 4> &&indx) 
        {
            cell_in_grid .push_back (dealii::CellData<2>{
                    index_point[indx[0]].index,
                    index_point[indx[1]].index,
                    index_point[indx[2]].index,
                    index_point[indx[3]].index,
                    {.material_id = mat_id}});
        };
Beispiel #7
0
int main() {
	//construct two non-intersecting nested polygons
	Polygon_2 polygon1;
	polygon1.push_back(Point_2(0.0, 0.0));
	polygon1.push_back(Point_2(2.0, 0.0));
	polygon1.push_back(Point_2(1.7, 1.0));
	polygon1.push_back(Point_2(2.0, 2.0));
	polygon1.push_back(Point_2(0.0, 2.0));
	Polygon_2 polygon2;
	polygon2.push_back(Point_2(0.5, 0.5));
	polygon2.push_back(Point_2(1.5, 0.5));
	polygon2.push_back(Point_2(1.5, 1.5));
	polygon2.push_back(Point_2(0.5, 1.5));

	//Insert the polyons into a constrained triangulation
	CDT cdt;
	insert_polygon(cdt, polygon1);
	insert_polygon(cdt, polygon2);

	//Extract point and provide the an index
	std::vector< triangulation_point > points ;
	for ( CDT::Vertex_iterator it = cdt.vertices_begin(); it != cdt.vertices_end(); ++it ){
		it->info() = points.size() ;
		points.push_back( it->point() );
	}


	//Mark facets that are inside the domain bounded by the polygon
	mark_domains(cdt);

	//
	int count = 0;
	for (CDT::Finite_faces_iterator fit = cdt.finite_faces_begin(); fit != cdt.finite_faces_end(); ++fit) {
		if (fit->info().in_domain()){
			++count;
		}
	}


	/*
	 * export
	 */

	std::ofstream ofs("polygon_triangulation2.obj");
	if ( ! ofs.good() ){
		std::cout << "can't open file" << std::endl;
		return 1 ;
	}

	//-- print vertices
	ofs << "# " << points.size() << " vertices"<< std::endl ;
	for ( size_t i = 0; i < points.size(); i++ ){
		ofs << "v " << points[i] << " 0.0" << std::endl;
	}

	//-- print faces
	ofs << "# " << cdt.number_of_faces() << " faces"<< std::endl ;
	// warning : Delaunay_triangulation_2::All_faces_iterator iterator over infinite faces
	for ( CDT::Finite_faces_iterator it = cdt.finite_faces_begin(); it != cdt.finite_faces_end(); ++it )
	{
		//ignore holes
		if ( ! it->info().in_domain() ){
			continue ;
		}
		size_t ia = it->vertex(0)->info();
		size_t ib = it->vertex(1)->info();
		size_t ic = it->vertex(2)->info();

		assert( it->is_valid() );
		//assert ( ia < cdt.number_of_vertices() || ib < tri.number_of_vertices() || ic < tri.number_of_vertices() ) ;

		ofs << "f " << ( ia + 1 ) << " " << ( ib + 1 ) << " " << ( ic + 1 ) << std::endl;
	}

	return 0;
}
int main()
{
    typedef viennagrid::plc_2d_mesh mesh_type;
    mesh_type mesh;
    
    typedef viennagrid::result_of::point<mesh_type>::type point_type;
     
    typedef viennagrid::result_of::element<mesh_type, viennagrid::vertex_tag>::type vertex_type;
    typedef viennagrid::result_of::handle<mesh_type, viennagrid::vertex_tag>::type vertex_handle_type;
    
    typedef viennagrid::result_of::element<mesh_type, viennagrid::line_tag>::type line_type;
    typedef viennagrid::result_of::handle<mesh_type, viennagrid::line_tag>::type line_handle_type;
    
    typedef viennagrid::result_of::element<mesh_type, viennagrid::plc_tag>::type plc_type;
    typedef viennagrid::result_of::handle<mesh_type, viennagrid::plc_tag>::type plc_handle_type;
    
    plc_handle_type plc_handle;
    
    {
        std::vector<vertex_handle_type> v;
        
        v.push_back( viennagrid::make_vertex( mesh, point_type(0, 0) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(10, 0) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(20, 10) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(20, 20) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(10, 20) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(0, 10) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(5, 5) ) );
        
        v.push_back( viennagrid::make_vertex( mesh, point_type(10, 10) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(12, 10) ) );
        v.push_back( viennagrid::make_vertex( mesh, point_type(10, 12) ) );
        
        v.push_back( viennagrid::make_vertex( mesh, point_type(8, 10) ) );
        
        v.push_back( viennagrid::make_vertex( mesh, point_type(15, 15) ) );
        
        
        std::vector<line_handle_type> lines;
        
        {
            std::vector<vertex_handle_type>::iterator start = v.begin();
            std::vector<vertex_handle_type>::iterator end = v.begin() + 7;
            
            std::vector<vertex_handle_type>::iterator it1 = start;
            std::vector<vertex_handle_type>::iterator it2 = it1; ++it2;
            for (; it2 != end; ++it1, ++it2)
                lines.push_back( viennagrid::make_line(mesh, *it1, *it2) );
            lines.push_back( viennagrid::make_line(mesh, *it1, *start) );
        }
        
        
        {
            std::vector<vertex_handle_type>::iterator start = v.begin() + 7;
            std::vector<vertex_handle_type>::iterator end = v.begin() + 10;
            
            std::vector<vertex_handle_type>::iterator it1 = start;
            std::vector<vertex_handle_type>::iterator it2 = it1; ++it2;
            for (; it2 != end; ++it1, ++it2)
                lines.push_back( viennagrid::make_line(mesh, *it1, *it2) );
            lines.push_back( viennagrid::make_line(mesh, *it1, *start) );
        }
        
        lines.push_back( viennagrid::make_element<line_type>( mesh, v.begin() + 9, v.begin() + 11 ) );
        
        vertex_handle_type point = v[11];

        
        std::vector<point_type> hole_points;
        hole_points.push_back( point_type(10.5, 10.5) );

        plc_handle  = viennagrid::make_plc(  mesh,
                                                                        lines.begin(), lines.end(),
                                                                        &point, &point + 1,
                                                                        hole_points.begin(), hole_points.end()
                                                                    );
    }
    
    plc_type & plc = viennagrid::dereference_handle(mesh, plc_handle);
    
    
    
    
    
    typedef viennagrid::result_of::element_range<plc_type, viennagrid::vertex_tag>::type vertex_range_type;
    typedef viennagrid::result_of::iterator<vertex_range_type>::type vertex_range_iterator;
    
    typedef viennagrid::result_of::element_range<plc_type, viennagrid::line_tag>::type line_range_type;
    typedef viennagrid::result_of::iterator<line_range_type>::type line_range_iterator;
    
    
    
    typedef CGAL::Exact_predicates_inexact_constructions_kernel     Kernel;
    
    typedef CGAL::Triangulation_vertex_base_2<Kernel>               VertexBase;
    typedef CGAL::Delaunay_mesh_face_base_2<Kernel>                 FaceBase;
    typedef CGAL::Triangulation_data_structure_2<VertexBase, FaceBase> Triangulation_structure;
    
    typedef CGAL::Constrained_Delaunay_triangulation_2<Kernel, Triangulation_structure> CDT;
    
    typedef CGAL::Delaunay_mesh_size_criteria_2<CDT> Criteria;
    
    typedef CDT::Vertex_handle Vertex_handle;
    typedef CDT::Point Point;
    
    CDT cdt;
    
    std::map<vertex_handle_type, Vertex_handle> vertex_handle_map;
    
    vertex_range_type vertices = viennagrid::elements<viennagrid::vertex_tag>(plc);
    for (vertex_range_iterator it = vertices.begin(); it != vertices.end(); ++it)
    {
        vertex_handle_type const & vtx_handle = it.handle();
        vertex_type const & vtx = *it;
        point_type const & vgrid_point = viennagrid::point( mesh, vtx );
        
        Vertex_handle handle = cdt.insert( Point(vgrid_point[0], vgrid_point[1]) );
        
        vertex_handle_map[vtx_handle] = handle;
    }

    
    line_range_type lines = viennagrid::elements<viennagrid::line_tag>(plc);
    for (line_range_iterator it = lines.begin(); it != lines.end(); ++it)
    {
        line_type & line = *it;
        
        vertex_handle_type vgrid_v0 = viennagrid::elements<viennagrid::vertex_tag>(line).handle_at(0);
        vertex_handle_type vgrid_v1 = viennagrid::elements<viennagrid::vertex_tag>(line).handle_at(1);
        
        Vertex_handle cgal_v0 = vertex_handle_map[vgrid_v0];
        Vertex_handle cgal_v1 = vertex_handle_map[vgrid_v1];
        
        cdt.insert_constraint(cgal_v0, cgal_v1);
    }
    
    std::vector<point_type> & vgrid_list_of_holes = viennagrid::hole_points(plc);
    std::list<Point> cgal_list_of_holes;
    
    for (std::vector<point_type>::iterator it = vgrid_list_of_holes.begin(); it != vgrid_list_of_holes.end(); ++it)
        cgal_list_of_holes.push_back( Point( (*it)[0], (*it)[1] ) );
    
    CGAL::refine_Delaunay_mesh_2(cdt, cgal_list_of_holes.begin(), cgal_list_of_holes.end(), Criteria());
    
    std::cout << "Number of vertices: " << cdt.number_of_vertices() << std::endl;
    std::cout << "Number of finite faces: " << cdt.number_of_faces() << std::endl;
    
    
    
    
    
    typedef viennagrid::triangular_2d_mesh triangle_mesh_type;
    triangle_mesh_type triangle_mesh;
    
    typedef viennagrid::result_of::point<triangle_mesh_type>::type triangle_point_type;
     
    typedef viennagrid::result_of::element<triangle_mesh_type, viennagrid::vertex_tag>::type triangle_vertex_type;
    typedef viennagrid::result_of::handle<triangle_mesh_type, viennagrid::vertex_tag>::type triangle_vertex_handle_type;
    
    typedef viennagrid::result_of::element<triangle_mesh_type, viennagrid::line_tag>::type triangle_line_type;
    typedef viennagrid::result_of::handle<triangle_mesh_type, viennagrid::line_tag>::type triangle_line_handle_type;
    
    typedef viennagrid::result_of::element<triangle_mesh_type, viennagrid::triangle_tag>::type triangle_triangle_type;
    typedef viennagrid::result_of::handle<triangle_mesh_type, viennagrid::triangle_tag>::type triangle_triangle__handle_type;
    
    
    std::map<Point, triangle_vertex_handle_type> points;
    
    int mesh_faces_counter = 0;
    for(CDT::Finite_faces_iterator fit = cdt.finite_faces_begin(); fit != cdt.finite_faces_end(); ++fit) 
    {
        if(fit->is_in_domain())
        {
            typedef CDT::Triangle Triangle;
            Triangle tri = cdt.triangle(fit);
            
            triangle_vertex_handle_type vgrid_vtx[3];
            
            for (int i = 0; i < 3; ++i)
            {
                std::map<Point, triangle_vertex_handle_type>::iterator pit = points.find( tri[i] );
                if (pit == points.end())
                {
                    vgrid_vtx[i] = viennagrid::make_vertex( triangle_mesh, triangle_point_type(tri[i].x(), tri[i].y()) );
                    points[ tri[i] ] = vgrid_vtx[i];
                }
                else
                    vgrid_vtx[i] = pit->second;
            }
            
            viennagrid::make_element<triangle_triangle_type>( triangle_mesh, vgrid_vtx, vgrid_vtx+3 );
                
            
            std::cout << tri << std::endl;
            ++mesh_faces_counter;
        }
    }
    std::cout << "Number of faces in the mesh mesh: " << mesh_faces_counter << std::endl;
    

    
    std::copy( viennagrid::elements<triangle_triangle_type>(triangle_mesh).begin(), viennagrid::elements<triangle_triangle_type>(triangle_mesh).end(), std::ostream_iterator<triangle_triangle_type>(std::cout, "\n") );
    

    viennagrid::io::vtk_writer<triangle_mesh_type> vtk_writer;
    vtk_writer(triangle_mesh, "test");
    
}