Beispiel #1
0
	virtual void UpdateTurretPosition()
	{
		if (m_TurretParent == INVALID_ENTITY)
			return;
		CmpPtr<ICmpPosition> cmpPosition(GetSimContext(), m_TurretParent);
		if (!cmpPosition)
		{
			LOGERROR("Turret with parent without position component");
			return;
		}
		if (!cmpPosition->IsInWorld())
			MoveOutOfWorld();
		else
		{
			CFixedVector2D rotatedPosition = CFixedVector2D(m_TurretPosition.X, m_TurretPosition.Z);
			rotatedPosition = rotatedPosition.Rotate(cmpPosition->GetRotation().Y);
			CFixedVector2D rootPosition = cmpPosition->GetPosition2D();
			entity_pos_t x = rootPosition.X + rotatedPosition.X;
			entity_pos_t z = rootPosition.Y + rotatedPosition.Y;
			if (!m_InWorld || m_X != x || m_Z != z)
				MoveTo(x, z);
			entity_pos_t y = cmpPosition->GetHeightOffset() + m_TurretPosition.Y;
			if (!m_InWorld || GetHeightOffset() != y)
				SetHeightOffset(y);
			m_InWorld = true;
		}
	}
Beispiel #2
0
bool Geometry::TestSquareSquare(
		const CFixedVector2D& c0, const CFixedVector2D& u0, const CFixedVector2D& v0, const CFixedVector2D& halfSize0,
		const CFixedVector2D& c1, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1)
{
	// TODO: need to test this carefully

	CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y);
	CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y);
	CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y);
	CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y);

	// Do a SAT test for each square vs each edge of the other square
	if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0))
		return false;

	return true;
}
Beispiel #3
0
static CFixedVector2D NearestPointOnGoal(CFixedVector2D pos, const CCmpPathfinder::Goal& goal)
{
	CFixedVector2D g(goal.x, goal.z);

	switch (goal.type)
	{
	case CCmpPathfinder::Goal::POINT:
	{
		return g;
	}

 	case CCmpPathfinder::Goal::CIRCLE:
	{
		CFixedVector2D d = pos - g;
		if (d.IsZero())
			d = CFixedVector2D(fixed::FromInt(1), fixed::Zero()); // some arbitrary direction
		d.Normalize(goal.hw);
		return g + d;
	}

	case CCmpPathfinder::Goal::SQUARE:
	{
		CFixedVector2D halfSize(goal.hw, goal.hh);
		CFixedVector2D d = pos - g;
		return g + Geometry::NearestPointOnSquare(d, goal.u, goal.v, halfSize);
	}

	default:
		debug_warn(L"invalid type");
		return CFixedVector2D();
	}
}
Beispiel #4
0
// Exactly like TestRaySquare with u=(1,0), v=(0,1)
bool Geometry::TestRayAASquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& halfSize)
{
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (-hw <= a.X && a.X <= hw && -hh <= a.Y && a.Y <= hh)
		return false; // a is inside

	if (-hw <= b.X && b.X <= hw && -hh <= b.Y && b.Y <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((a.X < -hw && b.X < -hw) || (a.X > hw && b.X > hw) || (a.Y < -hh && b.Y < -hh) || (a.Y > hh && b.Y > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot(CFixedVector2D(hw, hh) - a);
	fixed s1 = abp.Dot(CFixedVector2D(hw, -hh) - a);
	fixed s2 = abp.Dot(CFixedVector2D(-hw, -hh) - a);
	fixed s3 = abp.Dot(CFixedVector2D(-hw, hh) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}
Beispiel #5
0
bool Geometry::TestRaySquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	/*
	 * We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
	 * Various cases to consider:
	 *   'a' inside, 'b' inside -> no collision
	 *   'a' inside, 'b' outside -> no collision
	 *   'a' outside, 'b' inside -> collision
	 *   'a' outside, 'b' outside -> depends; use separating axis theorem:
	 *     if the ray's bounding box is outside the square -> no collision
	 *     if the whole square is on the same side of the ray -> no collision
	 *     otherwise -> collision
	 * (Points on the edge are considered 'inside'.)
	 */

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	fixed au = a.Dot(u);
	fixed av = a.Dot(v);

	if (-hw <= au && au <= hw && -hh <= av && av <= hh)
		return false; // a is inside

	fixed bu = b.Dot(u);
	fixed bv = b.Dot(v);

	if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
	fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}
Beispiel #6
0
fixed Geometry::DistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :    B    :  C
	 *     :         :
	 * - - ########### - -
	 *     #         #
	 *     # I       #
	 *  D  #    0    #  E     v
	 *     #         #        ^
	 *     #         #        |
	 * - - ########### - -      -->u
	 *     :         :
	 *  F  :    G    :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BIG regions should check distance to horizontal edges.
	 * Points in the DIE regions should check distance to vertical edges.
	 * Points in the ACFH regions should check distance to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// By symmetry (taking absolute values), we work only in the 0-B-C-E quadrant
	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u).Absolute();
	fixed dv = point.Dot(v).Absolute();

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (du < hw) // regions B, I, G
	{
		if (dv < hh) // region I
			return countInsideAsZero ? fixed::Zero() : std::min(hw - du, hh - dv);
		else
			return dv - hh;
	}
	else if (dv < hh) // regions D, E
	{
		return du - hw; // vertical edges
	}
	else // regions A, C, F, H
	{
		CFixedVector2D distance(du - hw, dv - hh);
		return distance.Length();
	}
}
/**
 * Debug visualisation of graph edges between regions.
 */
void HierarchicalPathfinder::AddDebugEdges(pass_class_t passClass)
{
	const EdgesMap& edges = m_Edges[passClass];
	const std::vector<Chunk>& chunks = m_Chunks[passClass];

	for (auto& edge : edges)
	{
		for (const RegionID& region: edge.second)
		{
			// Draw a line between the two regions' centers

			int i0, j0, i1, j1;
			chunks[edge.first.cj * m_ChunksW + edge.first.ci].RegionCenter(edge.first.r, i0, j0);
			chunks[region.cj * m_ChunksW + region.ci].RegionCenter(region.r, i1, j1);

			CFixedVector2D a, b;
			Pathfinding::NavcellCenter(i0, j0, a.X, a.Y);
			Pathfinding::NavcellCenter(i1, j1, b.X, b.Y);

			// Push the endpoints inwards a little to avoid overlaps
			CFixedVector2D d = b - a;
			d.Normalize(entity_pos_t::FromInt(1));
			a += d;
			b -= d;

			std::vector<float> xz;
			xz.push_back(a.X.ToFloat());
			xz.push_back(a.Y.ToFloat());
			xz.push_back(b.X.ToFloat());
			xz.push_back(b.Y.ToFloat());

			m_DebugOverlayLines.emplace_back();
			m_DebugOverlayLines.back().m_Color = CColor(1.0, 1.0, 1.0, 1.0);
			SimRender::ConstructLineOnGround(*m_SimContext, xz, m_DebugOverlayLines.back(), true);
		}
	}
}
Beispiel #8
0
// Same as above except it does not use Length
// For explanations refer to DistanceToSquare
fixed Geometry::DistanceToSquareSquared(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
	fixed du = point.Dot(u).Absolute();
	fixed dv = point.Dot(v).Absolute();
	
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;
	
	if (du < hw) // regions B, I, G
	{
		if (dv < hh) // region I
			return countInsideAsZero ? fixed::Zero() : std::min((hw - du).Square(), (hh - dv).Square());
		else
			return (dv - hh).Square(); // horizontal edges
	}
	else if (dv < hh) // regions D, E
	{
		return (du - hw).Square(); // vertical edges
	}
	else // regions A, C, F, H
	{
		return (du - hw).Square() + (dv - hh).Square();
	}
}
Beispiel #9
0
	virtual CFixedVector3D PickSpawnPoint(entity_id_t spawned)
	{
		// Try to find a free space around the building's footprint.
		// (Note that we use the footprint, not the obstruction shape - this might be a bit dodgy
		// because the footprint might be inside the obstruction, but it hopefully gives us a nicer
		// shape.)

		const CFixedVector3D error(fixed::FromInt(-1), fixed::FromInt(-1), fixed::FromInt(-1));

		CmpPtr<ICmpPosition> cmpPosition(GetSimContext(), GetEntityId());
		if (!cmpPosition || !cmpPosition->IsInWorld())
			return error;

		CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSimContext(), SYSTEM_ENTITY);
		if (!cmpObstructionManager)
			return error;

		entity_pos_t spawnedRadius;
		ICmpObstructionManager::tag_t spawnedTag;

		CmpPtr<ICmpObstruction> cmpSpawnedObstruction(GetSimContext(), spawned);
		if (cmpSpawnedObstruction)
		{
			spawnedRadius = cmpSpawnedObstruction->GetUnitRadius();
			spawnedTag = cmpSpawnedObstruction->GetObstruction();
		}
		// else use zero radius

		// Get passability class from UnitMotion
		CmpPtr<ICmpUnitMotion> cmpUnitMotion(GetSimContext(), spawned);
		if (!cmpUnitMotion)
			return error;

		ICmpPathfinder::pass_class_t spawnedPass = cmpUnitMotion->GetPassabilityClass();
		CmpPtr<ICmpPathfinder> cmpPathfinder(GetSimContext(), SYSTEM_ENTITY);
		if (!cmpPathfinder)
			return error;
		
		CFixedVector2D initialPos = cmpPosition->GetPosition2D();
		entity_angle_t initialAngle = cmpPosition->GetRotation().Y;

		// Max spawning distance in tiles
		const i32 maxSpawningDistance = 4;

		if (m_Shape == CIRCLE)
		{
			// Expand outwards from foundation
			for (i32 dist = 0; dist <= maxSpawningDistance; ++dist)
			{
				// The spawn point should be far enough from this footprint to fit the unit, plus a little gap
				entity_pos_t clearance = spawnedRadius + entity_pos_t::FromInt(2 + (int)TERRAIN_TILE_SIZE*dist);
				entity_pos_t radius = m_Size0 + clearance;

				// Try equally-spaced points around the circle in alternating directions, starting from the front
				const i32 numPoints = 31 + 2*dist;
				for (i32 i = 0; i < (numPoints+1)/2; i = (i > 0 ? -i : 1-i)) // [0, +1, -1, +2, -2, ... (np-1)/2, -(np-1)/2]
				{
					entity_angle_t angle = initialAngle + (entity_angle_t::Pi()*2).Multiply(entity_angle_t::FromInt(i)/(int)numPoints);

					fixed s, c;
					sincos_approx(angle, s, c);

					CFixedVector3D pos (initialPos.X + s.Multiply(radius), fixed::Zero(), initialPos.Y + c.Multiply(radius));

					SkipTagObstructionFilter filter(spawnedTag); // ignore collisions with the spawned entity
					if (cmpPathfinder->CheckUnitPlacement(filter, pos.X, pos.Z, spawnedRadius, spawnedPass) == ICmpObstruction::FOUNDATION_CHECK_SUCCESS)
						return pos; // this position is okay, so return it
				}
			}
		}
		else
		{
			fixed s, c;
			sincos_approx(initialAngle, s, c);

			// Expand outwards from foundation
			for (i32 dist = 0; dist <= maxSpawningDistance; ++dist)
			{
				// The spawn point should be far enough from this footprint to fit the unit, plus a little gap
				entity_pos_t clearance = spawnedRadius + entity_pos_t::FromInt(2 + (int)TERRAIN_TILE_SIZE*dist);

				for (i32 edge = 0; edge < 4; ++edge)
				{
					// Try equally-spaced points along the edge in alternating directions, starting from the middle
					const i32 numPoints = 9 + 2*dist;

					// Compute the direction and length of the current edge
					CFixedVector2D dir;
					fixed sx, sy;
					switch (edge)
					{
					case 0:
						dir = CFixedVector2D(c, -s);
						sx = m_Size0;
						sy = m_Size1;
						break;
					case 1:
						dir = CFixedVector2D(-s, -c);
						sx = m_Size1;
						sy = m_Size0;
						break;
					case 2:
						dir = CFixedVector2D(s, c);
						sx = m_Size1;
						sy = m_Size0;
						break;
					case 3:
						dir = CFixedVector2D(-c, s);
						sx = m_Size0;
						sy = m_Size1;
						break;
					}
					CFixedVector2D center = initialPos - dir.Perpendicular().Multiply(sy/2 + clearance);
					dir = dir.Multiply((sx + clearance*2) / (int)(numPoints-1));

					for (i32 i = 0; i < (numPoints+1)/2; i = (i > 0 ? -i : 1-i)) // [0, +1, -1, +2, -2, ... (np-1)/2, -(np-1)/2]
					{
						CFixedVector2D pos (center + dir*i);

						SkipTagObstructionFilter filter(spawnedTag); // ignore collisions with the spawned entity
						if (cmpPathfinder->CheckUnitPlacement(filter, pos.X, pos.Y, spawnedRadius, spawnedPass) == ICmpObstruction::FOUNDATION_CHECK_SUCCESS)
							return CFixedVector3D(pos.X, fixed::Zero(), pos.Y); // this position is okay, so return it
					}
				}
			}
		}

		return error;
	}
Beispiel #10
0
/**
 * Separating axis test; returns true if the square defined by u/v/halfSize at the origin
 * is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
 */
static bool SquareSAT(const CFixedVector2D& a, const CFixedVector2D& axis, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	CFixedVector2D p = axis.Perpendicular();
	if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;

	return false;
}
Beispiel #11
0
CFixedVector2D Geometry::NearestPointOnSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :         :  C
	 *     :         :
	 * - - #### B #### - -
	 *     #\       /#
	 *     # \     / #
	 *     D  --0--  E        v
	 *     # /     \ #        ^
	 *     #/       \#        |
	 * - - #### G #### - -      -->u
	 *     :         :
	 *  F  :         :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BDEG regions are nearest to the corresponding edge.
	 * Points in the ACFH regions are nearest to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u);
	fixed dv = point.Dot(v);

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
	{
		if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
		{
			if (du >= fixed::Zero()) // E
				return u.Multiply(hw) + v.Multiply(dv);
			else // D
				return -u.Multiply(hw) + v.Multiply(dv);
		}
		else // B, G
		{
			if (dv >= fixed::Zero()) // B
				return v.Multiply(hh) + u.Multiply(du);
			else // G
				return -v.Multiply(hh) + u.Multiply(du);
		}
	}
	else if (-hh < dv && dv < hh) // regions D, E outside the square
	{
		if (du >= fixed::Zero()) // E
			return u.Multiply(hw) + v.Multiply(dv);
		else // D
			return -u.Multiply(hw) + v.Multiply(dv);
	}
	else // regions A, C, F, H
	{
		CFixedVector2D corner;
		if (du < fixed::Zero()) // A, F
			corner -= u.Multiply(hw);
		else // C, H
			corner += u.Multiply(hw);
		if (dv < fixed::Zero()) // F, H
			corner -= v.Multiply(hh);
		else // A, C
			corner += v.Multiply(hh);

		return corner;
	}
}