/*
   * Generate a piece of code in F that enforces I, protecting calls to call
   */
  void
  protectCall(Function* F, Function* const call, const FunctionContract& I)
  {
    std::vector<Value*> ary;
    ary.reserve(F->getArgumentList().size());
    for (Function::ArgumentListType::iterator i = F->getArgumentList().begin(),
        e = F->getArgumentList().end(); i != e; ++i) {
      ary.push_back(&*i);
    }

    BasicBlock* call_bb = BasicBlock::Create(F->getContext());
    {
      F->getBasicBlockList().push_back(call_bb);
      IRBuilder<> builder(call_bb);

      if (F->getReturnType() == Type::getVoidTy(F->getContext())) {
        CallInst* ci = builder.CreateCall(call, ArrayRef<Value*> (ary), "");
        ci->setTailCall(true);
        builder.CreateRetVoid();
      } else {
        CallInst* ci = builder.CreateCall(call, ArrayRef<Value*> (ary),
            "delegate");
        ci->setTailCall(true);
        builder.CreateRet(ci);
      }
    }

    BasicBlock* fail_bb = BasicBlock::Create(F->getContext());
    {
      std::vector<Type*> arg_types;
      arg_types.reserve(1);
      arg_types.push_back(Type::getInt8PtrTy(F->getContext()));

      FunctionType* policyErrorType = FunctionType::get(Type::getVoidTy(
          F->getContext()), ArrayRef<Type*> (arg_types), true);
      Constant* policyError = F->getParent()->getOrInsertFunction(
          "policyError", policyErrorType);

      F->getBasicBlockList().push_back(fail_bb);
      IRBuilder<> builder(fail_bb);

      Constant* name = llvm::ConstantDataArray::getString(F->getContext(), F->getName(), true);
      GlobalVariable *gv = new GlobalVariable(*F->getParent(), name->getType(),
          true, GlobalVariable::LinkOnceODRLinkage, name, "");

      Value* v = builder.CreateConstGEP2_32(gv, 0, 0);
      ary.insert(ary.begin(), v);
      builder.CreateCall(policyError, ArrayRef<Value*> (ary), "");
      if (F->getReturnType() == Type::getVoidTy(F->getContext())) {
        builder.CreateRetVoid();
      } else {
        builder.CreateRet(UndefValue::get(F->getReturnType()));
      }
    }

    I.emitEntryTest(F, call_bb, fail_bb);
  }
Beispiel #2
0
/// Generate a thunk that puts the LSDA of ParentFunc in EAX and then calls
/// PersonalityFn, forwarding the parameters passed to PEXCEPTION_ROUTINE:
///   typedef _EXCEPTION_DISPOSITION (*PEXCEPTION_ROUTINE)(
///       _EXCEPTION_RECORD *, void *, _CONTEXT *, void *);
/// We essentially want this code:
///   movl $lsda, %eax
///   jmpl ___CxxFrameHandler3
Function *WinEHStatePass::generateLSDAInEAXThunk(Function *ParentFunc) {
  LLVMContext &Context = ParentFunc->getContext();
  Type *Int32Ty = Type::getInt32Ty(Context);
  Type *Int8PtrType = Type::getInt8PtrTy(Context);
  Type *ArgTys[5] = {Int8PtrType, Int8PtrType, Int8PtrType, Int8PtrType,
                     Int8PtrType};
  FunctionType *TrampolineTy =
      FunctionType::get(Int32Ty, makeArrayRef(&ArgTys[0], 4),
                        /*isVarArg=*/false);
  FunctionType *TargetFuncTy =
      FunctionType::get(Int32Ty, makeArrayRef(&ArgTys[0], 5),
                        /*isVarArg=*/false);
  Function *Trampoline = Function::Create(
      TrampolineTy, GlobalValue::InternalLinkage,
      Twine("__ehhandler$") + ParentFunc->getName(), TheModule);
  BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", Trampoline);
  IRBuilder<> Builder(EntryBB);
  Value *LSDA = emitEHLSDA(Builder, ParentFunc);
  Value *CastPersonality =
      Builder.CreateBitCast(PersonalityFn, TargetFuncTy->getPointerTo());
  auto AI = Trampoline->arg_begin();
  Value *Args[5] = {LSDA, AI++, AI++, AI++, AI++};
  CallInst *Call = Builder.CreateCall(CastPersonality, Args);
  // Can't use musttail due to prototype mismatch, but we can use tail.
  Call->setTailCall(true);
  // Set inreg so we pass it in EAX.
  Call->addAttribute(1, Attribute::InReg);
  Builder.CreateRet(Call);
  return Trampoline;
}
Beispiel #3
0
void WorklessInstrument::CreateIfElseBlock(Loop * pLoop, vector<BasicBlock *> & vecAdded)
{
	BasicBlock * pPreHeader = pLoop->getLoopPreheader();
	BasicBlock * pHeader = pLoop->getHeader();
	Function * pInnerFunction = pPreHeader->getParent();
	Module * pModule = pPreHeader->getParent()->getParent();

	BasicBlock * pElseBody = NULL;
	TerminatorInst * pTerminator = NULL;

	BranchInst * pBranch = NULL;
	LoadInst * pLoad1 = NULL;
	LoadInst * pLoad2 = NULL;
	LoadInst * pLoadnumGlobalCounter = NULL;
	BinaryOperator * pAddOne = NULL;
	StoreInst * pStoreNew = NULL;
	CmpInst * pCmp = NULL;
	CallInst * pCall = NULL;
	StoreInst * pStore = NULL;
	AttributeSet emptySet;

	pTerminator = pPreHeader->getTerminator();
	pLoadnumGlobalCounter = new LoadInst(this->numGlobalCounter, "", false, pTerminator);
	pLoadnumGlobalCounter->setAlignment(8);
	pAddOne = BinaryOperator::Create(Instruction::Add, pLoadnumGlobalCounter, this->ConstantLong1, "add", pTerminator);
	pStoreNew = new StoreInst(pAddOne, this->numGlobalCounter, false, pTerminator);
	pStoreNew->setAlignment(8);

	pElseBody = BasicBlock::Create(pModule->getContext(), ".else.body.CPI", pInnerFunction, 0);

	pLoad2 = new LoadInst(this->CURRENT_SAMPLE, "", false, pTerminator);
	pLoad2->setAlignment(8);
	pCmp = new ICmpInst(pTerminator, ICmpInst::ICMP_SLT, pAddOne, pLoad2, "");
	pBranch = BranchInst::Create(pHeader, pElseBody, pCmp );
	ReplaceInstWithInst(pTerminator, pBranch);

	pLoad1 = new LoadInst(this->SAMPLE_RATE, "", false, pElseBody);
	pCall = CallInst::Create(this->geo, pLoad1, "", pElseBody);
  	pCall->setCallingConv(CallingConv::C);
  	pCall->setTailCall(false);
  	pCall->setAttributes(emptySet);

  	CastInst * pCast = CastInst::CreateIntegerCast(pCall, this->LongType, true, "", pElseBody);
  	//pBinary = BinaryOperator::Create(Instruction::Add, pLoad2, pCast, "add", pIfBody);
  	pStore = new StoreInst(pCast, this->CURRENT_SAMPLE, false, pElseBody);
  	pStore->setAlignment(8);

  	pStore = new StoreInst(this->ConstantLong0, this->numGlobalCounter, false, pElseBody);
  	pStore->setAlignment(8);

  	pLoad1 = new LoadInst(this->numInstances, "", false, pElseBody);
  	pLoad1->setAlignment(8);
  	pAddOne = BinaryOperator::Create(Instruction::Add, pLoad1, this->ConstantLong1, "add", pElseBody);
	pStore = new StoreInst(pAddOne, this->numInstances, false, pElseBody);
	pStore->setAlignment(8);

	vecAdded.push_back(pPreHeader);
	vecAdded.push_back(pElseBody);
}
Beispiel #4
0
Function* PrepareCSI::switchIndirect(Function* F, GlobalVariable* switcher,
                                     vector<Function*>& replicas){
  F->dropAllReferences();
  
  BasicBlock* newEntry = BasicBlock::Create(*Context, "newEntry", F);
  vector<Value*> callArgs;
  for(Function::arg_iterator k = F->arg_begin(), ke = F->arg_end(); k != ke; ++k)
    callArgs.push_back(k);
  
  // set up the switch
  LoadInst* whichCall = new LoadInst(switcher, "chooseCall", true, newEntry);
  SwitchInst* callSwitch = NULL;
  
  // stuff we need
  IntegerType* tInt = Type::getInt32Ty(*Context);

  // create one bb for each possible call (instrumentation scheme)
  bool aZero = false;
  for(unsigned int i = 0; i < replicas.size(); ++i){
    Function* newF = replicas[i];
    BasicBlock* bb = BasicBlock::Create(*Context, "call", F);
    if(callSwitch == NULL){
      callSwitch = SwitchInst::Create(whichCall, bb, replicas.size(),
                                      newEntry);
    }
    string funcName = newF->getName().str();

    if(funcName.length() > 5 &&
       funcName.substr(funcName.length()-5, 5) == "$none"){
      callSwitch->addCase(ConstantInt::get(tInt, 0), bb);
      if(aZero)
        report_fatal_error("multiple defaults for function '" +
                           F->getName() + "'");
      aZero = true;
    }
    else
      callSwitch->addCase(ConstantInt::get(tInt, i+1), bb);

    CallInst* oneCall = CallInst::Create(newF, callArgs,
       (F->getReturnType()->isVoidTy()) ? "" : "theCall", bb);
    oneCall->setTailCall(true);
    if(F->getReturnType()->isVoidTy())
      ReturnInst::Create(*Context, bb);
    else
      ReturnInst::Create(*Context, oneCall, bb);
  }
  // note that we intentionally started numbering the cases from 1 so that the
  // zero case is reserved for the uninstrumented variant (if there is one)
  if(!aZero)
    switcher->setInitializer(ConstantInt::get(tInt, 1));

  return(F);
}
/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
/// direct uses of G with bitcast(F). Deletes G.
void MergeFunctions::WriteThunk(Function *F, Function *G) const {
  if (!G->mayBeOverridden()) {
    // Redirect direct callers of G to F.
    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
         UI != UE;) {
      Value::use_iterator TheIter = UI;
      ++UI;
      CallSite CS(*TheIter);
      if (CS && CS.isCallee(TheIter))
        TheIter.getUse().set(BitcastF);
    }
  }

  // If G was internal then we may have replaced all uses of G with F. If so,
  // stop here and delete G. There's no need for a thunk.
  if (G->hasLocalLinkage() && G->use_empty()) {
    G->eraseFromParent();
    return;
  }

  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
                                    G->getParent());
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
  IRBuilder<false> Builder(BB);

  SmallVector<Value *, 16> Args;
  unsigned i = 0;
  const FunctionType *FFTy = F->getFunctionType();
  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
       AI != AE; ++AI) {
    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
    ++i;
  }

  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
  CI->setTailCall();
  CI->setCallingConv(F->getCallingConv());
  if (NewG->getReturnType()->isVoidTy()) {
    Builder.CreateRetVoid();
  } else {
    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
  }

  NewG->copyAttributesFrom(G);
  NewG->takeName(G);
  G->replaceAllUsesWith(NewG);
  G->eraseFromParent();

  DEBUG(dbgs() << "WriteThunk: " << NewG->getName() << '\n');
  ++NumThunksWritten;
}
static InstTransResult doCallPC(InstPtr ip, BasicBlock *&b, VA tgtAddr) {
	Module		*M = b->getParent()->getParent();
	Function	*ourF = b->getParent();
    //insert a call to the call function

	//this function will be a translated function that we emit, so we should
	//be able to look it up in our module.

    std::string			fname = "sub_"+to_string<VA>(tgtAddr, std::hex);
    Function        *F = M->getFunction(fname);

    TASSERT( F != NULL, "Could not find function: " + fname );

    writeFakeReturnAddr(b);

	//we need to wrap up our current context
	writeLocalsToContext(b, 32, ABICallStore);

	//make the call, the only argument should be our parents arguments
	TASSERT(ourF->arg_size() == 1, "");

    std::vector<Value*>	subArgs;

	subArgs.push_back(ourF->arg_begin());


	CallInst *c = CallInst::Create(F, subArgs, "", b);
	c->setCallingConv(F->getCallingConv());

    if ( ip->has_local_noreturn() ) {
        // noreturn functions just hit unreachable
        std::cout << __FUNCTION__ << ": Adding Unreachable Instruction to local noreturn" << std::endl;
        c->setDoesNotReturn();
        c->setTailCall();
        Value *unreachable = new UnreachableInst(b->getContext(), b);
        return EndBlock;
    }

	//spill our context back
	writeContextToLocals(b, 32, ABIRetSpill);

	//and we can continue to run the old code

    return ContinueBlock;
}
Beispiel #7
0
// Replace G with a simple tail call to bitcast(F). Also replace direct uses
// of G with bitcast(F). Deletes G.
void MergeFunctions::writeThunk(Function *F, Function *G) {
  if (!G->mayBeOverridden()) {
    // Redirect direct callers of G to F.
    replaceDirectCallers(G, F);
  }

  // If G was internal then we may have replaced all uses of G with F. If so,
  // stop here and delete G. There's no need for a thunk.
  if (G->hasLocalLinkage() && G->use_empty()) {
    G->eraseFromParent();
    return;
  }

  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
                                    G->getParent());
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
  IRBuilder<false> Builder(BB);

  SmallVector<Value *, 16> Args;
  unsigned i = 0;
  FunctionType *FFTy = F->getFunctionType();
  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
       AI != AE; ++AI) {
    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
    ++i;
  }

  CallInst *CI = Builder.CreateCall(F, Args);
  CI->setTailCall();
  CI->setCallingConv(F->getCallingConv());
  if (NewG->getReturnType()->isVoidTy()) {
    Builder.CreateRetVoid();
  } else {
    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
  }

  NewG->copyAttributesFrom(G);
  NewG->takeName(G);
  removeUsers(G);
  G->replaceAllUsesWith(NewG);
  G->eraseFromParent();

  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
  ++NumThunksWritten;
}
Beispiel #8
0
void makeStub(Function &F, Value &ImplPointer) {
  assert(F.isDeclaration() && "Can't turn a definition into a stub.");
  assert(F.getParent() && "Function isn't in a module.");
  Module &M = *F.getParent();
  BasicBlock *EntryBlock = BasicBlock::Create(M.getContext(), "entry", &F);
  IRBuilder<> Builder(EntryBlock);
  LoadInst *ImplAddr = Builder.CreateLoad(&ImplPointer);
  std::vector<Value*> CallArgs;
  for (auto &A : F.args())
    CallArgs.push_back(&A);
  CallInst *Call = Builder.CreateCall(ImplAddr, CallArgs);
  Call->setTailCall();
  Call->setAttributes(F.getAttributes());
  if (F.getReturnType()->isVoidTy())
    Builder.CreateRetVoid();
  else
    Builder.CreateRet(Call);
}
/// Replace \p Thunk with a simple tail call to \p ToFunc. Also add parameters
/// to the call to \p ToFunc, which are defined by the FuncIdx's value in
/// \p Params.
void SwiftMergeFunctions::writeThunk(Function *ToFunc, Function *Thunk,
                                     const ParamInfos &Params,
                                     unsigned FuncIdx) {
  // Delete the existing content of Thunk.
  Thunk->dropAllReferences();
  
  BasicBlock *BB = BasicBlock::Create(Thunk->getContext(), "", Thunk);
  IRBuilder<> Builder(BB);

  SmallVector<Value *, 16> Args;
  unsigned ParamIdx = 0;
  FunctionType *ToFuncTy = ToFunc->getFunctionType();
  
  // Add arguments which are passed through Thunk.
  for (Argument & AI : Thunk->args()) {
    Args.push_back(createCast(Builder, &AI, ToFuncTy->getParamType(ParamIdx)));
    ++ParamIdx;
  }
  // Add new arguments defined by Params.
  for (const ParamInfo &PI : Params) {
    assert(ParamIdx < ToFuncTy->getNumParams());
    Args.push_back(createCast(Builder, PI.Values[FuncIdx],
                   ToFuncTy->getParamType(ParamIdx)));
    ++ParamIdx;
  }

  CallInst *CI = Builder.CreateCall(ToFunc, Args);
  CI->setTailCall();
  CI->setCallingConv(ToFunc->getCallingConv());
  CI->setAttributes(ToFunc->getAttributes());
  if (Thunk->getReturnType()->isVoidTy()) {
    Builder.CreateRetVoid();
  } else {
    Builder.CreateRet(createCast(Builder, CI, Thunk->getReturnType()));
  }

  LLVM_DEBUG(dbgs() << "    writeThunk: " << Thunk->getName() << '\n');
  ++NumSwiftThunksWritten;
}
Beispiel #10
0
static void ThunkGToF(Function *F, Function *G) {
  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
                                    G->getParent());
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);

  std::vector<Value *> Args;
  unsigned i = 0;
  const FunctionType *FFTy = F->getFunctionType();
  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
       AI != AE; ++AI) {
    if (FFTy->getParamType(i) == AI->getType())
      Args.push_back(AI);
    else {
      Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
      Args.push_back(BCI);
    }
    ++i;
  }

  CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
  CI->setTailCall();
  CI->setCallingConv(F->getCallingConv());
  if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
    ReturnInst::Create(F->getContext(), BB);
  } else if (CI->getType() != NewG->getReturnType()) {
    Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
    ReturnInst::Create(F->getContext(), BCI, BB);
  } else {
    ReturnInst::Create(F->getContext(), CI, BB);
  }

  NewG->copyAttributesFrom(G);
  NewG->takeName(G);
  G->replaceAllUsesWith(NewG);
  G->eraseFromParent();

  // TODO: look at direct callers to G and make them all direct callers to F.
}
Beispiel #11
0
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
                              const std::vector<GenericValue> &ArgValues) {
  assert(F && "Function *F was null at entry to run()");

  void *FPtr = getPointerToFunction(F);
  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
  const FunctionType *FTy = F->getFunctionType();
  const Type *RetTy = FTy->getReturnType();

  assert((FTy->getNumParams() == ArgValues.size() ||
          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
         "Wrong number of arguments passed into function!");
  assert(FTy->getNumParams() == ArgValues.size() &&
         "This doesn't support passing arguments through varargs (yet)!");

  // Handle some common cases first.  These cases correspond to common `main'
  // prototypes.
  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
    switch (ArgValues.size()) {
    case 3:
      if (FTy->getParamType(0)->isIntegerTy(32) &&
          FTy->getParamType(1)->isPointerTy() &&
          FTy->getParamType(2)->isPointerTy()) {
        int (*PF)(int, char **, const char **) =
          (int(*)(int, char **, const char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
                                 (char **)GVTOP(ArgValues[1]),
                                 (const char **)GVTOP(ArgValues[2])));
        return rv;
      }
      break;
    case 2:
      if (FTy->getParamType(0)->isIntegerTy(32) &&
          FTy->getParamType(1)->isPointerTy()) {
        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
                                 (char **)GVTOP(ArgValues[1])));
        return rv;
      }
      break;
    case 1:
      if (FTy->getNumParams() == 1 &&
          FTy->getParamType(0)->isIntegerTy(32)) {
        GenericValue rv;
        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
        return rv;
      }
      break;
    }
  }

  // Handle cases where no arguments are passed first.
  if (ArgValues.empty()) {
    GenericValue rv;
    switch (RetTy->getTypeID()) {
    default: llvm_unreachable("Unknown return type for function call!");
    case Type::IntegerTyID: {
      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
      if (BitWidth == 1)
        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 8)
        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 16)
        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 32)
        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 64)
        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
      else
        llvm_unreachable("Integer types > 64 bits not supported");
      return rv;
    }
    case Type::VoidTyID:
      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
      return rv;
    case Type::FloatTyID:
      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
      return rv;
    case Type::DoubleTyID:
      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
      return rv;
    case Type::X86_FP80TyID:
    case Type::FP128TyID:
    case Type::PPC_FP128TyID:
      llvm_unreachable("long double not supported yet");
      return rv;
    case Type::PointerTyID:
      return PTOGV(((void*(*)())(intptr_t)FPtr)());
    }
  }

  // Okay, this is not one of our quick and easy cases.  Because we don't have a
  // full FFI, we have to codegen a nullary stub function that just calls the
  // function we are interested in, passing in constants for all of the
  // arguments.  Make this function and return.

  // First, create the function.
  FunctionType *STy=FunctionType::get(RetTy, false);
  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
                                    F->getParent());

  // Insert a basic block.
  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);

  // Convert all of the GenericValue arguments over to constants.  Note that we
  // currently don't support varargs.
  SmallVector<Value*, 8> Args;
  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
    Constant *C = 0;
    const Type *ArgTy = FTy->getParamType(i);
    const GenericValue &AV = ArgValues[i];
    switch (ArgTy->getTypeID()) {
    default: llvm_unreachable("Unknown argument type for function call!");
    case Type::IntegerTyID:
        C = ConstantInt::get(F->getContext(), AV.IntVal);
        break;
    case Type::FloatTyID:
        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
        break;
    case Type::DoubleTyID:
        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
        break;
    case Type::PPC_FP128TyID:
    case Type::X86_FP80TyID:
    case Type::FP128TyID:
        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
        break;
    case Type::PointerTyID:
      void *ArgPtr = GVTOP(AV);
      if (sizeof(void*) == 4)
        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
                             (int)(intptr_t)ArgPtr);
      else
        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
                             (intptr_t)ArgPtr);
      // Cast the integer to pointer
      C = ConstantExpr::getIntToPtr(C, ArgTy);
      break;
    }
    Args.push_back(C);
  }

  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
                                       "", StubBB);
  TheCall->setCallingConv(F->getCallingConv());
  TheCall->setTailCall();
  if (!TheCall->getType()->isVoidTy())
    // Return result of the call.
    ReturnInst::Create(F->getContext(), TheCall, StubBB);
  else
    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.

  // Finally, call our nullary stub function.
  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
  // Erase it, since no other function can have a reference to it.
  Stub->eraseFromParent();
  // And return the result.
  return Result;
}
Beispiel #12
0
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
                             SmallPtrSetImpl<Argument*> &ArgsToPromote,
                             SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type*> Params;

  typedef std::set<IndicesVector> ScalarizeTable;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  //
  std::map<Argument*, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  // We need to keep the original loads for each argument and the elements
  // of the argument that are accessed.
  std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;

  // Attribute - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeSet, 8> AttributesVec;
  const AttributeSet &PAL = F->getAttributes();

  // Add any return attributes.
  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
    AttributesVec.push_back(AttributeSet::get(F->getContext(),
                                              PAL.getRetAttributes()));

  // First, determine the new argument list
  unsigned ArgIndex = 1;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgIndex) {
    if (ByValArgsToTransform.count(I)) {
      // Simple byval argument? Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      StructType *STy = cast<StructType>(AgTy);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        Params.push_back(STy->getElementType(i));
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
      if (attrs.hasAttributes(ArgIndex)) {
        AttrBuilder B(attrs, ArgIndex);
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
      }
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
      for (User *U : I->users()) {
        Instruction *UI = cast<Instruction>(U);
        assert(isa<LoadInst>(UI) || isa<GetElementPtrInst>(UI));
        IndicesVector Indices;
        Indices.reserve(UI->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(Indices);
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(UI->user_back());
        OriginalLoads[std::make_pair(I, Indices)] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
             E = ArgIndices.end(); SI != E; ++SI) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  // Add any function attributes.
  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
                                              PAL.getFnAttributes()));

  Type *RetTy = FTy->getReturnType();

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
  NF->copyAttributesFrom(F);

  // Patch the pointer to LLVM function in debug info descriptor.
  auto DI = FunctionDIs.find(F);
  if (DI != FunctionDIs.end()) {
    DISubprogram SP = DI->second;
    SP.replaceFunction(NF);
    // Ensure the map is updated so it can be reused on subsequent argument
    // promotions of the same function.
    FunctionDIs.erase(DI);
    FunctionDIs[NF] = SP;
  }

  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
        << "From: " << *F);
  
  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
  AttributesVec.clear();

  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Get the alias analysis information that we need to update to reflect our
  // changes.
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  // Get a new callgraph node for NF.
  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value*, 16> Args;
  while (!F->use_empty()) {
    CallSite CS(F->user_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttributeSet &CallPAL = CS.getAttributes();

    // Add any return attributes.
    if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
      AttributesVec.push_back(AttributeSet::get(F->getContext(),
                                                CallPAL.getRetAttributes()));

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgIndex = 1;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I, ++AI, ++ArgIndex)
      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
        Args.push_back(*AI);          // Unmodified argument

        if (CallPAL.hasAttributes(ArgIndex)) {
          AttrBuilder B(CallPAL, ArgIndex);
          AttributesVec.
            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
        }
      } else if (ByValArgsToTransform.count(I)) {
        // Emit a GEP and load for each element of the struct.
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
                                                 (*AI)->getName()+"."+utostr(i),
                                                 Call);
          // TODO: Tell AA about the new values?
          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value*> Ops;
        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
               E = ArgIndices.end(); SI != E; ++SI) {
          Value *V = *AI;
          LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, *SI)];
          if (!SI->empty()) {
            Ops.reserve(SI->size());
            Type *ElTy = V->getType();
            for (IndicesVector::const_iterator II = SI->begin(),
                 IE = SI->end(); II != IE; ++II) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              Type *IdxTy = (ElTy->isStructTy() ?
                    Type::getInt32Ty(F->getContext()) : 
                    Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, *II));
              // Keep track of the type we're currently indexing.
              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
            }
            // And create a GEP to extract those indices.
            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
            Ops.clear();
            AA.copyValue(OrigLoad->getOperand(0), V);
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
          newLoad->setAlignment(OrigLoad->getAlignment());
          // Transfer the AA info too.
          AAMDNodes AAInfo;
          OrigLoad->getAAMetadata(AAInfo);
          newLoad->setAAMetadata(AAInfo);

          Args.push_back(newLoad);
          AA.copyValue(OrigLoad, Args.back());
        }
      }

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
      Args.push_back(*AI);
      if (CallPAL.hasAttributes(ArgIndex)) {
        AttrBuilder B(CallPAL, ArgIndex);
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
      }
    }

    // Add any function attributes.
    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
                                                CallPAL.getFnAttributes()));

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args, "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
                                                            AttributesVec));
    } else {
      New = CallInst::Create(NF, Args, "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
                                                          AttributesVec));
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    New->setDebugLoc(Call->getDebugLoc());
    Args.clear();
    AttributesVec.clear();

    // Update the alias analysis implementation to know that we are replacing
    // the old call with a new one.
    AA.replaceWithNewValue(Call, New);

    // Update the callgraph to know that the callsite has been transformed.
    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    CalleeNode->replaceCallEdge(Call, New, NF_CGN);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(New);
      New->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  //
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I) {
    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      AA.replaceWithNewValue(I, I2);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = NF->begin()->begin();

      // Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
      StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = 
          GetElementPtrInst::Create(TheAlloca, Idxs,
                                    TheAlloca->getName()+"."+Twine(i), 
                                    InsertPt);
        I2->setName(I->getName()+"."+Twine(i));
        new StoreInst(I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(I);
      AA.replaceWithNewValue(I, TheAlloca);

      // If the alloca is used in a call, we must clear the tail flag since
      // the callee now uses an alloca from the caller.
      for (User *U : TheAlloca->users()) {
        CallInst *Call = dyn_cast<CallInst>(U);
        if (!Call)
          continue;
        Call->setTailCall(false);
      }
      continue;
    }

    if (I->use_empty()) {
      AA.deleteValue(I);
      continue;
    }

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
        assert(ArgIndices.begin()->empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName()+".val");
        LI->replaceAllUsesWith(I2);
        AA.replaceWithNewValue(LI, I2);
        LI->eraseFromParent();
        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
              << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             *It != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
            NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
              << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->user_back());
          L->replaceAllUsesWith(TheArg);
          AA.replaceWithNewValue(L, TheArg);
          L->eraseFromParent();
        }
        AA.deleteValue(GEP);
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    std::advance(I2, ArgIndices.size());
  }

  // Tell the alias analysis that the old function is about to disappear.
  AA.replaceWithNewValue(F, NF);

  
  NF_CGN->stealCalledFunctionsFrom(CG[F]);
  
  // Now that the old function is dead, delete it.  If there is a dangling
  // reference to the CallgraphNode, just leave the dead function around for
  // someone else to nuke.
  CallGraphNode *CGN = CG[F];
  if (CGN->getNumReferences() == 0)
    delete CG.removeFunctionFromModule(CGN);
  else
    F->setLinkage(Function::ExternalLinkage);
  
  return NF_CGN;
}
static bool markTails(Function &F, bool &AllCallsAreTailCalls) {
  if (F.callsFunctionThatReturnsTwice())
    return false;
  AllCallsAreTailCalls = true;

  // The local stack holds all alloca instructions and all byval arguments.
  AllocaDerivedValueTracker Tracker;
  for (Argument &Arg : F.args()) {
    if (Arg.hasByValAttr())
      Tracker.walk(&Arg);
  }
  for (auto &BB : F) {
    for (auto &I : BB)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
        Tracker.walk(AI);
  }

  bool Modified = false;

  // Track whether a block is reachable after an alloca has escaped. Blocks that
  // contain the escaping instruction will be marked as being visited without an
  // escaped alloca, since that is how the block began.
  enum VisitType {
    UNVISITED,
    UNESCAPED,
    ESCAPED
  };
  DenseMap<BasicBlock *, VisitType> Visited;

  // We propagate the fact that an alloca has escaped from block to successor.
  // Visit the blocks that are propagating the escapedness first. To do this, we
  // maintain two worklists.
  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;

  // We may enter a block and visit it thinking that no alloca has escaped yet,
  // then see an escape point and go back around a loop edge and come back to
  // the same block twice. Because of this, we defer setting tail on calls when
  // we first encounter them in a block. Every entry in this list does not
  // statically use an alloca via use-def chain analysis, but may find an alloca
  // through other means if the block turns out to be reachable after an escape
  // point.
  SmallVector<CallInst *, 32> DeferredTails;

  BasicBlock *BB = &F.getEntryBlock();
  VisitType Escaped = UNESCAPED;
  do {
    for (auto &I : *BB) {
      if (Tracker.EscapePoints.count(&I))
        Escaped = ESCAPED;

      CallInst *CI = dyn_cast<CallInst>(&I);
      if (!CI || CI->isTailCall())
        continue;

      bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();

      if (!IsNoTail && CI->doesNotAccessMemory()) {
        // A call to a readnone function whose arguments are all things computed
        // outside this function can be marked tail. Even if you stored the
        // alloca address into a global, a readnone function can't load the
        // global anyhow.
        //
        // Note that this runs whether we know an alloca has escaped or not. If
        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
        bool SafeToTail = true;
        for (auto &Arg : CI->arg_operands()) {
          if (isa<Constant>(Arg.getUser()))
            continue;
          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
            if (!A->hasByValAttr())
              continue;
          SafeToTail = false;
          break;
        }
        if (SafeToTail) {
          emitOptimizationRemark(
              F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
              "marked this readnone call a tail call candidate");
          CI->setTailCall();
          Modified = true;
          continue;
        }
      }

      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
        DeferredTails.push_back(CI);
      } else {
        AllCallsAreTailCalls = false;
      }
    }

    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
      auto &State = Visited[SuccBB];
      if (State < Escaped) {
        State = Escaped;
        if (State == ESCAPED)
          WorklistEscaped.push_back(SuccBB);
        else
          WorklistUnescaped.push_back(SuccBB);
      }
    }

    if (!WorklistEscaped.empty()) {
      BB = WorklistEscaped.pop_back_val();
      Escaped = ESCAPED;
    } else {
      BB = nullptr;
      while (!WorklistUnescaped.empty()) {
        auto *NextBB = WorklistUnescaped.pop_back_val();
        if (Visited[NextBB] == UNESCAPED) {
          BB = NextBB;
          Escaped = UNESCAPED;
          break;
        }
      }
    }
  } while (BB);

  for (CallInst *CI : DeferredTails) {
    if (Visited[CI->getParent()] != ESCAPED) {
      // If the escape point was part way through the block, calls after the
      // escape point wouldn't have been put into DeferredTails.
      emitOptimizationRemark(F.getContext(), "tailcallelim", F,
                             CI->getDebugLoc(),
                             "marked this call a tail call candidate");
      CI->setTailCall();
      Modified = true;
    } else {
      AllCallsAreTailCalls = false;
    }
  }

  return Modified;
}
// Convert the given call to use normalized argument/return types.
template <class T> static bool ConvertCall(T *Call, Pass *P) {
  // Don't try to change calls to intrinsics.
  if (isa<IntrinsicInst>(Call))
    return false;
  FunctionType *FTy = cast<FunctionType>(
      Call->getCalledValue()->getType()->getPointerElementType());
  FunctionType *NFTy = NormalizeFunctionType(FTy);
  if (NFTy == FTy)
    return false; // No change needed.

  // Convert arguments.
  SmallVector<Value *, 8> Args;
  for (unsigned I = 0; I < Call->getNumArgOperands(); ++I) {
    Value *Arg = Call->getArgOperand(I);
    if (NFTy->getParamType(I) != FTy->getParamType(I)) {
      Instruction::CastOps CastType =
          Call->getAttributes().hasAttribute(I + 1, Attribute::SExt) ?
          Instruction::SExt : Instruction::ZExt;
      Arg = CopyDebug(CastInst::Create(CastType, Arg, NFTy->getParamType(I),
                                       "arg_ext", Call), Call);
    }
    Args.push_back(Arg);
  }
  Value *CastFunc =
    CopyDebug(new BitCastInst(Call->getCalledValue(), NFTy->getPointerTo(),
                              Call->getName() + ".arg_cast", Call), Call);
  Value *Result = NULL;
  if (CallInst *OldCall = dyn_cast<CallInst>(Call)) {
    CallInst *NewCall = CopyDebug(CallInst::Create(CastFunc, Args, "", OldCall),
                                  OldCall);
    NewCall->takeName(OldCall);
    NewCall->setAttributes(OldCall->getAttributes());
    NewCall->setCallingConv(OldCall->getCallingConv());
    NewCall->setTailCall(OldCall->isTailCall());
    Result = NewCall;

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      Result = CopyDebug(new TruncInst(NewCall, FTy->getReturnType(),
                                       NewCall->getName() + ".ret_trunc", Call),
                         Call);
    }
  } else if (InvokeInst *OldInvoke = dyn_cast<InvokeInst>(Call)) {
    BasicBlock *Parent = OldInvoke->getParent();
    BasicBlock *NormalDest = OldInvoke->getNormalDest();
    BasicBlock *UnwindDest = OldInvoke->getUnwindDest();

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      if (BasicBlock *SplitDest = SplitCriticalEdge(Parent, NormalDest)) {
        NormalDest = SplitDest;
      }
    }

    InvokeInst *New = CopyDebug(InvokeInst::Create(CastFunc, NormalDest,
                                                   UnwindDest, Args,
                                                   "", OldInvoke),
                                OldInvoke);
    New->takeName(OldInvoke);

    if (FTy->getReturnType() != NFTy->getReturnType()) {
      Result = CopyDebug(new TruncInst(New, FTy->getReturnType(),
                                       New->getName() + ".ret_trunc",
                                       NormalDest->getTerminator()),
                         OldInvoke);
    } else {
      Result = New;
    }

    New->setAttributes(OldInvoke->getAttributes());
    New->setCallingConv(OldInvoke->getCallingConv());
  }
  Call->replaceAllUsesWith(Result);
  Call->eraseFromParent();
  return true;
}
Beispiel #15
0
// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the 
// upgraded intrinsic. All argument and return casting must be provided in 
// order to seamlessly integrate with existing context.
void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
  Function *F = CI->getCalledFunction();
  LLVMContext &C = CI->getContext();
  ImmutableCallSite CS(CI);

  assert(F && "CallInst has no function associated with it.");

  if (!NewFn) {
    if (F->getName() == "llvm.x86.sse.loadu.ps" ||
        F->getName() == "llvm.x86.sse2.loadu.dq" ||
        F->getName() == "llvm.x86.sse2.loadu.pd") {
      // Convert to a native, unaligned load.
      const Type *VecTy = CI->getType();
      const Type *IntTy = IntegerType::get(C, 128);
      IRBuilder<> Builder(C);
      Builder.SetInsertPoint(CI->getParent(), CI);

      Value *BC = Builder.CreateBitCast(CI->getArgOperand(0),
                                        PointerType::getUnqual(IntTy),
                                        "cast");
      LoadInst *LI = Builder.CreateLoad(BC, CI->getName());
      LI->setAlignment(1);      // Unaligned load.
      BC = Builder.CreateBitCast(LI, VecTy, "new.cast");

      // Fix up all the uses with our new load.
      if (!CI->use_empty())
        CI->replaceAllUsesWith(BC);

      // Remove intrinsic.
      CI->eraseFromParent();
    } else if (F->getName() == "llvm.x86.sse.movnt.ps" ||
               F->getName() == "llvm.x86.sse2.movnt.dq" ||
               F->getName() == "llvm.x86.sse2.movnt.pd" ||
               F->getName() == "llvm.x86.sse2.movnt.i") {
      IRBuilder<> Builder(C);
      Builder.SetInsertPoint(CI->getParent(), CI);

      Module *M = F->getParent();
      SmallVector<Value *, 1> Elts;
      Elts.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
      MDNode *Node = MDNode::get(C, Elts);

      Value *Arg0 = CI->getArgOperand(0);
      Value *Arg1 = CI->getArgOperand(1);

      // Convert the type of the pointer to a pointer to the stored type.
      Value *BC = Builder.CreateBitCast(Arg0,
                                        PointerType::getUnqual(Arg1->getType()),
                                        "cast");
      StoreInst *SI = Builder.CreateStore(Arg1, BC);
      SI->setMetadata(M->getMDKindID("nontemporal"), Node);
      SI->setAlignment(16);

      // Remove intrinsic.
      CI->eraseFromParent();
    } else {
      llvm_unreachable("Unknown function for CallInst upgrade.");
    }
    return;
  }

  switch (NewFn->getIntrinsicID()) {
  case Intrinsic::prefetch: {
    IRBuilder<> Builder(C);
    Builder.SetInsertPoint(CI->getParent(), CI);
    const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CI->getContext());

    // Add the extra "data cache" argument
    Value *Operands[4] = { CI->getArgOperand(0), CI->getArgOperand(1),
                           CI->getArgOperand(2),
                           llvm::ConstantInt::get(I32Ty, 1) };
    CallInst *NewCI = CallInst::Create(NewFn, Operands,
                                       CI->getName(), CI);
    NewCI->setTailCall(CI->isTailCall());
    NewCI->setCallingConv(CI->getCallingConv());
    //  Handle any uses of the old CallInst.
    if (!CI->use_empty())
      //  Replace all uses of the old call with the new cast which has the
      //  correct type.
      CI->replaceAllUsesWith(NewCI);

    //  Clean up the old call now that it has been completely upgraded.
    CI->eraseFromParent();
    break;
  }
  }
}
/// Replaces the given call site (Call or Invoke) with a gc.statepoint
/// intrinsic with an empty deoptimization arguments list.  This does
/// NOT do explicit relocation for GC support.
static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
                                    Pass *P) {
  BasicBlock *BB = CS.getInstruction()->getParent();
  Function *F = BB->getParent();
  Module *M = F->getParent();
  assert(M && "must be set");

  // TODO: technically, a pass is not allowed to get functions from within a
  // function pass since it might trigger a new function addition.  Refactor
  // this logic out to the initialization of the pass.  Doesn't appear to
  // matter in practice.

  // Fill in the one generic type'd argument (the function is also vararg)
  std::vector<Type *> argTypes;
  argTypes.push_back(CS.getCalledValue()->getType());

  Function *gc_statepoint_decl = Intrinsic::getDeclaration(
      M, Intrinsic::experimental_gc_statepoint, argTypes);

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  Instruction *insertBefore = CS.getInstruction();
  IRBuilder<> Builder(insertBefore);
  // First, create the statepoint (with all live ptrs as arguments).
  std::vector<llvm::Value *> args;
  // target, #args, unused, args
  Value *Target = CS.getCalledValue();
  args.push_back(Target);
  int callArgSize = CS.arg_size();
  args.push_back(
      ConstantInt::get(Type::getInt32Ty(M->getContext()), callArgSize));
  // TODO: add a 'Needs GC-rewrite' later flag
  args.push_back(ConstantInt::get(Type::getInt32Ty(M->getContext()), 0));

  // Copy all the arguments of the original call
  args.insert(args.end(), CS.arg_begin(), CS.arg_end());

  // Create the statepoint given all the arguments
  Instruction *token = nullptr;
  AttributeSet return_attributes;
  if (CS.isCall()) {
    CallInst *toReplace = cast<CallInst>(CS.getInstruction());
    CallInst *call =
        Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
    call->setTailCall(toReplace->isTailCall());
    call->setCallingConv(toReplace->getCallingConv());

    // Before we have to worry about GC semantics, all attributes are legal
    AttributeSet new_attrs = toReplace->getAttributes();
    // In case if we can handle this set of sttributes - set up function attrs
    // directly on statepoint and return attrs later for gc_result intrinsic.
    call->setAttributes(new_attrs.getFnAttributes());
    return_attributes = new_attrs.getRetAttributes();
    // TODO: handle param attributes

    token = call;

    // Put the following gc_result and gc_relocate calls immediately after the
    // the old call (which we're about to delete)
    BasicBlock::iterator next(toReplace);
    assert(BB->end() != next && "not a terminator, must have next");
    next++;
    Instruction *IP = &*(next);
    Builder.SetInsertPoint(IP);
    Builder.SetCurrentDebugLocation(IP->getDebugLoc());

  } else if (CS.isInvoke()) {
    InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    InvokeInst *invoke = InvokeInst::Create(
        gc_statepoint_decl, toReplace->getNormalDest(),
        toReplace->getUnwindDest(), args, "", toReplace->getParent());
    invoke->setCallingConv(toReplace->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.
    AttributeSet new_attrs = toReplace->getAttributes();
    // In case if we can handle this set of sttributes - set up function attrs
    // directly on statepoint and return attrs later for gc_result intrinsic.
    invoke->setAttributes(new_attrs.getFnAttributes());
    return_attributes = new_attrs.getRetAttributes();

    token = invoke;

    // We'll insert the gc.result into the normal block
    BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
        toReplace->getNormalDest(), invoke->getParent());
    Instruction *IP = &*(normalDest->getFirstInsertionPt());
    Builder.SetInsertPoint(IP);
  } else {
    llvm_unreachable("unexpect type of CallSite");
  }
  assert(token);

  // Handle the return value of the original call - update all uses to use a
  // gc_result hanging off the statepoint node we just inserted

  // Only add the gc_result iff there is actually a used result
  if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
    Instruction *gc_result = nullptr;
    std::vector<Type *> types;     // one per 'any' type
    types.push_back(CS.getType()); // result type
    auto get_gc_result_id = [&](Type &Ty) {
      if (Ty.isIntegerTy()) {
        return Intrinsic::experimental_gc_result_int;
      } else if (Ty.isFloatingPointTy()) {
        return Intrinsic::experimental_gc_result_float;
      } else if (Ty.isPointerTy()) {
        return Intrinsic::experimental_gc_result_ptr;
      } else {
        llvm_unreachable("non java type encountered");
      }
    };
    Intrinsic::ID Id = get_gc_result_id(*CS.getType());
    Value *gc_result_func = Intrinsic::getDeclaration(M, Id, types);

    std::vector<Value *> args;
    args.push_back(token);
    gc_result = Builder.CreateCall(
        gc_result_func, args,
        CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "");

    cast<CallInst>(gc_result)->setAttributes(return_attributes);
    return gc_result;
  } else {
    // No return value for the call.
    return nullptr;
  }
}
Beispiel #17
0
    virtual bool runOnFunction(Function &F) {
      DEBUG(errs() << "Running on " << F.getName() << "\n");
      DEBUG(F.dump());
      Changed = false;
      BaseMap.clear();
      BoundsMap.clear();
      AbrtBB = 0;
      valid = true;

      if (!rootNode) {
        rootNode = getAnalysis<CallGraph>().getRoot();
        // No recursive functions for now.
        // In the future we may insert runtime checks for stack depth.
        for (scc_iterator<CallGraphNode*> SCCI = scc_begin(rootNode),
             E = scc_end(rootNode); SCCI != E; ++SCCI) {
          const std::vector<CallGraphNode*> &nextSCC = *SCCI;
          if (nextSCC.size() > 1 || SCCI.hasLoop()) {
            errs() << "INVALID: Recursion detected, callgraph SCC components: ";
            for (std::vector<CallGraphNode*>::const_iterator I = nextSCC.begin(),
                 E = nextSCC.end(); I != E; ++I) {
              Function *FF = (*I)->getFunction();
              if (FF) {
                errs() << FF->getName() << ", ";
                badFunctions.insert(FF);
              }
            }
            if (SCCI.hasLoop())
              errs() << "(self-loop)";
            errs() << "\n";
          }
          // we could also have recursion via function pointers, but we don't
          // allow calls to unknown functions, see runOnFunction() below
        }
      }

      BasicBlock::iterator It = F.getEntryBlock().begin();
      while (isa<AllocaInst>(It) || isa<PHINode>(It)) ++It;
      EP = &*It;

      TD = &getAnalysis<TargetData>();
      SE = &getAnalysis<ScalarEvolution>();
      PT = &getAnalysis<PointerTracking>();
      DT = &getAnalysis<DominatorTree>();

      std::vector<Instruction*> insns;

      BasicBlock *LastBB = 0;
      bool skip = false;
      for (inst_iterator I=inst_begin(F),E=inst_end(F); I != E;++I) {
        Instruction *II = &*I;
	if (II->getParent() != LastBB) {
	    LastBB = II->getParent();
	    skip = DT->getNode(LastBB) == 0;
	}
	if (skip)
	    continue;
        if (isa<LoadInst>(II) || isa<StoreInst>(II) || isa<MemIntrinsic>(II))
          insns.push_back(II);
        if (CallInst *CI = dyn_cast<CallInst>(II)) {
          Value *V = CI->getCalledValue()->stripPointerCasts();
          Function *F = dyn_cast<Function>(V);
          if (!F) {
            printLocation(CI, true);
            errs() << "Could not determine call target\n";
            valid = 0;
            continue;
          }
          if (!F->isDeclaration())
            continue;
          insns.push_back(CI);
        }
      }
      while (!insns.empty()) {
        Instruction *II = insns.back();
        insns.pop_back();
        DEBUG(dbgs() << "checking " << *II << "\n");
        if (LoadInst *LI = dyn_cast<LoadInst>(II)) {
          const Type *Ty = LI->getType();
          valid &= validateAccess(LI->getPointerOperand(),
                                  TD->getTypeAllocSize(Ty), LI);
        } else if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
          const Type *Ty = SI->getOperand(0)->getType();
          valid &= validateAccess(SI->getPointerOperand(),
                                  TD->getTypeAllocSize(Ty), SI);
        } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
          valid &= validateAccess(MI->getDest(), MI->getLength(), MI);
          if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
            valid &= validateAccess(MTI->getSource(), MI->getLength(), MI);
          }
        } else if (CallInst *CI = dyn_cast<CallInst>(II)) {
          Value *V = CI->getCalledValue()->stripPointerCasts();
          Function *F = cast<Function>(V);
          const FunctionType *FTy = F->getFunctionType();
	  CallSite CS(CI);

          if (F->getName().equals("memcmp") && FTy->getNumParams() == 3) {
            valid &= validateAccess(CS.getArgument(0), CS.getArgument(2), CI);
            valid &= validateAccess(CS.getArgument(1), CS.getArgument(2), CI);
            continue;
          }
	  unsigned i;
#ifdef CLAMBC_COMPILER
	  i = 0;
#else
	  i = 1;// skip hidden ctx*
#endif
          for (;i<FTy->getNumParams();i++) {
            if (isa<PointerType>(FTy->getParamType(i))) {
              Value *Ptr = CS.getArgument(i);
              if (i+1 >= FTy->getNumParams()) {
                printLocation(CI, false);
                errs() << "Call to external function with pointer parameter last cannot be analyzed\n";
                errs() << *CI << "\n";
                valid = 0;
                break;
              }
              Value *Size = CS.getArgument(i+1);
              if (!Size->getType()->isIntegerTy()) {
                printLocation(CI, false);
                errs() << "Pointer argument must be followed by integer argument representing its size\n";
                errs() << *CI << "\n";
                valid = 0;
                break;
              }
              valid &= validateAccess(Ptr, Size, CI);
            }
          }
        }
      }
      if (badFunctions.count(&F))
        valid = 0;

      if (!valid) {
	DEBUG(F.dump());
        ClamBCModule::stop("Verification found errors!", &F);
	// replace function with call to abort
        std::vector<const Type*>args;
        FunctionType* abrtTy = FunctionType::get(
          Type::getVoidTy(F.getContext()),args,false);
        Constant *func_abort =
          F.getParent()->getOrInsertFunction("abort", abrtTy);

	BasicBlock *BB = &F.getEntryBlock();
	Instruction *I = &*BB->begin();
	Instruction *UI = new UnreachableInst(F.getContext(), I);
	CallInst *AbrtC = CallInst::Create(func_abort, "", UI);
        AbrtC->setCallingConv(CallingConv::C);
        AbrtC->setTailCall(true);
        AbrtC->setDoesNotReturn(true);
        AbrtC->setDoesNotThrow(true);
	// remove all instructions from entry
	BasicBlock::iterator BBI = I, BBE=BB->end();
	while (BBI != BBE) {
	    if (!BBI->use_empty())
		BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
	    BB->getInstList().erase(BBI++);
	}
      }
      return Changed;
    }
Beispiel #18
0
/// Replaces the given call site (Call or Invoke) with a gc.statepoint
/// intrinsic with an empty deoptimization arguments list.  This does
/// NOT do explicit relocation for GC support.
static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
                                    Pass *P) {
  assert(CS.getInstruction()->getParent()->getParent()->getParent() &&
         "must be set");

  // TODO: technically, a pass is not allowed to get functions from within a
  // function pass since it might trigger a new function addition.  Refactor
  // this logic out to the initialization of the pass.  Doesn't appear to
  // matter in practice.

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  IRBuilder<> Builder(CS.getInstruction());

  // Note: The gc args are not filled in at this time, that's handled by
  // RewriteStatepointsForGC (which is currently under review).

  // Create the statepoint given all the arguments
  Instruction *Token = nullptr;
  AttributeSet OriginalAttrs;

  if (CS.isCall()) {
    CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
    CallInst *Call = Builder.CreateGCStatepointCall(
        CS.getCalledValue(), makeArrayRef(CS.arg_begin(), CS.arg_end()), None,
        None, "safepoint_token");
    Call->setTailCall(ToReplace->isTailCall());
    Call->setCallingConv(ToReplace->getCallingConv());

    // Before we have to worry about GC semantics, all attributes are legal
    // TODO: handle param attributes
    OriginalAttrs = ToReplace->getAttributes();

    // In case if we can handle this set of attributes - set up function
    // attributes directly on statepoint and return attributes later for
    // gc_result intrinsic.
    Call->setAttributes(OriginalAttrs.getFnAttributes());

    Token = Call;

    // Put the following gc_result and gc_relocate calls immediately after the
    // the old call (which we're about to delete).
    assert(ToReplace->getNextNode() && "not a terminator, must have next");
    Builder.SetInsertPoint(ToReplace->getNextNode());
    Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
  } else if (CS.isInvoke()) {
    InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    Builder.SetInsertPoint(ToReplace->getParent());
    InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
        CS.getCalledValue(), ToReplace->getNormalDest(),
        ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
        Builder.getInt32(0), None, "safepoint_token");

    // Currently we will fail on parameter attributes and on certain
    // function attributes.
    OriginalAttrs = ToReplace->getAttributes();

    // In case if we can handle this set of attributes - set up function
    // attributes directly on statepoint and return attributes later for
    // gc_result intrinsic.
    Invoke->setAttributes(OriginalAttrs.getFnAttributes());

    Token = Invoke;

    // We'll insert the gc.result into the normal block
    BasicBlock *NormalDest = normalizeBBForInvokeSafepoint(
        ToReplace->getNormalDest(), Invoke->getParent());
    Builder.SetInsertPoint(NormalDest->getFirstInsertionPt());
  } else {
    llvm_unreachable("unexpect type of CallSite");
  }
  assert(Token);

  // Handle the return value of the original call - update all uses to use a
  // gc_result hanging off the statepoint node we just inserted

  // Only add the gc_result iff there is actually a used result
  if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
    std::string TakenName =
        CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
    CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
    GCResult->setAttributes(OriginalAttrs.getRetAttributes());
    return GCResult;
  } else {
    // No return value for the call.
    return nullptr;
  }
}
static InstTransResult doCallPCExtern(BasicBlock *&b, std::string target, bool esp_adjust = false) {
    Module      *M = b->getParent()->getParent();
    
    //write it into the location pointer to by ESP-4
    Value   *espOld = R_READ<32>(b, X86::ESP);
    //Value   *espSub = 
    //    BinaryOperator::CreateSub(espOld, CONST_V<32>(b, 4), "", b);
    //M_WRITE_0<32>(b, espSub, CONST_V<32>(b, 0));
    //R_WRITE<32>(b, X86::ESP, espSub);

    //write the local values into the context register
    //for now, we will stop doing this because we are not calling a wrapper
    //that meaningfully understands the context structure
    //writeLocalsToContext(b, 32);

    //lookup the function in the module
    Function    *externFunction = M->getFunction(target);
    TASSERT(externFunction != NULL, "Coult not find external function: "+target);
    FunctionType    *externFunctionTy = externFunction->getFunctionType();
    Type            *rType = externFunction->getReturnType();
    int        paramCount = externFunctionTy->getNumParams();

    //now we need to do a series of reads off the stack, essentially
    //a series of POPs but without writing anything back to ESP
    Value   *baseEspVal=NULL;
    std::vector<Value *> arguments;

    // in fastcall, the first two params are passed via register
    // only need to adjust stack if there are more than two args

    if( externFunction->getCallingConv() == CallingConv::X86_FastCall)
    {
        

        Function::ArgumentListType::iterator  it =
                        externFunction->getArgumentList().begin();
        Function::ArgumentListType::iterator  end =
                        externFunction->getArgumentList().end();
        AttrBuilder B;
        B.addAttribute(Attribute::InReg);

        if(paramCount && it != end) {
            Value *r_ecx = R_READ<32>(b, X86::ECX);
            arguments.push_back(r_ecx);
            --paramCount;
            // set argument 1's attribute: make it in a register
            it->addAttr(AttributeSet::get(it->getContext(), 1,  B));
            ++it;
        }

        if(paramCount && it != end) {
            Value *r_edx = R_READ<32>(b, X86::EDX);
            arguments.push_back(r_edx);
            --paramCount;
            // set argument 2's attribute: make it in a register
            it->addAttr(AttributeSet::get(it->getContext(), 2, B));
            ++it;
        }
    }



    if( paramCount ) {
        baseEspVal = R_READ<32>(b, X86::ESP);
        if(esp_adjust) {
            baseEspVal = 
                BinaryOperator::CreateAdd(baseEspVal, CONST_V<32>(b, 4), "", b);
        }
    }

    for( int i = 0; i < paramCount; i++ ) {
        Value   *vFromStack = M_READ_0<32>(b, baseEspVal);

        arguments.push_back(vFromStack);

        if( i+1 != paramCount ) {
            baseEspVal = 
                BinaryOperator::CreateAdd(baseEspVal, CONST_V<32>(b, 4), "", b);
        }
    }

    CallInst    *callR = CallInst::Create(externFunction, arguments, "", b);
    callR->setCallingConv(externFunction->getCallingConv());
   
    noAliasMCSemaScope(callR); 

    if ( externFunction->doesNotReturn() ) {
        // noreturn functions just hit unreachable
        std::cout << __FUNCTION__ << ": Adding Unreachable Instruction" << std::endl;
        callR->setDoesNotReturn();
        callR->setTailCall();
        Value *unreachable = new UnreachableInst(b->getContext(), b);
        return EndBlock;
    }
    
    //then, put the registers back into the locals
    //see above
    //writeContextToLocals(b, 32);
    
    
    // we returned from an extern: assume it cleared the direction flag
    // which is standard for MS calling conventions
    //
    F_CLEAR(b, DF);
   
    //if our convention says to keep the call result alive then do it
    //really, we could always keep the call result alive...
    if( rType == Type::getInt32Ty(M->getContext()) ) {
        R_WRITE<32>(b, X86::EAX, callR);
    }


    // stdcall and fastcall: callee changed ESP; adjust
    // REG_ESP accordingly
    if( externFunction->getCallingConv() == CallingConv::X86_StdCall ||
        externFunction->getCallingConv() == CallingConv::X86_FastCall)
    {
        Value *ESP_adjust = CONST_V<32>(b, 4*paramCount);
        Value *espFix =
            BinaryOperator::CreateAdd(espOld, ESP_adjust, "", b);

        R_WRITE<32>(b, X86::ESP, espFix);
    }

    return ContinueBlock;
}
Beispiel #20
0
void WorklessInstrument::InstrumentWorkless0Star1(Module * pModule, Loop * pLoop)
{
	Function * pMain = NULL;

	if(strMainName != "" )
	{
		pMain = pModule->getFunction(strMainName.c_str());
	}
	else
	{
		pMain = pModule->getFunction("main");
	}

	LoadInst * pLoad;
	BinaryOperator* pAdd = NULL;
	StoreInst * pStore = NULL;

	for (Function::iterator BB = pMain->begin(); BB != pMain->end(); ++BB) 
	{
		if(BB->getName().equals("entry"))
		{
			CallInst * pCall;
			StoreInst * pStore;

			Instruction * II = BB->begin();
			pCall = CallInst::Create(this->InitHooks, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			AttributeSet emptySet;
			pCall->setAttributes(emptySet);

			pCall = CallInst::Create(this->getenv, this->SAMPLE_RATE_ptr, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			AttributeSet AS;
			{
				SmallVector<AttributeSet, 4> Attrs;
				AttributeSet PAS;
				{
					AttrBuilder B;
					B.addAttribute(Attribute::NoUnwind);
					PAS = AttributeSet::get(pModule->getContext(), ~0U, B);
				}
				Attrs.push_back(PAS);
				AS = AttributeSet::get(pModule->getContext(), Attrs);
			}
			pCall->setAttributes(AS);

			pCall = CallInst::Create(this->function_atoi, pCall, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			{
  				SmallVector<AttributeSet, 4> Attrs;
   				AttributeSet PAS;
    			{
    	 			AttrBuilder B;
     				B.addAttribute(Attribute::NoUnwind);
     				B.addAttribute(Attribute::ReadOnly);
     				PAS = AttributeSet::get(pModule->getContext(), ~0U, B);
    			}
   
   				Attrs.push_back(PAS);
   				AS = AttributeSet::get(pModule->getContext(), Attrs);
   
  			}
  			pCall->setAttributes(AS);

  			pStore = new StoreInst(pCall, this->SAMPLE_RATE, false, II);
  			pStore->setAlignment(4);

  			pCall = CallInst::Create(this->geo, pCall, "", II);
  			pCall->setCallingConv(CallingConv::C);
  			pCall->setTailCall(false);
  			pCall->setAttributes(emptySet);

  			CastInst * pCast = CastInst::CreateIntegerCast(pCall, this->LongType, true, "", II);
  			pStore = new StoreInst(pCast, this->CURRENT_SAMPLE, false, II);
  			pStore->setAlignment(8);

  			vector<Value *> vecParam;
  			vecParam.push_back(this->Output_Format_String);
  			vecParam.push_back(pCall);
  			pCall = CallInst::Create(this->printf, vecParam, "", II);
  			pCall->setCallingConv(CallingConv::C);
  			pCall->setTailCall(false);
  			pCall->setAttributes(emptySet);
  			break;
		}
	}

	for (Function::iterator BB = pMain->begin(); BB != pMain->end(); ++BB) 
	{		
		for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) 
		{
			if (isa<ReturnInst>(Ins) || isa<ResumeInst>(Ins)) 
			{
				vector<Value*> vecParams;
				pLoad = new LoadInst(numIterations, "", false, Ins); 
				pLoad->setAlignment(8); 
				vecParams.push_back(pLoad);
				pLoad = new LoadInst(numInstances, "", false, Ins); 
				pLoad->setAlignment(8);
				vecParams.push_back(pLoad);
				
				CallInst* pCall = CallInst::Create(this->PrintLoopInfo, vecParams, "", Ins);
				pCall->setCallingConv(CallingConv::C);
				pCall->setTailCall(false);
				AttributeSet aSet;
				pCall->setAttributes(aSet);
			}
			else if(isa<CallInst>(Ins) || isa<InvokeInst>(Ins))
			{
				CallSite cs(Ins);
				Function * pCalled = cs.getCalledFunction();

				if(pCalled == NULL)
				{
					continue;
				}

				if(pCalled->getName() == "exit" || pCalled->getName() == "_ZL9mysql_endi")
				{
					vector<Value*> vecParams;
					pLoad = new LoadInst(numIterations, "", false, Ins); 
					pLoad->setAlignment(8); 
					vecParams.push_back(pLoad);
					pLoad = new LoadInst(numInstances, "", false, Ins); 
					pLoad->setAlignment(8);
					vecParams.push_back(pLoad);
				
					CallInst* pCall = CallInst::Create(this->PrintLoopInfo, vecParams, "", Ins);
					pCall->setCallingConv(CallingConv::C);
					pCall->setTailCall(false);
					AttributeSet aSet;
					pCall->setAttributes(aSet);
				}
			}
		}
	}



	BasicBlock * pHeader = pLoop->getHeader();
	set<BasicBlock *> setExitBlock;
	CollectExitBlock(pLoop, setExitBlock);

	vector<BasicBlock *> vecAdded;
	CreateIfElseBlock(pLoop, vecAdded);

	ValueToValueMapTy  VMap;
	set<BasicBlock *> setCloned;
	CloneInnerLoop(pLoop, vecAdded, VMap, setCloned);

	BasicBlock * pPreHeader = vecAdded[1];
	pLoad = new LoadInst(this->numIterations, "", false, pPreHeader->getTerminator());
	pLoad->setAlignment(8);

	BasicBlock * pClonedHeader = cast<BasicBlock>(VMap[pHeader]);

	set<BasicBlock *> setPredBlocks;

	for(pred_iterator PI = pred_begin(pClonedHeader), E = pred_end(pClonedHeader); PI != E; ++PI)
	{
		setPredBlocks.insert(*PI);
	}

	PHINode * pNew = PHINode::Create(pLoad->getType(), setPredBlocks.size(), "numIterations", pClonedHeader->getFirstInsertionPt());
	pAdd = BinaryOperator::Create(Instruction::Add, pNew, this->ConstantLong1, "add", pClonedHeader->getFirstInsertionPt());

	set<BasicBlock *>::iterator itSetBegin = setPredBlocks.begin();
	set<BasicBlock *>::iterator itSetEnd   = setPredBlocks.end();

	for(; itSetBegin != itSetEnd; itSetBegin ++ )
	{
		if((*itSetBegin) == pPreHeader)
		{
			pNew->addIncoming(pLoad, pPreHeader);
		}
		else
		{
			pNew->addIncoming(pAdd, *itSetBegin);
		}
	}


	itSetBegin = setExitBlock.begin();
	itSetEnd   = setExitBlock.end();

	for(; itSetBegin != itSetEnd; itSetBegin ++ )
	{
		SmallVector<BasicBlock*, 8> LoopBlocks;

		for(pred_iterator PI = pred_begin(*itSetBegin), E = pred_end(*itSetBegin); PI != E; ++PI)
		{
			if(setCloned.find(*PI) != setCloned.end())
			{
				LoopBlocks.push_back(*PI);
			}
		}

		BasicBlock * NewExitBB = SplitBlockPredecessors(*itSetBegin, LoopBlocks, ".WL.loopexit", this);

		pStore = new StoreInst(pAdd, this->numIterations, false, NewExitBB->getFirstInsertionPt());
		pStore->setAlignment(8);
	}

	pPreHeader->getParent()->dump();

}
/// compile_if - Emit code for '['
void BrainFTraceRecorder::compile_if(BrainFTraceNode *node,
                                     IRBuilder<>& builder) {
  BasicBlock *ZeroChild = 0;
  BasicBlock *NonZeroChild = 0;
  BasicBlock *Parent = builder.GetInsertBlock();
  
  LLVMContext &Context = Header->getContext();
  
  // If both directions of the branch go back to the trace-head, just
  // jump there directly.
  if (node->left == (BrainFTraceNode*)~0ULL &&
      node->right == (BrainFTraceNode*)~0ULL) {
    HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock());
    builder.CreateBr(Header);
    return;
  }
  
  // Otherwise, there are two cases to handle for each direction:
  //   ~0ULL - A branch back to the trace head
  //   0 - A branch out of the trace
  //   * - A branch to a node we haven't compiled yet.
  // Go ahead and generate code for both targets.
  
  if (node->left == (BrainFTraceNode*)~0ULL) {
    NonZeroChild = Header;
    HeaderPHI->addIncoming(DataPtr, Parent);
  } else if (node->left == 0) {
    NonZeroChild = BasicBlock::Create(Context,
                                   "exit_left_"+utostr(node->pc),
                                   Header->getParent());
    builder.SetInsertPoint(NonZeroChild);
    
    // Set the extension leaf, which is a pointer to the leaf of the trace
    // tree from which we are side exiting.
    ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node);
    builder.CreateStore(ExtLeaf, ext_leaf);
    
    ConstantInt *NewPc = ConstantInt::get(int_type, node->pc+1);
    Value *BytecodeIndex =
      builder.CreateConstInBoundsGEP1_32(bytecode_array, node->pc+1);
    Value *Target = builder.CreateLoad(BytecodeIndex);
    CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr));
    Call->setTailCall();
    builder.CreateRetVoid();
  } else {
    NonZeroChild = BasicBlock::Create(Context, 
                                      utostr(node->left->pc), 
                                      Header->getParent());
    builder.SetInsertPoint(NonZeroChild);
    compile_opcode(node->left, builder);
  }
  
  if (node->right == (BrainFTraceNode*)~0ULL) {
    ZeroChild = Header;
    HeaderPHI->addIncoming(DataPtr, Parent);
  } else if (node->right == 0) {
    ZeroChild = BasicBlock::Create(Context,
                                   "exit_right_"+utostr(node->pc),
                                   Header->getParent());
    builder.SetInsertPoint(ZeroChild);
    
    // Set the extension leaf, which is a pointer to the leaf of the trace
    // tree from which we are side exiting.
    ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node);
    builder.CreateStore(ExtLeaf, ext_leaf);
    
    ConstantInt *NewPc = ConstantInt::get(int_type, JumpMap[node->pc]+1);
    Value *BytecodeIndex =
      builder.CreateConstInBoundsGEP1_32(bytecode_array, JumpMap[node->pc]+1);
    Value *Target = builder.CreateLoad(BytecodeIndex);
    CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr));
    Call->setTailCall();
    builder.CreateRetVoid();
  } else {
    ZeroChild = BasicBlock::Create(Context, 
                                      utostr(node->right->pc), 
                                      Header->getParent());
    builder.SetInsertPoint(ZeroChild);
    compile_opcode(node->right, builder);
  }
  
  // Generate the test and branch to select between the targets.
  builder.SetInsertPoint(Parent);
  Value *Loaded = builder.CreateLoad(DataPtr);
  Value *Cmp = builder.CreateICmpEQ(Loaded, 
                                       ConstantInt::get(Loaded->getType(), 0));
  builder.CreateCondBr(Cmp, ZeroChild, NonZeroChild);
}
Beispiel #22
0
void WorklessInstrument::InstrumentWorkless0Or1Star(Module * pModule, Loop * pLoop, set<string> & setWorkingBlocks)
{
	LoadInst * pLoad0 = NULL;
	LoadInst * pLoad1 = NULL;
	//BinaryOperator* pAdd = NULL;
	StoreInst * pStore = NULL;
	CallInst * pCall = NULL;

	Function * pMain = NULL;

	if(strMainName != "" )
	{
		pMain = pModule->getFunction(strMainName.c_str());
	}
	else
	{
		pMain = pModule->getFunction("main");
	}

	for (Function::iterator BB = pMain->begin(); BB != pMain->end(); ++BB) 
	{
		if(BB->getName().equals("entry"))
		{
			CallInst * pCall;
			StoreInst * pStore;

			Instruction * II = BB->begin();
			pCall = CallInst::Create(this->InitHooks, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			AttributeSet emptySet;
			pCall->setAttributes(emptySet);

			pCall = CallInst::Create(this->getenv, this->SAMPLE_RATE_ptr, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			AttributeSet AS;
			{
				SmallVector<AttributeSet, 4> Attrs;
				AttributeSet PAS;
				{
					AttrBuilder B;
					B.addAttribute(Attribute::NoUnwind);
					PAS = AttributeSet::get(pModule->getContext(), ~0U, B);
				}
				Attrs.push_back(PAS);
				AS = AttributeSet::get(pModule->getContext(), Attrs);
			}
			pCall->setAttributes(AS);

			pCall = CallInst::Create(this->function_atoi, pCall, "", II);
			pCall->setCallingConv(CallingConv::C);
			pCall->setTailCall(false);
			{
  				SmallVector<AttributeSet, 4> Attrs;
   				AttributeSet PAS;
    			{
    	 			AttrBuilder B;
     				B.addAttribute(Attribute::NoUnwind);
     				B.addAttribute(Attribute::ReadOnly);
     				PAS = AttributeSet::get(pModule->getContext(), ~0U, B);
    			}
   
   				Attrs.push_back(PAS);
   				AS = AttributeSet::get(pModule->getContext(), Attrs);
   
  			}
  			pCall->setAttributes(AS);

  			pStore = new StoreInst(pCall, this->SAMPLE_RATE, false, II);
  			pStore->setAlignment(4);

  			pCall = CallInst::Create(this->geo, pCall, "", II);
  			pCall->setCallingConv(CallingConv::C);
  			pCall->setTailCall(false);
  			pCall->setAttributes(emptySet);

  			CastInst * pCast = CastInst::CreateIntegerCast(pCall, this->LongType, true, "", II);
  			pStore = new StoreInst(pCast, this->CURRENT_SAMPLE, false, II);
  			pStore->setAlignment(8);

  			vector<Value *> vecParam;
  			vecParam.push_back(this->Output_Format_String);
  			vecParam.push_back(pCall);
  			pCall = CallInst::Create(this->printf, vecParam, "", II);
  			pCall->setCallingConv(CallingConv::C);
  			pCall->setTailCall(false);
  			pCall->setAttributes(emptySet);
  			break;
		}
	}

	for (Function::iterator BB = pMain->begin(); BB != pMain->end(); ++BB) 
	{
		for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) 
		{
			if (isa<ReturnInst>(Ins) || isa<ResumeInst>(Ins)) 
			{
				vector<Value*> vecParams;
				pLoad0 = new LoadInst(numIterations, "", false, Ins); 
				pLoad0->setAlignment(8); 
				vecParams.push_back(pLoad0);
				pLoad1 = new LoadInst(numInstances, "", false, Ins); 
				pLoad1->setAlignment(8);
				vecParams.push_back(pLoad1);
				
				pCall = CallInst::Create(this->PrintLoopInfo, vecParams, "", Ins);
				pCall->setCallingConv(CallingConv::C);
				pCall->setTailCall(false);
				AttributeSet aSet;
				pCall->setAttributes(aSet);

				vecParams.clear();
				pLoad0 = new LoadInst(numIterations, "", false, Ins); 
				pLoad0->setAlignment(8); 
				vecParams.push_back(pLoad0);
				pLoad1 = new LoadInst(numWorkingIterations, "", false, Ins); 
				pLoad1->setAlignment(8);
				vecParams.push_back(pLoad1);


				pCall = CallInst::Create(PrintWorkingRatio, vecParams, "", Ins);
				pCall->setCallingConv(CallingConv::C);
				pCall->setTailCall(false);
				pCall->setAttributes(aSet);

			}
			else if(isa<CallInst>(Ins) || isa<InvokeInst>(Ins))
			{
				CallSite cs(Ins);
				Function * pCalled = cs.getCalledFunction();

				if(pCalled == NULL)
				{
					continue;
				}

				if(pCalled->getName() == "exit" || pCalled->getName() == "_ZL9mysql_endi")
				{
					vector<Value*> vecParams;
					pLoad0 = new LoadInst(numIterations, "", false, Ins);
					pLoad0->setAlignment(8); 
					vecParams.push_back(pLoad0);
					pLoad1 = new LoadInst(numInstances, "", false, Ins); 
					pLoad1->setAlignment(8);
					vecParams.push_back(pLoad1);

					pCall = CallInst::Create(this->PrintLoopInfo, vecParams, "", Ins);
					pCall->setCallingConv(CallingConv::C);
					pCall->setTailCall(false);
					AttributeSet aSet;
					pCall->setAttributes(aSet);

					vecParams.clear();
					pLoad0 = new LoadInst(numIterations, "", false, Ins); 
					pLoad0->setAlignment(8); 
					vecParams.push_back(pLoad0);
					pLoad1 = new LoadInst(numWorkingIterations, "", false, Ins); 
					pLoad1->setAlignment(8);
					vecParams.push_back(pLoad1);

					pCall = CallInst::Create(PrintWorkingRatio, vecParams, "", Ins);
					pCall->setCallingConv(CallingConv::C);
					pCall->setTailCall(false);
					pCall->setAttributes(aSet);
				}
			}
		}
	}

	Function * pFunction = pLoop->getHeader()->getParent();
	BasicBlock * pEntry = &(pFunction->getEntryBlock());

	AllocaInst * pAlloc = new AllocaInst(this->LongType, "bWorkingIteration.local", pEntry->getFirstInsertionPt());

	vector<BasicBlock *> vecWorkingBlock;
	
	for(Function::iterator BB = pFunction->begin(); BB != pFunction->end(); ++ BB)
	{
		if(setWorkingBlocks.find(BB->getName()) != setWorkingBlocks.end() )
		{
			vecWorkingBlock.push_back(BB);
		}
	}

	errs() << "working block number: " << vecWorkingBlock.size() << "\n";

	BasicBlock * pHeader = pLoop->getHeader();
	set<BasicBlock *> setExitBlock;
	CollectExitBlock(pLoop, setExitBlock);

	vector<BasicBlock *> vecAdded;
	CreateIfElseBlock(pLoop, vecAdded);

	ValueToValueMapTy  VMap;
	set<BasicBlock *> setCloned;
	CloneInnerLoop(pLoop, vecAdded, VMap, setCloned);

	//BasicBlock * pPreHeader = vecAdded[0];
	BasicBlock * pElseBody = vecAdded[1];
	
	vector<BasicBlock *>::iterator itVecBegin = vecWorkingBlock.begin();
	vector<BasicBlock *>::iterator itVecEnd   = vecWorkingBlock.end();

	for(; itVecBegin != itVecEnd; itVecBegin++ )
	{
		BasicBlock * pClonedBlock = cast<BasicBlock>(VMap[*itVecBegin]);
		pStore = new StoreInst(this->ConstantLong1, pAlloc, false, pClonedBlock->getFirstInsertionPt());
		pStore->setAlignment(8);
		pClonedBlock->dump();
	}


	pStore = new StoreInst(this->ConstantLong0, pAlloc, false, pElseBody->getTerminator());
	pStore->setAlignment(8);

	pLoad0 = new LoadInst(this->numIterations, "", false, pElseBody->getTerminator());
	pLoad0->setAlignment(8);

	pLoad1 = new LoadInst(this->numWorkingIterations, "", false, pElseBody->getTerminator());
	pLoad1->setAlignment(8);  

	BasicBlock * pClonedHeader = cast<BasicBlock>(VMap[pHeader]);

	set<BasicBlock *> setPredBlocks;

	for(pred_iterator PI = pred_begin(pClonedHeader), E = pred_end(pClonedHeader); PI != E; ++PI)
	{
		setPredBlocks.insert(*PI);
	}

	BasicBlock::iterator itInsert = pClonedHeader->getFirstInsertionPt();

	PHINode * pNewIterations = PHINode::Create(pLoad0->getType(), setPredBlocks.size(), "numIterations.2", itInsert);
	PHINode * pNewWorkingIterations = PHINode::Create(pLoad1->getType(), setPredBlocks.size(), "WorkingIterations.2", itInsert);

	BinaryOperator * pIterationAdd = BinaryOperator::Create(Instruction::Add, pNewIterations, this->ConstantLong1, "Iterations.add.2", itInsert);

	set<BasicBlock *>::iterator itSetBegin = setPredBlocks.begin();
	set<BasicBlock *>::iterator itSetEnd   = setPredBlocks.end();

	for(; itSetBegin != itSetEnd; itSetBegin ++ )
	{
		if((*itSetBegin) == pElseBody)
		{
			pNewIterations->addIncoming(pLoad0, pElseBody);
		}
		else
		{
			pNewIterations->addIncoming(pIterationAdd, *itSetBegin);
		}
	}

	pLoad0 = new LoadInst(pAlloc, "", false, itInsert);
	BinaryOperator * pWorkingAdd = 	BinaryOperator::Create(Instruction::Add, pNewWorkingIterations, pLoad0, "Working.add.2", itInsert);

	itSetBegin = setPredBlocks.begin();
	itSetEnd   = setPredBlocks.end();

	for(; itSetBegin != itSetEnd; itSetBegin ++ )
	{
		if((*itSetBegin) == pElseBody)
		{
			pNewWorkingIterations->addIncoming(pLoad1, pElseBody);
		}
		else
		{
			pNewWorkingIterations->addIncoming(pWorkingAdd, *itSetBegin);
		}
	}

	pStore = new StoreInst(this->ConstantLong0, pAlloc, false, itInsert);
	pStore->setAlignment(8);


	itSetBegin = setExitBlock.begin();
	itSetEnd   = setExitBlock.end();

	for(; itSetBegin != itSetEnd; itSetBegin ++ )
	{
		SmallVector<BasicBlock*, 8> LoopBlocks;

		for(pred_iterator PI = pred_begin(*itSetBegin), E = pred_end(*itSetBegin); PI != E; ++PI)
		{
			if(setCloned.find(*PI) != setCloned.end())
			{
				LoopBlocks.push_back(*PI);
			}
		}

		BasicBlock * NewExitBB = SplitBlockPredecessors(*itSetBegin, LoopBlocks, ".WL.loopexit", this);

		pStore = new StoreInst(pIterationAdd, this->numIterations, false, NewExitBB->getFirstInsertionPt());
		pStore->setAlignment(8);

		pStore = new StoreInst(pWorkingAdd, this->numWorkingIterations, false, NewExitBB->getFirstInsertionPt());
		pStore->setAlignment(8);
	}

	//pFunction->dump();

	DominatorTree * DT = &(getAnalysis<DominatorTree>(*pFunction));
	vector<AllocaInst *> vecAlloc;
	vecAlloc.push_back(pAlloc);
	PromoteMemToReg(vecAlloc, *DT);

	pFunction->dump();
}
Beispiel #23
0
/// HandleURoRInvokes - Handle invokes of "_Unwind_Resume_or_Rethrow" calls. The
/// "unwind" part of these invokes jump to a landing pad within the current
/// function. This is a candidate to merge the selector associated with the URoR
/// invoke with the one from the URoR's landing pad.
bool DwarfEHPrepare::HandleURoRInvokes() {
  if (!EHCatchAllValue) {
    EHCatchAllValue =
      F->getParent()->getNamedGlobal("llvm.eh.catch.all.value");
    if (!EHCatchAllValue) return false;
  }

  if (!SelectorIntrinsic) {
    SelectorIntrinsic =
      Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector);
    if (!SelectorIntrinsic) return false;
  }

  SmallPtrSet<IntrinsicInst*, 32> Sels;
  SmallPtrSet<IntrinsicInst*, 32> CatchAllSels;
  FindAllCleanupSelectors(Sels, CatchAllSels);

  if (!DT)
    // We require DominatorTree information.
    return CleanupSelectors(CatchAllSels);

  if (!URoR) {
    URoR = F->getParent()->getFunction("_Unwind_Resume_or_Rethrow");
    if (!URoR) return CleanupSelectors(CatchAllSels);
  }

  SmallPtrSet<InvokeInst*, 32> URoRInvokes;
  FindAllURoRInvokes(URoRInvokes);

  SmallPtrSet<IntrinsicInst*, 32> SelsToConvert;

  for (SmallPtrSet<IntrinsicInst*, 32>::iterator
         SI = Sels.begin(), SE = Sels.end(); SI != SE; ++SI) {
    const BasicBlock *SelBB = (*SI)->getParent();
    for (SmallPtrSet<InvokeInst*, 32>::iterator
           UI = URoRInvokes.begin(), UE = URoRInvokes.end(); UI != UE; ++UI) {
      const BasicBlock *URoRBB = (*UI)->getParent();
      if (DT->dominates(SelBB, URoRBB)) {
        SelsToConvert.insert(*SI);
        break;
      }
    }
  }

  bool Changed = false;

  if (Sels.size() != SelsToConvert.size()) {
    // If we haven't been able to convert all of the clean-up selectors, then
    // loop through the slow way to see if they still need to be converted.
    if (!ExceptionValueIntrinsic) {
      ExceptionValueIntrinsic =
        Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_exception);
      if (!ExceptionValueIntrinsic)
        return CleanupSelectors(CatchAllSels);
    }

    for (Value::use_iterator
           I = ExceptionValueIntrinsic->use_begin(),
           E = ExceptionValueIntrinsic->use_end(); I != E; ++I) {
      IntrinsicInst *EHPtr = dyn_cast<IntrinsicInst>(*I);
      if (!EHPtr || EHPtr->getParent()->getParent() != F) continue;

      Changed |= PromoteEHPtrStore(EHPtr);

      bool URoRInvoke = false;
      SmallPtrSet<IntrinsicInst*, 8> SelCalls;
      Changed |= FindSelectorAndURoR(EHPtr, URoRInvoke, SelCalls);

      if (URoRInvoke) {
        // This EH pointer is being used by an invoke of an URoR instruction and
        // an eh.selector intrinsic call. If the eh.selector is a 'clean-up', we
        // need to convert it to a 'catch-all'.
        for (SmallPtrSet<IntrinsicInst*, 8>::iterator
               SI = SelCalls.begin(), SE = SelCalls.end(); SI != SE; ++SI)
          if (!HasCatchAllInSelector(*SI))
              SelsToConvert.insert(*SI);
      }
    }
  }

  if (!SelsToConvert.empty()) {
    // Convert all clean-up eh.selectors, which are associated with "invokes" of
    // URoR calls, into catch-all eh.selectors.
    Changed = true;

    for (SmallPtrSet<IntrinsicInst*, 8>::iterator
           SI = SelsToConvert.begin(), SE = SelsToConvert.end();
         SI != SE; ++SI) {
      IntrinsicInst *II = *SI;

      // Use the exception object pointer and the personality function
      // from the original selector.
      CallSite CS(II);
      IntrinsicInst::op_iterator I = CS.arg_begin();
      IntrinsicInst::op_iterator E = CS.arg_end();
      IntrinsicInst::op_iterator B = prior(E);

      // Exclude last argument if it is an integer.
      if (isa<ConstantInt>(B)) E = B;

      // Add exception object pointer (front).
      // Add personality function (next).
      // Add in any filter IDs (rest).
      SmallVector<Value*, 8> Args(I, E);

      Args.push_back(EHCatchAllValue->getInitializer()); // Catch-all indicator.

      CallInst *NewSelector =
        CallInst::Create(SelectorIntrinsic, Args.begin(), Args.end(),
                         "eh.sel.catch.all", II);

      NewSelector->setTailCall(II->isTailCall());
      NewSelector->setAttributes(II->getAttributes());
      NewSelector->setCallingConv(II->getCallingConv());

      II->replaceAllUsesWith(NewSelector);
      II->eraseFromParent();
    }
  }

  Changed |= CleanupSelectors(CatchAllSels);
  return Changed;
}
Beispiel #24
0
/// Replaces the given call site (Call or Invoke) with a gc.statepoint
/// intrinsic with an empty deoptimization arguments list.  This does
/// NOT do explicit relocation for GC support.
static Value *ReplaceWithStatepoint(const CallSite &CS /* to replace */) {
  assert(CS.getInstruction()->getModule() && "must be set");

  // TODO: technically, a pass is not allowed to get functions from within a
  // function pass since it might trigger a new function addition.  Refactor
  // this logic out to the initialization of the pass.  Doesn't appear to
  // matter in practice.

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  IRBuilder<> Builder(CS.getInstruction());

  // Note: The gc args are not filled in at this time, that's handled by
  // RewriteStatepointsForGC (which is currently under review).

  // Create the statepoint given all the arguments
  Instruction *Token = nullptr;

  uint64_t ID;
  uint32_t NumPatchBytes;

  AttributeSet OriginalAttrs = CS.getAttributes();
  Attribute AttrID =
      OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id");
  Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
      AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");

  AttrBuilder AttrsToRemove;
  bool HasID = AttrID.isStringAttribute() &&
               !AttrID.getValueAsString().getAsInteger(10, ID);

  if (HasID)
    AttrsToRemove.addAttribute("statepoint-id");
  else
    ID = 0xABCDEF00;

  bool HasNumPatchBytes =
      AttrNumPatchBytes.isStringAttribute() &&
      !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);

  if (HasNumPatchBytes)
    AttrsToRemove.addAttribute("statepoint-num-patch-bytes");
  else
    NumPatchBytes = 0;

  OriginalAttrs = OriginalAttrs.removeAttributes(
      CS.getInstruction()->getContext(), AttributeSet::FunctionIndex,
      AttrsToRemove);

  if (CS.isCall()) {
    CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
    CallInst *Call = Builder.CreateGCStatepointCall(
        ID, NumPatchBytes, CS.getCalledValue(),
        makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None,
        "safepoint_token");
    Call->setTailCall(ToReplace->isTailCall());
    Call->setCallingConv(ToReplace->getCallingConv());

    // In case if we can handle this set of attributes - set up function
    // attributes directly on statepoint and return attributes later for
    // gc_result intrinsic.
    Call->setAttributes(OriginalAttrs.getFnAttributes());

    Token = Call;

    // Put the following gc_result and gc_relocate calls immediately after
    // the old call (which we're about to delete).
    assert(ToReplace->getNextNode() && "not a terminator, must have next");
    Builder.SetInsertPoint(ToReplace->getNextNode());
    Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
  } else if (CS.isInvoke()) {
    InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    Builder.SetInsertPoint(ToReplace->getParent());
    InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
        ID, NumPatchBytes, CS.getCalledValue(), ToReplace->getNormalDest(),
        ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
        None, None, "safepoint_token");

    Invoke->setCallingConv(ToReplace->getCallingConv());

    // In case if we can handle this set of attributes - set up function
    // attributes directly on statepoint and return attributes later for
    // gc_result intrinsic.
    Invoke->setAttributes(OriginalAttrs.getFnAttributes());

    Token = Invoke;

    // We'll insert the gc.result into the normal block
    BasicBlock *NormalDest = ToReplace->getNormalDest();
    // Can not insert gc.result in case of phi nodes preset.
    // Should have removed this cases prior to running this function
    assert(!isa<PHINode>(NormalDest->begin()));
    Instruction *IP = &*(NormalDest->getFirstInsertionPt());
    Builder.SetInsertPoint(IP);
  } else {
    llvm_unreachable("unexpect type of CallSite");
  }
  assert(Token);

  // Handle the return value of the original call - update all uses to use a
  // gc_result hanging off the statepoint node we just inserted

  // Only add the gc_result iff there is actually a used result
  if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
    std::string TakenName =
        CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
    CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
    GCResult->setAttributes(OriginalAttrs.getRetAttributes());
    return GCResult;
  } else {
    // No return value for the call.
    return nullptr;
  }
}
Beispiel #25
0
void FaultInjectionPass::insertInjectionFuncCall(
    std::map<Instruction*, std::list< int >* > *inst_regs_map, Module &M) {

  for (std::map<Instruction*, std::list< int >* >::iterator inst_reg_it =
       inst_regs_map->begin(); inst_reg_it != inst_regs_map->end(); 
       ++inst_reg_it) {
    Instruction *fi_inst = inst_reg_it->first;
    
    std::list<int> *fi_reg_pos_list = inst_reg_it->second;
    unsigned reg_index = 0;
    unsigned total_reg_num = fi_reg_pos_list->size();
    for (std::list<int>::iterator reg_pos_it = fi_reg_pos_list->begin(); 
         reg_pos_it != fi_reg_pos_list->end(); ++reg_pos_it, ++reg_index) {
      if(isa<GetElementPtrInst>(fi_inst)){
        GetElementPtrInst* gepi = dyn_cast<GetElementPtrInst>(fi_inst);
        gepi->setIsInBounds(false);
      }
      if(isa<CallInst>(fi_inst)){
        CallInst* ci = dyn_cast<CallInst>(fi_inst);
        ci->setTailCall(false);
      }

      Value* fi_reg = NULL;
      if(*reg_pos_it == DST_REG_POS)  fi_reg = fi_inst;
      else fi_reg = fi_inst->getOperand(*reg_pos_it);
      //if(isa<Constant>(fi_reg))  continue;
      Type *returntype = fi_reg->getType();
      LLVMContext &context = M.getContext();
      Type *i64type = Type::getInt64Ty(context);
      Type *i32type = Type::getInt32Ty(context);

      // function declaration
      std::vector<Type*> paramtypes(7);
      paramtypes[0] = i64type;	// llfi index
      paramtypes[1] = returntype;	// the instruction to be injected
      paramtypes[2] = i32type; // opcode
      paramtypes[3] = i32type; // current fi reg index
      paramtypes[4] = i32type; // total fi reg number
      //======== Add reg_pos QINING @DEC 23rd ==========
      paramtypes[5] = i32type;
      //================================================
      //======== Add opcode_str QINING @MAR 11th========
      paramtypes[6] = PointerType::get(Type::getInt8Ty(context), 0);
      //================================================

      //LLVM 3.3 Upgrade
      ArrayRef<Type*> paramtypes_array_ref(paramtypes);
      FunctionType* injectfunctype = FunctionType::get(returntype, paramtypes_array_ref, false);

      std::string funcname = getFIFuncNameforType(returntype);
      Constant *injectfunc = M.getOrInsertFunction(funcname, injectfunctype);

      // argument preparation for calling function
      // since the source register is another way of simulating fault
      // injection into "the instruction", use instruction's index instead
      Value *indexval = ConstantInt::get(i64type, getLLFIIndexofInst(fi_inst));

      std::vector<Value*> args(7);
      args[0] = indexval; //llfi index
      args[1] = fi_reg; // target register
      args[2] = ConstantInt::get(i32type, fi_inst->getOpcode()); // opcode in i32
      args[3] = ConstantInt::get(i32type, reg_index); // reg_index not reg_pos
      args[4] = ConstantInt::get(i32type, total_reg_num); // total_reg_num
      //======== Add reg_pos QINING @DEC 23rd ==========
      args[5] = ConstantInt::get(i32type, *reg_pos_it+1); // dstreg->0, operand0->1, operand1->2 ...
      //================================================
      //======== Add opcode_str QINING @MAR 11th========
      std::string opcode_str = fi_inst->getOpcodeName();
      GlobalVariable* opcode_str_gv = findOrCreateGlobalNameString(M, opcode_str);
      std::vector<Constant*> indices_for_gep(2);
      indices_for_gep[0] = ConstantInt::get(Type::getInt32Ty(context),0);
      indices_for_gep[1] = ConstantInt::get(Type::getInt32Ty(context),0);
      ArrayRef<Constant*> indices_for_gep_array_ref(indices_for_gep);
      Constant* gep_expr = ConstantExpr::getGetElementPtr(opcode_str_gv, indices_for_gep_array_ref, true);
      args[6] = gep_expr; // opcode in string
      //================================================

      // LLVM 3.3 Upgrade
      ArrayRef<Value*> args_array_ref(args);

      Instruction *insertptr = getInsertPtrforRegsofInst(fi_reg, fi_inst);
      Instruction* ficall = CallInst::Create(
          injectfunc, args_array_ref, "fi", insertptr);
      setInjectFaultInst(fi_reg, fi_inst, ficall); // sets the instruction metadata

      // redirect the data dependencies
      if (fi_reg == fi_inst) {
        // inject into destination
        std::list<User*> inst_uses;
        for (Value::use_iterator use_it = fi_inst->use_begin();
             use_it != fi_inst->use_end(); ++use_it) {
          User *user = *use_it;
          
          if (user != ficall) {
            inst_uses.push_back(user);
          }
        }
        
        for (std::list<User*>::iterator use_it = inst_uses.begin();
             use_it != inst_uses.end(); ++use_it) {
          User *user = *use_it;
          user->replaceUsesOfWith(fi_inst, ficall);
          
          // update the selected inst pool
          /*if (Instruction *use_inst = dyn_cast<Instruction>(user)) {
            if (inst_regs_map->find(use_inst) != inst_regs_map->end()) {
              std::list<int> *reg_pos_list = (*inst_regs_map)[use_inst];
              
              for (std::list<int>::iterator reg_pos_it = reg_pos_list->begin();
                   reg_pos_it != reg_pos_list->end(); ++reg_pos_it) {
                if (use_inst->getOperand(*reg_pos_it) == fi_inst) {
                  use_inst->setOperand(*reg_pos_it, ficall);
                }
              }
            }
          }*/
        }
        
      } else {
        // inject into source
        //fi_inst->replaceUsesOfWith(fi_reg, ficall);
        fi_inst->setOperand(*reg_pos_it, ficall);
      }
    }
  }
}
Beispiel #26
0
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
            SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
            Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
                ReplaceCallSite) {
  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type *> Params;

  using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  std::map<Argument *, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  // We need to keep the original loads for each argument and the elements
  // of the argument that are accessed.
  std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;

  // Attribute - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeSet, 8> ArgAttrVec;
  AttributeList PAL = F->getAttributes();

  // First, determine the new argument list
  unsigned ArgNo = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgNo) {
    if (ByValArgsToTransform.count(&*I)) {
      // Simple byval argument? Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      StructType *STy = cast<StructType>(AgTy);
      Params.insert(Params.end(), STy->element_begin(), STy->element_end());
      ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
                        AttributeSet());
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(&*I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;

      // There may be remaining metadata uses of the argument for things like
      // llvm.dbg.value. Replace them with undef.
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
      for (User *U : I->users()) {
        Instruction *UI = cast<Instruction>(U);
        Type *SrcTy;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          SrcTy = L->getType();
        else
          SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
        IndicesVector Indices;
        Indices.reserve(UI->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(std::make_pair(SrcTy, Indices));
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(UI->user_back());
        OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (const auto &ArgIndex : ArgIndices) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(
            cast<PointerType>(I->getType()->getScalarType())->getElementType(),
            ArgIndex.second));
        ArgAttrVec.push_back(AttributeSet());
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  Type *RetTy = FTy->getReturnType();

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
  NF->copyAttributesFrom(F);

  // Patch the pointer to LLVM function in debug info descriptor.
  NF->setSubprogram(F->getSubprogram());
  F->setSubprogram(nullptr);

  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
               << "From: " << *F);

  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
                                       PAL.getRetAttributes(), ArgAttrVec));
  ArgAttrVec.clear();

  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value *, 16> Args;
  while (!F->use_empty()) {
    CallSite CS(F->user_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttributeList &CallPAL = CS.getAttributes();

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgNo = 0;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
         ++I, ++AI, ++ArgNo)
      if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
        Args.push_back(*AI); // Unmodified argument
        ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
      } else if (ByValArgsToTransform.count(&*I)) {
        // Emit a GEP and load for each element of the struct.
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          Value *Idx = GetElementPtrInst::Create(
              STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
          // TODO: Tell AA about the new values?
          Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
          ArgAttrVec.push_back(AttributeSet());
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value *> Ops;
        for (const auto &ArgIndex : ArgIndices) {
          Value *V = *AI;
          LoadInst *OrigLoad =
              OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
          if (!ArgIndex.second.empty()) {
            Ops.reserve(ArgIndex.second.size());
            Type *ElTy = V->getType();
            for (auto II : ArgIndex.second) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              Type *IdxTy =
                  (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
                                      : Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, II));
              // Keep track of the type we're currently indexing.
              if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
                ElTy = ElPTy->getElementType();
              else
                ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
            }
            // And create a GEP to extract those indices.
            V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
                                          V->getName() + ".idx", Call);
            Ops.clear();
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
          newLoad->setAlignment(OrigLoad->getAlignment());
          // Transfer the AA info too.
          AAMDNodes AAInfo;
          OrigLoad->getAAMetadata(AAInfo);
          newLoad->setAAMetadata(AAInfo);

          Args.push_back(newLoad);
          ArgAttrVec.push_back(AttributeSet());
        }
      }

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
      Args.push_back(*AI);
      ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
    }

    SmallVector<OperandBundleDef, 1> OpBundles;
    CS.getOperandBundlesAsDefs(OpBundles);

    CallSite NewCS;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                                 Args, OpBundles, "", Call);
    } else {
      auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
      NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
      NewCS = NewCall;
    }
    NewCS.setCallingConv(CS.getCallingConv());
    NewCS.setAttributes(
        AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
                           CallPAL.getRetAttributes(), ArgAttrVec));
    NewCS->setDebugLoc(Call->getDebugLoc());
    uint64_t W;
    if (Call->extractProfTotalWeight(W))
      NewCS->setProfWeight(W);
    Args.clear();
    ArgAttrVec.clear();

    // Update the callgraph to know that the callsite has been transformed.
    if (ReplaceCallSite)
      (*ReplaceCallSite)(CS, NewCS);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(NewCS.getInstruction());
      NewCS->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  const DataLayout &DL = F->getParent()->getDataLayout();

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
                              I2 = NF->arg_begin();
       I != E; ++I) {
    if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(&*I2);
      I2->takeName(&*I);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(&*I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = &NF->begin()->front();

      // Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
                                        I->getParamAlignment(), "", InsertPt);
      StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
                        nullptr};

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = GetElementPtrInst::Create(
            AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
            InsertPt);
        I2->setName(I->getName() + "." + Twine(i));
        new StoreInst(&*I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(&*I);

      // If the alloca is used in a call, we must clear the tail flag since
      // the callee now uses an alloca from the caller.
      for (User *U : TheAlloca->users()) {
        CallInst *Call = dyn_cast<CallInst>(U);
        if (!Call)
          continue;
        Call->setTailCall(false);
      }
      continue;
    }

    if (I->use_empty())
      continue;

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[&*I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
        assert(ArgIndices.begin()->second.empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName() + ".val");
        LI->replaceAllUsesWith(&*I2);
        LI->eraseFromParent();
        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
                     << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             It->second != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
          NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
                     << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->user_back());
          L->replaceAllUsesWith(&*TheArg);
          L->eraseFromParent();
        }
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    std::advance(I2, ArgIndices.size());
  }

  return NF;
}
Beispiel #27
0
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
                              const std::vector<GenericValue> &ArgValues) {
  assert(F && "Function *F was null at entry to run()");

  void *FPtr = getPointerToFunction(F);
  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
  const FunctionType *FTy = F->getFunctionType();
  const Type *RetTy = FTy->getReturnType();

  assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
         "Too many arguments passed into function!");
  assert(FTy->getNumParams() == ArgValues.size() &&
         "This doesn't support passing arguments through varargs (yet)!");

  //// Brooks
  //// X86 Opcode 0x0f39 called here
  cout<<"****** SWITCHING TO SIMULATION MODE FROM NATIVE MODE ***** \n";
  ptlcall_switch_to_sim();
  cout<<"____ SIWTCH DONE ____ \n";

  int * a=(int*)0x85df65d;
  cout<<"Value: "<<std::hex<<*(a)<<" "<<*(a+1)<<"\n";
  asm(".byte 0x0f; .byte 0x39;");

  // Handle some common cases first.  These cases correspond to common `main'
  // prototypes.
  if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
    switch (ArgValues.size()) {
    case 3:
      if (FTy->getParamType(0) == Type::Int32Ty &&
          isa<PointerType>(FTy->getParamType(1)) &&
          isa<PointerType>(FTy->getParamType(2))) {
        int (*PF)(int, char **, const char **) =
          (int(*)(int, char **, const char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
                                 (char **)GVTOP(ArgValues[1]),
                                 (const char **)GVTOP(ArgValues[2])));
        return rv;
      }
      break;
    case 2:
      if (FTy->getParamType(0) == Type::Int32Ty &&
          isa<PointerType>(FTy->getParamType(1))) {
        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
                                 (char **)GVTOP(ArgValues[1])));
        return rv;
      }
      break;
    case 1:
      if (FTy->getNumParams() == 1 &&
          FTy->getParamType(0) == Type::Int32Ty) {
        GenericValue rv;
        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
        return rv;
      }
      break;
    }
  }

  // Handle cases where no arguments are passed first.
  if (ArgValues.empty()) {
    GenericValue rv;
    switch (RetTy->getTypeID()) {
    default: assert(0 && "Unknown return type for function call!");
    case Type::IntegerTyID: {
      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
      if (BitWidth == 1)
        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 8)
        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 16)
        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 32)
        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
      else if (BitWidth <= 64)
        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
      else 
        assert(0 && "Integer types > 64 bits not supported");
      return rv;
    }
    case Type::VoidTyID:
      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
      return rv;
    case Type::FloatTyID:
      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
      return rv;
    case Type::DoubleTyID:
      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
      return rv;
    case Type::X86_FP80TyID:
    case Type::FP128TyID:
    case Type::PPC_FP128TyID:
      assert(0 && "long double not supported yet");
      return rv;
    case Type::PointerTyID:
      return PTOGV(((void*(*)())(intptr_t)FPtr)());
    }
  }

  // Okay, this is not one of our quick and easy cases.  Because we don't have a
  // full FFI, we have to codegen a nullary stub function that just calls the
  // function we are interested in, passing in constants for all of the
  // arguments.  Make this function and return.

  // First, create the function.
  FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
                                    F->getParent());

  // Insert a basic block.
  BasicBlock *StubBB = BasicBlock::Create("", Stub);

  // Convert all of the GenericValue arguments over to constants.  Note that we
  // currently don't support varargs.
  SmallVector<Value*, 8> Args;
  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
    Constant *C = 0;
    const Type *ArgTy = FTy->getParamType(i);
    const GenericValue &AV = ArgValues[i];
    switch (ArgTy->getTypeID()) {
    default: assert(0 && "Unknown argument type for function call!");
    case Type::IntegerTyID:
        C = ConstantInt::get(AV.IntVal);
        break;
    case Type::FloatTyID:
        C = ConstantFP::get(APFloat(AV.FloatVal));
        break;
    case Type::DoubleTyID:
        C = ConstantFP::get(APFloat(AV.DoubleVal));
        break;
    case Type::PPC_FP128TyID:
    case Type::X86_FP80TyID:
    case Type::FP128TyID:
        C = ConstantFP::get(APFloat(AV.IntVal));
        break;
    case Type::PointerTyID:
      void *ArgPtr = GVTOP(AV);
      if (sizeof(void*) == 4)
        C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
      else
        C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
      C = ConstantExpr::getIntToPtr(C, ArgTy);  // Cast the integer to pointer
      break;
    }
    Args.push_back(C);
  }

  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(), "", StubBB);
  TheCall->setTailCall();
  if (TheCall->getType() != Type::VoidTy)
    ReturnInst::Create(TheCall, StubBB);             // Return result of the call.
  else
    ReturnInst::Create(StubBB);                      // Just return void.

  // Finally, return the value returned by our nullary stub function.
  return runFunction(Stub, std::vector<GenericValue>());
}