CellFilter CellFilter::operator-(const CellFilter& other) const 
{
  if (other.isNull())
  {
    return *this;
  }
  else if (isKnownDisjointWith(other) || other.isKnownDisjointWith(*this))
  {
    return *this;
  }
  else if (isKnownSubsetOf(other))
  {
    CellFilter rtn;
    return rtn;
  }
  else if (*this == other)
  {
    CellFilter rtn;
    return rtn;
  }
  else
  {
    CellFilter rtn 
      = new BinaryCellFilter(*this, other, BinaryCellFilter::Difference);
    rtn.registerDisjoint(other);
    this->registerSubset(rtn);
    return rtn;
  }
}
HomogeneousDOFMap::HomogeneousDOFMap(const Mesh& mesh, 
  const BasisFamily& basis,
  int numFuncs, 
  int setupVerb)
  : DOFMapBase(mesh, setupVerb), 
    dim_(mesh.spatialDim()),
    dofs_(mesh.spatialDim()+1),
    maximalDofs_(),
    haveMaximalDofs_(false),
    localNodePtrs_(mesh.spatialDim()+1),
    nNodesPerCell_(mesh.spatialDim()+1),
    totalNNodesPerCell_(mesh.spatialDim()+1, 0),
    numFacets_(mesh.spatialDim()+1),
    originalFacetOrientation_(2),
    basisIsContinuous_(false)
{
  verbosity() = DOFMapBase::classVerbosity();
  
  CellFilter maximalCells = new MaximalCellFilter();
  cellSets().append(maximalCells.getCells(mesh));
  cellDimOnCellSets().append(mesh.spatialDim());

  allocate(mesh, basis, numFuncs);
  initMap();
}
CellFilter CellFilter::intersection(const CellFilter& other) const 
{
  if (isNull() || other.isNull())
  {
    CellFilter rtn;
    return rtn;
  }
  else if (isKnownDisjointWith(other) || other.isKnownDisjointWith(*this))
  {
    CellFilter rtn;
    return rtn;
  }
  else if (isKnownSubsetOf(other))
  {
    return *this;
  }
  else if (other.isKnownSubsetOf(*this))
  {
    return other;
  }
  else if (*this==other)
  {
    return *this;
  }
  else
  {
    CellFilter rtn 
      = new BinaryCellFilter(*this, other, BinaryCellFilter::Intersection);
    other.registerSubset(rtn);
    this->registerSubset(rtn);
    
    return rtn;
  }
}
void CellFilter::registerDisjoint(const CellFilter& sub) const
{
  SubsetManager::registerDisjoint(*this, sub);
  
  for (Set<CellFilter>::const_iterator 
         i=sub.knownDisjoints().begin(); i!=sub.knownDisjoints().end(); i++)
  {
    SubsetManager::registerDisjoint(*this, *i);
  }
}
Beispiel #5
0
/* weak form of poisson with Nitsche-type weak BC's */
Expr poissonEquationNitsche( bool splitBC,
                             Expr u ,
                             Expr v ,
                             Expr alpha ,
                             QuadratureFamily quad )
{
    CellFilter interior = new MaximalCellFilter();
    CellFilter boundary = new BoundaryCellFilter();
    CellFilter left = boundary.subset( new LeftPointTest() );
    CellFilter right = boundary.subset( new RightPointTest() );
    CellFilter top = boundary.subset( new TopPointTest() );
    CellFilter bottom = boundary.subset( new BottomPointTest() );

    CellFilter allBdry = left+right+top+bottom;

    Expr dx = new Derivative(0);
    Expr dy = new Derivative(1);
    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);
    Expr grad = List( dx , dy );

    Expr uvTerm;
    if (splitBC)
    {
        Out::os() << "BC expressions split over domains" << std::endl;
        uvTerm = Integral( left , alpha*u * v , quad )
                 + Integral( right , alpha*u * v , quad )
                 + Integral( top , alpha*u * v , quad )
                 + Integral( bottom , alpha*u * v , quad );
    }
    else
    {
        Out::os() << "BC expressions not split over domains" << std::endl;
        uvTerm = Integral( allBdry , alpha*u * v , quad );
    }


    const double pi = 4.0*atan(1.0);
    Expr force = 2.0*pi*pi*sin(pi*x)*sin(pi*y);
    return Integral( interior , (grad*v) * (grad*u) - force * v , quad )
           /* du/dn term */
           - Integral( left , -(dx*u)*v , quad )
           - Integral( top , (dy*u)*v , quad )
           - Integral( right , (dx*u)*v , quad )
           - Integral( bottom , -(dy*u)*v , quad )
           /* dv/dn term */
           - Integral( left , -(dx*v)*u , quad )
           - Integral( top , (dy*v)*u , quad )
           - Integral( right , (dx*v)*u , quad )
           - Integral( bottom , -(dy*v)*u , quad )
           /* u,v term  -- alpha = C / h */
           + uvTerm;
}
DiscreteSpace::DiscreteSpace(const Mesh& mesh, const BasisArray& basis,
  const RCP<FunctionSupportResolver>& fsr,
  const VectorType<double>& vecType,
  int setupVerb)
  : setupVerb_(setupVerb),
    map_(), 
    mesh_(mesh), 
    subdomains_(),
    basis_(basis),
    vecSpace_(), 
    vecType_(vecType),
    ghostImporter_()
  ,transformationBuilder_(new DiscreteSpaceTransfBuilder())
{
  bool partitionBCs = false;
  DOFMapBuilder builder(mesh, fsr, partitionBCs, setupVerb);

  map_ = builder.colMap()[0];
  Array<Set<CellFilter> > cf = builder.unkCellFilters()[0];

  for (int i=0; i<cf.size(); i++)
  {
    Array<Array<CellFilter> > dimCF(mesh.spatialDim()+1);
    for (Set<CellFilter>::const_iterator 
           iter=cf[i].begin(); iter != cf[i].end(); iter++)
    {
      CellFilter f = *iter;
      int dim = f.dimension(mesh);
      dimCF[dim].append(f);
    }
    for (int d=mesh.spatialDim(); d>=0; d--)
    {
      if (dimCF[d].size() == 0) continue;
      CellFilter f = dimCF[d][0];
      for (int j=1; j<dimCF[d].size(); j++)
      {
        f = f + dimCF[d][j];
      }
      subdomains_.append(f);
      break;
    }
  }
  RCP<Array<int> > dummyBCIndices;
  
  // set up the transformation
  transformationBuilder_ = rcp(new DiscreteSpaceTransfBuilder( mesh , basis , map_ ));

  initVectorSpace(dummyBCIndices, partitionBCs);
  initImporter();
}
bool CellFilter::isKnownDisjointWith(const CellFilter& other) const
{
  if (other.knownDisjoints().contains(*this)) return true;
  if (this->knownDisjoints().contains(other)) return true;

  return false;
}
Beispiel #8
0
CellSet connectedNodeSet(const CellFilter& f, const Mesh& mesh)
{
  CellSet cells = f.getCells(mesh);
  int dim = cells.dimension();
  if (dim==0) return cells;


  Array<int> cellLID;

  for (CellIterator i=cells.begin(); i!=cells.end(); i++)
  {
    cellLID.append(*i);
  }

  Array<int> nodes;
  Array<int> fo;

  mesh.getFacetLIDs(dim, cellLID, 0, nodes, fo);

  Set<int> nodeSet;

  for (int i=0; i<nodes.size(); i++)
  {
    nodeSet.put(nodes[i]);
  }
  
  return CellSet(mesh, 0, PointCell, nodeSet);
}
CellFilter CellFilter::operator+(const CellFilter& other) const 
{
  if (isNull())
  {
    return other;
  }
  else if (other.isNull())
  {
    return *this;
  }
  else
  {
    CellFilter rtn 
      = new BinaryCellFilter(*this, other, BinaryCellFilter::Union);
    rtn.registerSubset(*this);
    rtn.registerSubset(other);
    return rtn;
  }
}
bool CellFilter::isSubsetOf(const CellFilter& other,
  const Mesh& mesh) const
{
  if (isKnownSubsetOf(other)) 
  {
    return true;
  }
  else
  {
    CellSet myCells = getCells(mesh);
    CellSet yourCells = other.getCells(mesh);
    CellSet inter = myCells.setIntersection(yourCells);
    if (inter.begin() == inter.end()) return false;
    CellSet diff = myCells.setDifference(inter);
    return (diff.begin() == diff.end());
  }
}
Beispiel #11
0
/** 
 * This example program sets up and solves the Laplace 
 * equation \f$-\nabla^2 u=0\f$. See the
 * document GettingStarted.pdf for more information.
 */
int main(int argc, char** argv)
{
  try
  {
    /* command-line options */
    std::string meshFile="plateWithHole3D-1";
    std::string solverFile = "aztec-ml.xml";
    Sundance::setOption("meshFile", meshFile, "mesh file");
    Sundance::setOption("solver", solverFile, 
      "name of XML file for solver");

    /* Initialize */
    Sundance::init(&argc, &argv);

    /* --- Specify vector representation to be used --- */
    VectorType<double> vecType = new EpetraVectorType();

    /* --- Read mesh --- */
    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource meshSrc
      =  new ExodusMeshReader(meshFile, meshType);
    Mesh mesh = meshSrc.getMesh();

    /* --- Specification of geometric regions --- */

    /* Region "interior" consists of all maximal-dimension cells */
    CellFilter interior = new MaximalCellFilter();

    /* Identify boundary regions via labels in mesh */
    CellFilter edges = new DimensionalCellFilter(2);

    CellFilter south = edges.labeledSubset(1);
    CellFilter east = edges.labeledSubset(2);
    CellFilter north = edges.labeledSubset(3);
    CellFilter west = edges.labeledSubset(4);
    CellFilter hole = edges.labeledSubset(5);
    CellFilter down = edges.labeledSubset(6);
    CellFilter up = edges.labeledSubset(7);

    /* --- Symbolic equation definition --- */

    /* Test and unknown function */
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    /* Gradient operator */
    Expr dx = new Derivative(0);
    Expr dy = new Derivative(1);
    Expr dz = new Derivative(2);
    Expr grad = List(dx, dy, dz);

    /* We need a quadrature rule for doing the integrations */
    QuadratureFamily quad1 = new GaussianQuadrature(1);
    QuadratureFamily quad2 = new GaussianQuadrature(2);


    /** Write the weak form */
    Expr eqn 
      = Integral(interior, (grad*u)*(grad*v), quad1)
      + Integral(east, v, quad1);

    /* Write the essential boundary conditions */
    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(west, v*u/h, quad2);

    /* Set up linear problem */
    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    /* --- solve the problem --- */

    /* Create the solver as specified by parameters in 
     * an XML file */

    LinearSolver<double> solver 
      = LinearSolverBuilder::createSolver(solverFile);

    /* Solve! The solution is returned as an Expr containing a 
    * DiscreteFunction */
    Expr soln = prob.solve(solver);

    /* --- Postprocessing --- */

    /* Project the derivative onto the P1 basis */
    DiscreteSpace discSpace(mesh, List(basis, basis, basis), vecType);
    L2Projector proj(discSpace, grad*soln);
    Expr gradU = proj.project();

    /* Write the solution and its projected gradient to a VTK file */
    FieldWriter w = new VTKWriter("LaplaceDemo3D");
    w.addMesh(mesh);
    w.addField("soln", new ExprFieldWrapper(soln[0]));
    w.addField("du_dx", new ExprFieldWrapper(gradU[0]));
    w.addField("du_dy", new ExprFieldWrapper(gradU[1]));
    w.addField("du_dz", new ExprFieldWrapper(gradU[2]));
    w.write();

    /* Check flux balance */
    Expr n = CellNormalExpr(3, "n");
    CellFilter wholeBdry = east+west+north+south+up+down+hole;
    Expr fluxExpr 
      = Integral(wholeBdry, (n*grad)*soln, quad1); 
    double flux = evaluateIntegral(mesh, fluxExpr);
    Out::root() << "numerical flux = " << flux << std::endl;

    /* --- Let's compute a few other quantities, such as the centroid of
     * the mesh:*/

    /* Coordinate functions let us build up functions of position */
    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);
    Expr z = new CoordExpr(2);

    Expr xCMExpr = Integral(interior, x, quad1);
    Expr yCMExpr = Integral(interior, y, quad1);
    Expr zCMExpr = Integral(interior, z, quad1);
    Expr volExpr = Integral(interior, 1.0, quad1);
    
    double vol = evaluateIntegral(mesh, volExpr);
    double xCM = evaluateIntegral(mesh, xCMExpr)/vol;
    double yCM = evaluateIntegral(mesh, yCMExpr)/vol;
    double zCM = evaluateIntegral(mesh, zCMExpr)/vol;
    Out::root() << "centroid = (" << xCM << ", " << yCM 
              << ", " << zCM << ")" << std::endl;

    /* Next, compute the first Fourier sine coefficient of the solution on the
     * surface of the hole.*/
    Expr r = sqrt(x*x + y*y);
    Expr sinPhi = y/r;

    /* Use a higher-order quadrature rule for these integrals */
    QuadratureFamily quad4 = new GaussianQuadrature(4);

    Expr fourierSin1Expr = Integral(hole, sinPhi*soln, quad4);
    Expr fourierDenomExpr = Integral(hole, sinPhi*sinPhi, quad2);
    double fourierSin1 = evaluateIntegral(mesh, fourierSin1Expr);
    double fourierDenom = evaluateIntegral(mesh, fourierDenomExpr);
    Out::root() << "fourier sin m=1 = " << fourierSin1/fourierDenom << std::endl;

    /* Compute the L2 norm of the solution */
    Expr L2NormExpr = Integral(interior, soln*soln, quad2);     
    double l2Norm_method1 = sqrt(evaluateIntegral(mesh, L2NormExpr));     
    Out::os() << "method #1: ||soln|| = " << l2Norm_method1 << endl;

    /* Use the L2Norm() function to do the same calculation */
    double l2Norm_method2 = L2Norm(mesh, interior, soln, quad2);     
    Out::os() << "method #2: ||soln|| = " << l2Norm_method2 << endl;

    /*
     * Check that the flux is acceptably close to zero. The flux calculation
     * is only O(h) so keep the tolerance loose. This
     * is just a sanity check to ensure the code doesn't get completely 
     * broken after a change to the library. 
     */
    Sundance::passFailTest(fabs(flux), 1.0e-2);
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 

  return Sundance::testStatus();
}
int main(int argc, char** argv)
{
  try
  {
    const double pi = 4.0*atan(1.0);
    double lambda = 1.25*pi*pi;

    int nx = 32;
    int nt = 10;
    double tFinal = 1.0/lambda;

    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("nt", nt, "Number of timesteps");
    Sundance::setOption("tFinal", tFinal, "Final time");
    
    Sundance::init(&argc, &argv);

    /* Creation of vector type */
    VectorType<double> vecType = new EpetraVectorType();

    /* Set up mesh */
    MeshType meshType = new BasicSimplicialMeshType();
      
    MeshSource meshSrc = new PartitionedRectangleMesher(
      0.0, 1.0, nx,
      0.0, 1.0, nx,
      meshType);
    Mesh mesh = meshSrc.getMesh();

    /* 
     * Specification of cell filters
     */
    CellFilter interior = new MaximalCellFilter();
    CellFilter edges = new DimensionalCellFilter(1);
    CellFilter west = edges.coordSubset(0, 0.0);
    CellFilter east = edges.coordSubset(0, 1.0);
    CellFilter south = edges.coordSubset(1, 0.0);
    CellFilter north = edges.coordSubset(1, 1.0);

    /* set up test and unknown functions */
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    /* set up differential operators */
    Expr grad = gradient(2);

    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);

    Expr t = new Sundance::Parameter(0.0);
    Expr tPrev = new Sundance::Parameter(0.0);


    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uExact = cos(0.5*pi*y)*sin(pi*x)*exp(-lambda*t);
    L2Projector proj(discSpace, uExact);
    Expr uPrev = proj.project();


    /* 
     * We need a quadrature rule for doing the integrations 
     */
    QuadratureFamily quad = new GaussianQuadrature(2);

    double deltaT = tFinal/nt;

    Expr gWest = -pi*exp(-lambda*t)*cos(0.5*pi*y);
    Expr gWestPrev = -pi*exp(-lambda*tPrev)*cos(0.5*pi*y);
    
    /* Create the weak form */
    Expr eqn = Integral(interior, v*(u-uPrev)/deltaT
      + 0.5*(grad*v)*(grad*u + grad*uPrev), quad)
      + Integral(west, -0.5*v*(gWest+gWestPrev), quad);

    Expr bc = EssentialBC(east + north, v*u, quad);

    
    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    
    LinearSolver<double> solver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    FieldWriter w0 = new VTKWriter("TransientHeat2D-0");
    w0.addMesh(mesh);
    w0.addField("T", new ExprFieldWrapper(uPrev[0]));
    w0.write();

    for (int i=0; i<nt; i++)
    {
      t.setParameterValue((i+1)*deltaT);
      tPrev.setParameterValue(i*deltaT);
      Out::root() << "t=" << (i+1)*deltaT << endl;
      Expr uNext = prob.solve(solver);
      
      ostringstream oss;
      oss << "TransientHeat2D-" << i+1;
      FieldWriter w = new VTKWriter(oss.str());
      w.addMesh(mesh);
      w.addField("T", new ExprFieldWrapper(uNext[0]));
      w.write();

      updateDiscreteFunction(uNext, uPrev);
    }


    
    double err = L2Norm(mesh, interior, uExact-uPrev, quad);
    Out::root() << "error norm=" << err << endl;

    double h = 1.0/(nx-1.0);
    double tol = 0.1*(pow(h,2.0) + pow(lambda*deltaT, 2.0));
    Out::root() << "tol=" << tol << endl;
    
    
    Sundance::passFailTest(err, tol);
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
  return Sundance::testStatus();
}
bool BlockStochPoissonTest1D()
{
  /* We will do our linear algebra using Epetra */
  VectorType<double> vecType = new EpetraVectorType();

  /* Read a mesh */
  MeshType meshType = new BasicSimplicialMeshType();
  int nx = 32;
  MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, 
    meshType);
  Mesh mesh = mesher.getMesh();

  /* Create a cell filter that will identify the maximal cells
   * in the interior of the domain */
  CellFilter interior = new MaximalCellFilter();
  CellFilter pts = new DimensionalCellFilter(0);
  CellFilter left = pts.subset(new CoordinateValueCellPredicate(0,0.0));
  CellFilter right = pts.subset(new CoordinateValueCellPredicate(0,1.0));

  Expr x = new CoordExpr(0);

  /* Create the stochastic coefficients */
  int nDim = 1;
  int order = 6;
#ifdef HAVE_SUNDANCE_STOKHOS
  Out::root() << "using Stokhos hermite basis" << std::endl;
  SpectralBasis pcBasis = new Stokhos::HermiteBasis<int,double>(order);
#else
  Out::root() << "using George's hermite basis" << std::endl;
  SpectralBasis pcBasis = new HermiteSpectralBasis(nDim, order);
#endif
    
  Array<Expr> q(pcBasis.nterms());
  Array<Expr> kappa(pcBasis.nterms());
  Array<Expr> uEx(pcBasis.nterms());

  double a = 0.1;

  q[0] = -2 + pow(a,2)*(4 - 9*x)*x - 2*pow(a,3)*(-1 + x)*(1 + 3*x*(-3 + 4*x));
  q[1] = -(a*(-3 + 10*x + 2*a*(-1 + x*(8 - 9*x +
          a*(-4 + 3*(5 - 4*x)*x + 12*a*(-1 + x)*(1 + 5*(-1 + x)*x))))));
  q[2] = a*(-4 + 6*x + a*(1 - x*(2 + 3*x) + a*(4 - 28*x + 30*pow(x,2))));
  q[3] = -(pow(a,2)*(-3 + x*(20 - 21*x +
        a*(-4 + 3*(5 - 4*x)*x + 24*a*(-1 + x)*(1 + 5*(-1 + x)*x)))));
  q[4] = pow(a,3)*(1 + x*(-6 + x*(3 + 4*x)));
  q[5] = -4*pow(a,4)*(-1 + x)*x*(1 + 5*(-1 + x)*x);
  q[6] = 0.0;

  uEx[0] = -((-1 + x)*x);
  uEx[1] = -(a*(-1 + x)*pow(x,2));
  uEx[2] = a*pow(-1 + x,2)*x;
  uEx[3] = pow(a,2)*pow(-1 + x,2)*pow(x,2);
  uEx[4] = 0.0;
  uEx[5] = 0.0;
  uEx[6] = 0.0;

  kappa[0] = 1.0;
  kappa[1] = a*x;
  kappa[2] = -(pow(a,2)*(-1 + x)*x);

  kappa[3] = 1.0; // unused
  kappa[4] = 1.0; // unused
  kappa[5] = 1.0; // unused
  kappa[6] = 1.0; // unused


  Array<Expr> uBC(pcBasis.nterms());
  for (int i=0; i<pcBasis.nterms(); i++) uBC[i] = 0.0;

  int L = nDim+2;
  int P = pcBasis.nterms();
  Out::os() << "L = " << L << std::endl;
  Out::os() << "P = " << P << std::endl;
    
  /* Create the unknown and test functions. Do NOT use the spectral
   * basis here */
  Expr u = new UnknownFunction(new Lagrange(4), "u");
  Expr v = new TestFunction(new Lagrange(4), "v");

  /* Create differential operator and coordinate function */
  Expr dx = new Derivative(0);
  Expr grad = dx;


  /* We need a quadrature rule for doing the integrations */
  QuadratureFamily quad = new GaussianQuadrature(12);

  /* Now we create problem objects to build each $K_j$ and $f_j$.
   * There will be L matrix-vector pairs */
  Array<Expr> eqn(P);
  Array<Expr> bc(P);
  Array<LinearProblem> prob(P);
  Array<LinearOperator<double> > KBlock(L);
  Array<Vector<double> > fBlock(P);
  Array<Vector<double> > solnBlock;

  for (int j=0; j<P; j++)
  {
    eqn[j] = Integral(interior, kappa[j]*(grad*v)*(grad*u) + v*q[j], quad);
    bc[j] = EssentialBC(left+right, v*(u-uBC[j]), quad);
    prob[j] = LinearProblem(mesh, eqn[j], bc[j], v, u, vecType); 
    if (j<L) KBlock[j] = prob[j].getOperator();
    fBlock[j] = -1.0*prob[j].getSingleRHS();
  }

  /* Read the solver to be used on the diagonal blocks */
  LinearSolver<double> diagSolver 
    = LinearSolverBuilder::createSolver("amesos.xml");

    
  double convTol = 1.0e-12;
  int maxIters = 30;
  int verb = 1;
  StochBlockJacobiSolver solver(diagSolver, pcBasis,
    convTol, maxIters, verb);
    
  solver.solve(KBlock, fBlock, solnBlock);

  /* write the solution */
  FieldWriter w = new MatlabWriter("Stoch1D");
  w.addMesh(mesh);
  DiscreteSpace discSpace(mesh, new Lagrange(4), vecType);
  for (int i=0; i<P; i++)
  {
    L2Projector proj(discSpace, uEx[i]);
    Expr ue_i = proj.project();
    Expr df = new DiscreteFunction(discSpace, solnBlock[i]);
    w.addField("u["+ Teuchos::toString(i)+"]", 
      new ExprFieldWrapper(df));
    w.addField("uEx["+ Teuchos::toString(i)+"]", 
      new ExprFieldWrapper(ue_i));
  }
  w.write();

  double totalErr2 = 0.0;
  DiscreteSpace discSpace4(mesh, new Lagrange(4), vecType);
  for (int i=0; i<P; i++)
  {
    Expr df = new DiscreteFunction(discSpace4, solnBlock[i]);
    Expr errExpr = Integral(interior, pow(uEx[i]-df, 2.0), quad);
    Expr scaleExpr = Integral(interior, pow(uEx[i], 2.0), quad);
    double errSq = evaluateIntegral(mesh, errExpr);
    double scale = evaluateIntegral(mesh, scaleExpr);
    if (scale > 0.0) 
      Out::os() << "mode i=" << i << " error=" << sqrt(errSq/scale) << std::endl;
    else
      Out::os() << "mode i=" << i << " error=" << sqrt(errSq) << std::endl;
  }
    
  double tol = 1.0e-12;
    
  return SundanceGlobal::checkTest(sqrt(totalErr2), tol);
}
int main(int argc, char** argv)
{
  try
  {
    /*
     * Initialization code
     */
    std::string meshFile="plateWithHole2D-1";
    std::string solverFile = "nox-aztec.xml";
    Sundance::setOption("meshFile", meshFile, "mesh file");
    Sundance::setOption("solver", solverFile, 
      "name of XML file for solver");

    Sundance::init(&argc, &argv);

    // This next line is just a hack to deal with some 
    // transitional code in the
    // element integration logic. 
    Sundance::ElementIntegral::alwaysUseCofacets() = false;

    /* 
     * Creation of vector type
     */
    VectorType<double> vecType = new EpetraVectorType();

    /* 
     * Creation of mesh
     */
    MeshType meshType = new BasicSimplicialMeshType();
      
    MeshSource meshSrc
      =  new ExodusMeshReader(meshFile, meshType);
    Mesh mesh = meshSrc.getMesh();

    /* 
     * Specification of cell filters
     */
    CellFilter interior = new MaximalCellFilter();
    CellFilter edges = new DimensionalCellFilter(1);

    CellFilter south = edges.labeledSubset(1);
    CellFilter east = edges.labeledSubset(2);
    CellFilter north = edges.labeledSubset(3);
    CellFilter west = edges.labeledSubset(4);

    /* 
     * <Header level="subsubsection" name="symb_setup">
     * Setup of symbolic problem description
     * </Header>
     * 
     * Create unknown and test functions discretized on the space
     * first-order Lagrange polynomials. 
     */
    BasisFamily basis = new Lagrange(2);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    /* 
     * Create differential operators and coordinate functions. Directions
     * are indexed starting from zero. The \verb+List()+ function can 
     * collect expressions into a vector. 
     */
    Expr dx = new Derivative(0);
    Expr dy = new Derivative(1);
    Expr grad = List(dx, dy);

    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);

    /* 
     * We need a quadrature rule for doing the integrations 
     */
    QuadratureFamily quad2 = new GaussianQuadrature(2);
    QuadratureFamily quad4 = new GaussianQuadrature(4);

    /* 
     * Create the weak form and the BCs
     */
    Expr source=exp(u);
    Expr eqn 
      = Integral(interior, (grad*u)*(grad*v)+v*source, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(west+east, v*(u-1.0)/h, quad2);

    /* 
     * <Header level="subsubsection" name="lin_prob">
     * Creation of initial guess
     * </Header>
     *
     * So far the setup has been almost identical to that for the linear
     * problem, the only difference being the nonlinear term in the
     * equation set. 
     */
    DiscreteSpace discSpace(mesh, basis, vecType);
    L2Projector proj(discSpace, 1.0);
    Expr u0 = proj.project();

    /* 
     * <Header level="subsubsection" name="lin_prob">
     * Creation of nonlinear problem
     * </Header>
     *
     * Similar to the setup of a \verb+LinearProblem+, the equation, BCs,
     * and mesh are put into a \verb+NonlinearProblem+ object which
     * controls the construction of the \verb+Assembler+ and its use
     * in building Jacobians and residuals during a nonlinear solve.
     */
    NonlinearProblem prob(mesh, eqn, bc, v, u, u0, vecType);

    /*
     *
     */
    
    ParameterXMLFileReader reader(solverFile);
    ParameterList solverParams = reader.getParameters();
    NOXSolver solver(solverParams); 
    
    prob.solve(solver);
    
    /* 
     * Visualization output
     */
    FieldWriter w = new VTKWriter("PoissonBoltzmannDemo2D");
    w.addMesh(mesh);
    w.addField("soln", new ExprFieldWrapper(u0));
    w.write();


    /* 
     * <Header level="subsubsection" name="postproc">
     * Postprocessing
     * </Header>
     *
     * Postprocessing can be done using the same symbolic language
     * as was used for the problem specification. Here, we define
     * an integral giving the flux, then evaluate it on the mesh. 
     */
    Expr n = CellNormalExpr(2, "n");
    Expr fluxExpr 
      = Integral(east + west, (n*grad)*u0, quad2); 
    double flux = evaluateIntegral(mesh, fluxExpr);
    Out::os() << "numerical flux = " << flux << std::endl;
    Expr sourceExpr 
      = Integral(interior, exp(u0), quad4); 
    double src = evaluateIntegral(mesh, sourceExpr);
    Out::os() << "numerical integrated source = " << src << std::endl;


    /*
     * Check that the flux is acceptably close to zero. This
     * is just a sanity check to ensure the code doesn't get completely 
     * broken after a change to the library. 
     */
    Sundance::passFailTest(fabs(flux-src), 1.0e-3);

    /*
     * <Header level="subsubsection" name="finalize">
     * Finalization boilerplate
     * </Header>
     * Finally, we have boilerplate code for exception handling
     * and finalization. 
     */

  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); return Sundance::testStatus(); 

  return Sundance::testStatus();
}
Beispiel #15
0
int main(int argc, char** argv)
{
  try
		{
      int depth = 0;
      bool useCCode = false;
      Sundance::ElementIntegral::alwaysUseCofacets() = true;
      Sundance::clp().setOption("depth", &depth, "expression depth");
      Sundance::clp().setOption("C", "symb", &useCCode, "Code type (C or symbolic)");
      Sundance::init(&argc, &argv);

      /* We will do our linear algebra using Epetra */
      VectorType<double> vecType = new EpetraVectorType();

      /* Read the mesh */
      MeshType meshType = new BasicSimplicialMeshType();

      MeshSource mesher 
        = new ExodusMeshReader("cube-0.1", meshType);
      Mesh mesh = mesher.getMesh();

      /* Create a cell filter that will identify the maximal cells
       * in the interior of the domain */
      CellFilter interior = new MaximalCellFilter();
      CellFilter faces = new DimensionalCellFilter(2);
      CellFilter side1 = faces.labeledSubset(1);
      CellFilter side2 = faces.labeledSubset(2);
      CellFilter side3 = faces.labeledSubset(3);
      CellFilter side4 = faces.labeledSubset(4);
      CellFilter side5 = faces.labeledSubset(5);
      CellFilter side6 = faces.labeledSubset(6);

      
      /* Create unknown and test functions, discretized using second-order
       * Lagrange interpolants */
      Expr u = new UnknownFunction(new Lagrange(1), "u");
      Expr v = new TestFunction(new Lagrange(1), "v");

      /* Create differential operator and coordinate functions */
      Expr dx = new Derivative(0);
      Expr dy = new Derivative(1);
      Expr dz = new Derivative(2);
      Expr grad = List(dx, dy, dz);
      Expr x = new CoordExpr(0);
      Expr y = new CoordExpr(1);
      Expr z = new CoordExpr(2);

      /* We need a quadrature rule for doing the integrations */
      QuadratureFamily quad2 = new GaussianQuadrature(2);
      QuadratureFamily quad4 = new GaussianQuadrature(4);

      /* Define the weak form */
      //Expr eqn = Integral(interior, (grad*v)*(grad*u) + v, quad);
      
      Expr coeff = 1.0;
#ifdef FOR_TIMING
      if (useCCode)
      {
        coeff = Poly(depth, x);
      }
      else
      {
        for (int i=0; i<depth; i++)
        {
          Expr t = 1.0;
          for (int j=0; j<depth; j++) t = t*x;
          coeff = coeff + 2.0*t - t - t;
        }
      }
#endif
      Expr eqn = Integral(interior, coeff*(grad*v)*(grad*u) /*+ 2.0*v*/, quad2);

      /* Define the Dirichlet BC */
      Expr exactSoln = x;//(x + 1.0)*x - 1.0/4.0;
      Expr h = new CellDiameterExpr();

      WatchFlag watchBC("watch BCs");
      watchBC.setParam("integration setup", 6);
      watchBC.setParam("integration", 6);
      watchBC.setParam("fill", 6);
      watchBC.setParam("evaluation", 6);
      watchBC.deactivate();

      Expr bc = EssentialBC(side4, v*(u-exactSoln), quad4)
        + EssentialBC(side6, v*(u-exactSoln), quad4, watchBC);

      /* We can now set up the linear problem! */
      LinearProblem prob(mesh, eqn, bc, v, u, vecType);

#ifdef HAVE_CONFIG_H
      ParameterXMLFileReader reader(searchForFile("SolverParameters/aztec-ml.xml"));
#else
      ParameterXMLFileReader reader("aztec-ml.xml");
#endif
      ParameterList solverParams = reader.getParameters();
      std::cerr << "params = " << solverParams << std::endl;


      LinearSolver<double> solver 
        = LinearSolverBuilder::createSolver(solverParams);

      Expr soln = prob.solve(solver);

#ifndef FOR_TIMING

      DiscreteSpace discSpace(mesh, new Lagrange(1), vecType);
      L2Projector proj1(discSpace, exactSoln);
      L2Projector proj2(discSpace, soln-exactSoln);
      L2Projector proj3(discSpace, pow(soln-exactSoln, 2.0));
      Expr exactDisc = proj1.project();
      Expr errorDisc = proj2.project();
//      Expr errorSqDisc = proj3.project();

      std::cerr << "writing fields" << std::endl;
      /* Write the field in VTK format */
      FieldWriter w = new VTKWriter("Poisson3d");
      w.addMesh(mesh);
      w.addField("soln", new ExprFieldWrapper(soln[0]));
      w.addField("exact soln", new ExprFieldWrapper(exactDisc));
      w.addField("error", new ExprFieldWrapper(errorDisc));
//      w.addField("errorSq", new ExprFieldWrapper(errorSqDisc));
      w.write();

      std::cerr << "computing error" << std::endl;

      Expr errExpr = Integral(interior, 
                              pow(soln-exactSoln, 2.0),
                              new GaussianQuadrature(4));

      double errorSq = evaluateIntegral(mesh, errExpr);
      std::cerr << "error norm = " << sqrt(errorSq) << std::endl << std::endl;
#else
      double errorSq = 1.0;
#endif
      double tol = 1.0e-10;
      Sundance::passFailTest(sqrt(errorSq), tol);
    }
	catch(std::exception& e)
		{
      Sundance::handleException(e);
		}
  Sundance::finalize(); return Sundance::testStatus(); 
}
SubmaximalNodalDOFMap
::SubmaximalNodalDOFMap(const Mesh& mesh, 
  const CellFilter& cf,
  int nFuncs,
  int setupVerb)
  : DOFMapBase(mesh, setupVerb),
    dim_(0),
    nTotalFuncs_(nFuncs),
    domain_(cf),
    domains_(tuple(cf)),
    nodeLIDs_(),
    nodeDOFs_(),
    lidToPtrMap_(),
    mapStructure_()
{
  Tabs tab0(0);
  SUNDANCE_MSG1(setupVerb, tab0 << "in SubmaximalNodalDOFMap ctor");
  Tabs tab1;
  SUNDANCE_MSG2(setupVerb, tab1 << "domain " << domain_);
  SUNDANCE_MSG2(setupVerb, tab1 << "N funcs " << nFuncs);

  const MPIComm& comm = mesh.comm();
  int rank = comm.getRank();
  int nProc = comm.getNProc();
  
  dim_ = cf.dimension(mesh);  
  TEUCHOS_TEST_FOR_EXCEPT(dim_ != 0);

  CellSet nodes = cf.getCells(mesh);
  int nc = nodes.numCells();
  nodeLIDs_.reserve(nc);
  nodeDOFs_.reserve(nc);

  Array<Array<int> > remoteNodes(nProc);
  
  int nextDOF = 0;
  int k=0; 
  for (CellIterator c=nodes.begin(); c!=nodes.end(); c++, k++)
  {
    int nodeLID = *c;
    lidToPtrMap_.put(nodeLID, k);
    nodeLIDs_.append(nodeLID);
    int remoteOwner = rank;
    if (isRemote(0, nodeLID, remoteOwner))
    {
      int GID = mesh.mapLIDToGID(0, nodeLID);
      remoteNodes[remoteOwner].append(GID);
      for (int f=0; f<nFuncs; f++) nodeDOFs_.append(-1);
    }
    else
    {
      for (int f=0; f<nFuncs; f++) nodeDOFs_.append(nextDOF++);
    }
  }

  /* Compute offsets for each processor */
  int localCount = nextDOF;
  computeOffsets(localCount);
  
  /* Resolve remote DOF numbers */
  shareRemoteDOFs(remoteNodes);

  BasisFamily basis = new Lagrange(1);
  mapStructure_ = rcp(new MapStructure(nTotalFuncs_, basis.ptr()));
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Newton's method, linearized by hand" << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr w = new UnknownFunction(basis, "w");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);



    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);
    Expr stepVal = copyDiscreteFunction(uPrev);

    Expr eqn 
      = Integral(interior, (grad*v)*(grad*w) + (grad*v)*(grad*uPrev) 
        - v*lambda*exp(uPrev)*(1.0+w) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*(uPrev+w)/h, quad2); 

    LinearProblem prob(mesh, eqn, bc, v, w, vecType);

    LinearSolver<double> linSolver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    Out::root() << "Newton iteration" << endl;
    int maxIters = 20;
    Expr soln ;
    bool converged = false;

    for (int i=0; i<maxIters; i++)
    {
      /* solve for the next u */
      prob.solve(linSolver, stepVal);
      Vector<double> stepVec = getDiscreteFunctionVector(stepVal);
      double deltaU = stepVec.norm2();
      Out::root() << "Iter=" << setw(3) << i << " ||Delta u||=" << setw(20)
                  << deltaU << endl;
      addVecToDiscreteFunction(uPrev, stepVec);
      if (deltaU < convTol) 
      {
        soln = uPrev;
        converged = true;
        break;
      }
    } 
    TEUCHOS_TEST_FOR_EXCEPTION(!converged, std::runtime_error, 
      "Newton iteration did not converge after " 
      << maxIters << " iterations");
    
    FieldWriter writer = new DSVWriter("HandCodedBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Newton's method with automated linearization" 
                << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "w");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);

    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);

    Expr eqn 
      = Integral(interior, (grad*v)*(grad*u) - v*lambda*exp(u) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*u/h, quad2); 

    NonlinearProblem prob(mesh, eqn, bc, v, u, uPrev, vecType);

    NonlinearSolver<double> solver 
      = NonlinearSolverBuilder::createSolver("playa-newton-amesos.xml");

    Out::root() << "Newton solve" << endl;

    SolverState<double> state = prob.solve(solver);
    
    TEUCHOS_TEST_FOR_EXCEPTION(state.finalState() != SolveConverged,
      std::runtime_error,
      "Nonlinear solve failed to converge: message=" << state.finalMsg());
    
    Expr soln = uPrev;
    FieldWriter writer = new DSVWriter("AutoLinearizedBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
  return Sundance::testStatus();
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Fixed-point iteration" << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);



    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);
    Expr uCur = copyDiscreteFunction(uPrev);

    Expr eqn 
      = Integral(interior, (grad*u)*(grad*v) - v*lambda*exp(uPrev) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*u/h, quad4); 

    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    Expr normSqExpr = Integral(interior, pow(u-uPrev, 2.0), quad2);
    Functional normSqFunc(mesh, normSqExpr, vecType);
    FunctionalEvaluator normSqEval = normSqFunc.evaluator(u, uCur);

    LinearSolver<double> linSolver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    Out::root() << "Fixed-point iteration" << endl;
    int maxIters = 20;
    Expr soln ;
    bool converged = false;

    for (int i=0; i<maxIters; i++)
    {
      /* solve for the next u */
      prob.solve(linSolver, uCur);
      /* evaluate the norm of (uCur-uPrev) using 
       * the FunctionalEvaluator defined above */
      double deltaU = sqrt(normSqEval.evaluate());
      Out::root() << "Iter=" << setw(3) << i << " ||Delta u||=" << setw(20)
                  << deltaU << endl; 
      /* check for convergence */  
      if (deltaU < convTol) 
      {
        soln = uCur;
        converged = true;
        break;
      }
      /* get the vector from the current discrete function */
      Vector<double> uVec = getDiscreteFunctionVector(uCur);
      /* copy the vector into the previous discrete function */ 
      setDiscreteFunctionVector(uPrev, uVec);
    } 
    TEUCHOS_TEST_FOR_EXCEPTION(!converged, std::runtime_error, 
      "Fixed point iteration did not converge after " 
      << maxIters << " iterations");
    
    FieldWriter writer = new DSVWriter("FixedPointBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
}
int main(int argc, char** argv)
{
  
  try
		{
      Sundance::init(&argc, &argv);
            
      /* We will do our linear algebra using Epetra */
      VectorType<double> vecType = new EpetraVectorType();

      /* Create a mesh. It will be of type BasisSimplicialMesh, and will
       * be built using a PartitionedLineMesher. */
      MeshType meshType = new BasicSimplicialMeshType();
      int nx = 32;

      MeshSource mesher = new PartitionedRectangleMesher(
        0.0, 1.0, nx,
        0.0, 1.0, nx,
        meshType);
      Mesh mesh = mesher.getMesh();

      /* Create a cell filter that will identify the maximal cells
       * in the interior of the domain */
      CellFilter interior = new MaximalCellFilter();

      /* Make cell filters for the east and west boundaries */
      CellFilter edges = new DimensionalCellFilter(1);
      CellFilter west = edges.coordSubset(0, 0.0);
      CellFilter east = edges.coordSubset(0, 1.0);

      /* Create unknown and test functions */
      Expr u = new UnknownFunction(new Lagrange(1), "u");
      Expr v = new TestFunction(new Lagrange(1), "v");

      /* Create differential operator and coordinate function */
      Expr x = new CoordExpr(0);
      Expr grad = gradient(1);

      /* We need a quadrature rule for doing the integrations */
      QuadratureFamily quad = new GaussianQuadrature(4);

      /* Define the parameter */
      Expr xi = new Sundance::Parameter(0.0);

      /* Construct a forcing term to provide an exact solution for
       * validation purposes. This will involve the parameter. */
      Expr uEx = x*(1.0-x)*(1.0+xi*exp(x));
      Expr f = -(-20 - exp(x)*xi*(1 + 32*x + 10*x*x + 
          exp(x)*(-1 + 2*x*(2 + x))*xi))/10.0;

      /* Define the weak form, using the parameter expression. This weak form
       * can be used for all parameter values. */
      Expr eqn = Integral(interior, 
        (1.0 + 0.1*xi*exp(x))*(grad*v)*(grad*u) - f*v, quad);

      /* Define the Dirichlet BC */
      Expr h = new CellDiameterExpr();
      Expr bc = EssentialBC(east + west, v*u/h, quad);

      /* We can now set up the linear problem. This can be reused
       * for different parameter values. */
      LinearProblem prob(mesh, eqn, bc, v, u, vecType);

      /* make a projector for the exact solution. Just like the
       * problem, this can be reused for different parameter values. */
      DiscreteSpace ds(mesh, new Lagrange(1), vecType);
      L2Projector proj(ds, uEx);

      /* Get the solver and declare variables for the results */
      LinearSolver<double> solver = LinearSolverBuilder::createSolver("aztec-ml.xml");
      Expr soln;
      SolverState<double> state;

      /* Set up the sweep from xi=0 to xi=xiMax in nSteps steps. */
      int nSteps = 10;
      double xiMax = 2.0;
      
      /* Make an array in which to keep the observed errors */
      Array<double> err(nSteps);

      /* Do the sweep */
      for (int n=0; n<nSteps; n++)
      {
        /* Update the parameter value */
        double xiVal = xiMax*n/(nSteps - 1.0);
        xi.setParameterValue(xiVal);
        Out::root() << "step n=" << n << " of " << nSteps << " xi=" << xiVal;

        /* Solve the problem. The updated parameter value is automatically used. */
        state = prob.solve(solver, soln);

        TEUCHOS_TEST_FOR_EXCEPTION(state.finalState() != SolveConverged,
          std::runtime_error,
          "solve failed!");

        /* Project the exact solution onto a discrrete space for viz. The updated
         * parameter value is automatically used. */
        Expr uEx0 = proj.project();

        /* Write the approximate and exact solutions for viz */
        FieldWriter w = new VTKWriter("ParameterSweep-" + Teuchos::toString(n));
        w.addMesh(mesh);
        w.addField("u", new ExprFieldWrapper(soln[0]));
        w.addField("uEx", new ExprFieldWrapper(uEx0[0]));
        w.write();

        /* Compute the L2 norm of the error */
        err[n] = L2Norm(mesh, interior, soln-uEx, quad);
        Out::root() << " L2 error = " << err[n] << endl;
      } 

      /* The errors are O(h^2), so use that to set a tolerance */
      double hVal = 1.0/(nx-1.0);
      double fudge = 2.0;
      double tol = fudge*hVal*hVal;

      /* Find the max error over all parameter values */
      double maxErr = *std::max_element(err.begin(), err.end());

      /* Check the error */
      Sundance::passFailTest(maxErr, tol);
    }
	catch(std::exception& e)
		{
      Sundance::handleException(e);
		}
  Sundance::finalize(); 
  return Sundance::testStatus(); 
}
bool DuffingFloquet()
{
  int np = MPIComm::world().getNProc();
  TEUCHOS_TEST_FOR_EXCEPT(np != 1);

  const double pi = 4.0*atan(1.0);

  /* We will do our linear algebra using Epetra */
  VectorType<double> vecType = new EpetraVectorType();

  /* Create a periodic mesh */
  int nx = 128;

  MeshType meshType = new PeriodicMeshType1D();
  MeshSource mesher = new PeriodicLineMesher(0.0, 2.0*pi, nx, meshType);
  Mesh mesh = mesher.getMesh();

  /* Create a cell filter that will identify the maximal cells
   * in the interior of the domain */
  CellFilter interior = new MaximalCellFilter();
  CellFilter pts = new DimensionalCellFilter(0);
      
  CellFilter left = pts.subset(new CoordinateValueCellPredicate(0,0.0));
  CellFilter right = pts.subset(new CoordinateValueCellPredicate(0,2.0*pi));
      
  /* Create unknown and test functions, discretized using first-order
   * Lagrange interpolants */
  Expr u1 = new UnknownFunction(new Lagrange(1), "u1");
  Expr u2 = new UnknownFunction(new Lagrange(1), "u2");
  Expr v1 = new TestFunction(new Lagrange(1), "v1");
  Expr v2 = new TestFunction(new Lagrange(1), "v2");

  /* Create differential operator and coordinate function */
  Expr dx = new Derivative(0);
  Expr x = new CoordExpr(0);

  /* We need a quadrature rule for doing the integrations */
  QuadratureFamily quad = new GaussianQuadrature(4);

  double F0 = 0.5;
  double gamma = 2.0/3.0;
  double a0 = 1.0;
  double w0 = 1.0;
  double eps = 0.5;

  Expr u1Guess = -0.75*cos(x) + 0.237*sin(x);
  Expr u2Guess = 0.237*cos(x) + 0.75*sin(x);

  DiscreteSpace discSpace(mesh, 
    List(new Lagrange(1), new Lagrange(1)),
    vecType);
  L2Projector proj(discSpace, List(u1Guess, u2Guess));
  Expr u0 = proj.project();


  Expr rhs1 = u2;
  Expr rhs2 = -w0*w0*u1 - gamma*u2 - eps*w0*w0*pow(u1,3.0)/a0/a0 
    + F0*w0*w0*sin(x);

  /* Define the weak form */
  Expr eqn = Integral(interior, 
    v1*(dx*u1 - rhs1) + v2*(dx*u2 - rhs2),
    quad);
  Expr dummyBC ; 

  NonlinearProblem prob(mesh, eqn, dummyBC, List(v1,v2), List(u1,u2), 
    u0, vecType);


  ParameterXMLFileReader reader("nox.xml");
  ParameterList solverParams = reader.getParameters();

  Out::root() << "finding periodic solution" << endl;
  NOXSolver solver(solverParams);
  prob.solve(solver);

  /* unfold the solution onto a non-periodic mesh */
      
  Expr uP = unfoldPeriodicDiscreteFunction(u0, "u_p");
  Out::root() << "uP=" << uP << endl;
      
  Mesh unfoldedMesh = DiscreteFunction::discFunc(uP)->mesh();
  DiscreteSpace unfDiscSpace = DiscreteFunction::discFunc(uP)->discreteSpace();

  FieldWriter writer = new MatlabWriter("Floquet.dat");
  writer.addMesh(unfoldedMesh);
  writer.addField("u_p[0]", new ExprFieldWrapper(uP[0]));
  writer.addField("u_p[1]", new ExprFieldWrapper(uP[1]));

  Array<Expr> a(2);
  a[0] = new Sundance::Parameter(0.0, "a1");
  a[1] = new Sundance::Parameter(0.0, "a2");


  Expr bc = EssentialBC(left, v1*(u1-uP[0]-a[0]) + v2*(u2-uP[1]-a[1]), quad);

  NonlinearProblem unfProb(unfoldedMesh, eqn, bc, 
    List(v1,v2), List(u1,u2), uP, vecType);

  unfProb.setEvalPoint(uP);

  LinearOperator<double> J = unfProb.allocateJacobian();
  Vector<double> b = J.domain().createMember();

  LinearSolver<double> linSolver
    = LinearSolverBuilder::createSolver("amesos.xml");
        
  SerialDenseMatrix<int, double> F(a.size(), a.size());

  for (int i=0; i<a.size(); i++)
  {
    Out::root() << "doing perturbed orbit #" << i << endl;
    for (int j=0; j<a.size(); j++) 
    {
      if (i==j) a[j].setParameterValue(1.0);
      else a[j].setParameterValue(0.0);
    }
        
    unfProb.computeJacobianAndFunction(J, b);
    Vector<double> w = b.copy();
    linSolver.solve(J, b, w);
    Expr w_i = new DiscreteFunction(unfDiscSpace, w);

    for (int j=0; j<a.size(); j++)
    {
      Out::root() << "postprocessing" << i << endl;

      writer.addField("w[" + Teuchos::toString(i)
        + ", " + Teuchos::toString(j) + "]", new ExprFieldWrapper(w_i[j]));
      Expr g = Integral(right, w_i[j], quad);
      F(j,i) = evaluateIntegral(unfoldedMesh, g);
    }
  }

  writer.write();

  Out::root() << "Floquet matrix = " << endl
              << F << endl;
        

  Out::root() << "doing eigenvalue analysis" << endl;
  Array<double> ew_r(a.size());
  Array<double> ew_i(a.size());
  int lWork = 6*a.size();
  Array<double> work(lWork);
  int info = 0;
  LAPACK<int, double> lapack;
  lapack.GEEV('N','N', a.size(), F.values(),
    a.size(), &(ew_r[0]), &(ew_i[0]), 0, 1, 0, 1, &(work[0]), lWork,
    &info);

  TEUCHOS_TEST_FOR_EXCEPTION(info != 0,
    std::runtime_error,
    "LAPACK GEEV returned error code =" << info);
      
  Array<double> ew(a.size());
  for (int i=0; i<a.size(); i++)
  {
    ew[i] = sqrt(ew_r[i]*ew_r[i]+ew_i[i]*ew_i[i]);
    Out::root() << setw(5) << i 
                << setw(16) << ew_r[i] 
                << setw(16) << ew_i[i] 
                << setw(16) << ew[i]
                << endl;
  }

  double err = ::fabs(ew[0] - 0.123);
  return SundanceGlobal::checkTest(err, 0.001);
}
AToCPointLocator::AToCPointLocator(const Mesh& mesh, 
                                   const CellFilter& subdomain,
                                   const std::vector<int>& nx)
  : dim_(mesh.spatialDim()),
    mesh_(mesh),
    nFacets_(mesh.numFacets(dim_, 0, 0)),
    nx_(nx),
    low_(nx.size(), 1.0/ScalarTraits<double>::sfmin()),
    high_(nx.size(), -1.0/ScalarTraits<double>::sfmin()),
    dx_(nx.size()),
    table_(),
    subdomain_(subdomain),
    neighborSet_()
{
  TimeMonitor timer(pointLocatorCtorTimer());
  
  /* allocate the neighbor set table */
  neighborSet_.resize(mesh.numCells(dim_));

  /* first pass to find bounding box */
  CellSet cells = subdomain.getCells(mesh);
  
  for (CellIterator i = cells.begin(); i!= cells.end(); i++)
    {
      int cellLID = *i;
      Array<int> facetLIDs;
      Array<int> facetOri;
      mesh.getFacetArray(dim_, cellLID, 0, facetLIDs, facetOri);
      for (int f=0; f<facetLIDs.size(); f++)
        {
          Point x = mesh.nodePosition(facetLIDs[f]);
          for (int d=0; d<dim_; d++)
            {
              if (x[d] < low_[d]) low_[d] = x[d];
              if (x[d] > high_[d]) high_[d] = x[d];
            }
        }
    }

  /* fudge the bounding box */
  for (int d=0; d<dim_; d++)
    {
      low_[d] -= 0.01 * (high_[d] - low_[d]);
      high_[d] += 0.01 * (high_[d] - low_[d]);
    }

  /* second pass to put cells in lookup table */

  int s = 1;
  for (int d=0; d<dim_; d++) 
    {
      dx_[d] = (high_[d] - low_[d])/nx_[d];
      s *= nx_[d];
    }


  table_ = rcp(new Array<int>(s, -1));


  Array<int> lowIndex;
  Array<int> highIndex;
  for (CellIterator i = cells.begin(); i!= cells.end(); i++)
    {
      int cellLID = *i;
      getGridRange(mesh, dim_, cellLID, lowIndex, highIndex);
      if (dim_==2)
        {
          for (int ix=lowIndex[0]; ix<=highIndex[0]; ix++)
            {
              for (int iy=lowIndex[1]; iy<=highIndex[1]; iy++)
                {
                  int index = nx_[1]*ix + iy;
                  (*table_)[index] = cellLID;
                }
            }
        }
      else
        {
          TEST_FOR_EXCEPT(true);
        }
    }
}
bool CellFilter::isKnownSubsetOf(const CellFilter& other) const
{
  if (other.knownSubsets().contains(*this)) return true;
  return false;
}
Beispiel #24
0
int main(int argc, char** argv)
{
  
  try
		{
      Sundance::init(&argc, &argv);
      int np = MPIComm::world().getNProc();

      //  DOFMapBase::classVerbosity() = VerbExtreme;

      const double density = 1000.0; // kg/m^3
      const double porosity = 0.442; // dimensionless %
      const double A = 175.5; // dimensionless fit parameter
      const double B = 1.83;  // dimensionless fit parameter
      const double criticalRe = 36.73;  // dimensionless fit parameter
      const double dynvisc = 1.31;  // kg/(m-s)
      const double graindia = 1.9996e-4;  // m 
      const double charvel = 1.0;  // m/s

      
      double Reynolds = density*graindia*charvel/(dynvisc*porosity);

      Expr Re = new Parameter(Reynolds);

      /* We will do our linear algebra using Epetra */
      VectorType<double> vecType = new EpetraVectorType();

      /* Create a mesh. It will be of type BasisSimplicialMesh, and will
       * be built using a PartitionedLineMesher. */
      MeshType meshType = new BasicSimplicialMeshType();
      MeshSource mesher = new PartitionedLineMesher(0.0, 1000.0, 100*np, meshType);
      Mesh mesh = mesher.getMesh();

      /* Create a cell filter that will identify the maximal cells
       * in the interior of the domain */
      CellFilter interior = new MaximalCellFilter();
      CellFilter points = new DimensionalCellFilter(0);
      CellPredicate leftPointFunc = new PositionalCellPredicate(leftPointTest);
      CellPredicate rightPointFunc = new PositionalCellPredicate(rightPointTest);
      CellFilter leftPoint = points.subset(leftPointFunc);
      CellFilter rightPoint = points.subset(rightPointFunc);
      
      /* Create unknown and test functions, discretized using first-order
       * Lagrange interpolants */
      
      Expr p = new UnknownFunction(new Lagrange(2), "p");
      Expr q = new UnknownFunction(new Lagrange(2), "q");
 
      Expr u = new TestFunction(new Lagrange(2), "u");
      Expr v = new TestFunction(new Lagrange(2), "v");

      /* Create differential operator and coordinate function */
      Expr dx = new Derivative(0);
      Expr x = new CoordExpr(0);

      /* We need a quadrature rule for doing the integrations */
      QuadratureFamily quad = new GaussianQuadrature(4);

      /* Define the weak form */
      Expr MassEqn = Integral(interior, q*(dx*u), quad)
	+ Integral(leftPoint, - q*u,quad)
	+ Integral(rightPoint,  - q*u,quad);
      Expr MomEqn = Integral(interior, (density/porosity)*q*q*(dx*v) + porosity*p*(dx*v) - porosity*q*v*A - (porosity*q*v*B*Re*Re)/((Re+criticalRe)*(1-porosity)), quad)
	+ Integral(leftPoint, - density*q*q*v/porosity - porosity*p*v,quad)
	+ Integral(rightPoint,- density*q*q*v/porosity - porosity*p*v,quad);

      /* Define the Dirichlet BC */
      Expr leftbc = EssentialBC(leftPoint, v*(q-charvel), quad);
      Expr rightbc = EssentialBC(rightPoint, v*(q-charvel), quad);

      /* Create a discrete space, and discretize the function 1.0 on it */
      BasisFamily L2 = new Lagrange(2);
      Array<BasisFamily> basis = tuple(L2, L2);
      DiscreteSpace discSpace(mesh, basis, vecType);
      Expr u0 = new DiscreteFunction(discSpace, 1.0, "u0");
      Expr p0 = u0[0];
      Expr q0 = u0[1];
     
 
/* Create a TSF NonlinearOperator object */
      std::cerr << "about to make nonlinear object" << std::endl;
      std::cerr.flush();

      NonlinearOperator<double> F 
        = new NonlinearProblem(mesh, MassEqn+MomEqn, leftbc+rightbc, Sundance::List(u,v),Sundance::List(p,q) , u0, vecType);
    
      //      F.verbosity() = VerbExtreme;
      /* Get the initial guess */
  
      Vector<double> x0 = F.getInitialGuess();
   
      
      /* Create an Aztec solver for solving the linear subproblems */
      std::map<int,int> azOptions;
      std::map<int,double> azParams;
      
      azOptions[AZ_solver] = AZ_gmres;
      azOptions[AZ_precond] = AZ_dom_decomp;
      azOptions[AZ_subdomain_solve] = AZ_ilu;
      azOptions[AZ_graph_fill] = 1;
      azOptions[AZ_max_iter] = 1000;
      azParams[AZ_tol] = 1.0e-13;
      
      LinearSolver<double> linSolver = new AztecSolver(azOptions,azParams);

      /* Now let's create a NOX solver */

      NOX::TSF::Group grp(x0, F, linSolver);

      grp.verbosity() = VerbExtreme;

      // Set up the status tests
      NOX::StatusTest::NormF statusTestA(grp, 1.0e-10);
      NOX::StatusTest::MaxIters statusTestB(20);
      NOX::StatusTest::Combo statusTestsCombo(NOX::StatusTest::Combo::OR, statusTestA, statusTestB);

      // Create the list of solver parameters
      NOX::Parameter::List solverParameters;

      // Set the solver (this is the default)
      solverParameters.setParameter("Nonlinear Solver", "Line Search Based");

      // Create the line search parameters sublist
      NOX::Parameter::List& lineSearchParameters = solverParameters.sublist("Line Search");

      // Set the line search method
      lineSearchParameters.setParameter("Method","More'-Thuente");

      // Create the solver
      NOX::Solver::Manager solver(grp, statusTestsCombo, solverParameters);

      // Solve the nonlinear system
      NOX::StatusTest::StatusType status = solver.solve();

      // Print the answer
      cout << "\n" << "-- Parameter List From Solver --" << "\n";
      solver.getParameterList().print(cout);

      // Get the answer
      grp = solver.getSolutionGroup();

      // Print the answer
      cout << "\n" << "-- Final Solution From Solver --" << "\n";
      grp.print();

      

      double tol = 1.0e-12;
      Sundance::passFailTest(0, tol);

    }
	catch(std::exception& e)
		{
      Sundance::handleException(e);
		}
  Sundance::finalize(); return Sundance::testStatus(); 
}
bool NonlinReducedIntegration()
{
  int np = MPIComm::world().getNProc();

  int n = 4;
  bool increaseProbSize = true;
  if ( (np % 4)==0 ) increaseProbSize = false;

  Array<double> h;
  Array<double> errQuad;
  Array<double> errReduced;

  for (int i=0; i<4; i++)
  {
    n *= 2;
    int nx = n;
    int ny = n;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
      
    int npx = -1;
    int npy = -1;
    PartitionedRectangleMesher::balanceXY(np, &npx, &npy);
    TEUCHOS_TEST_FOR_EXCEPT(npx < 1);
    TEUCHOS_TEST_FOR_EXCEPT(npy < 1);
    TEUCHOS_TEST_FOR_EXCEPT(npx * npy != np);
    if (increaseProbSize)
    {
      nx = nx*npx;
      ny = ny*npy;
    }
    MeshSource mesher = new PartitionedRectangleMesher(0.0, 1.0, nx, npx, 
      0.0,  1.0, ny, npy, meshType);
    Mesh mesh = mesher.getMesh();


    WatchFlag watchMe("watch eqn");
    watchMe.setParam("integration setup", 0);
    watchMe.setParam("integration", 0);
    watchMe.setParam("fill", 0);
    watchMe.setParam("evaluation", 0);
    watchMe.deactivate();

    WatchFlag watchBC("watch BCs");
    watchBC.setParam("integration setup", 0);
    watchBC.setParam("integration", 0);
    watchBC.setParam("fill", 0);
    watchBC.setParam("evaluation", 0);
    watchBC.deactivate();
    


    CellFilter interior = new MaximalCellFilter();
    CellFilter edges = new DimensionalCellFilter(1);

    CellFilter left = edges.subset(new CoordinateValueCellPredicate(0,0.0));
    CellFilter right = edges.subset(new CoordinateValueCellPredicate(0,1.0));
    CellFilter top = edges.subset(new CoordinateValueCellPredicate(1,1.0));
    CellFilter bottom = edges.subset(new CoordinateValueCellPredicate(1,0.0));

    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    Expr dx = new Derivative(0);
    Expr dy = new Derivative(1);
    Expr grad = List(dx, dy);
    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);

    QuadratureFamily quad = new ReducedQuadrature();
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    /* Define the weak form */
    const double pi = 4.0*atan(1.0);

    Expr c = cos(pi*x);
    Expr s = sin(pi*x);
    Expr ch = cosh(y);
    Expr sh = sinh(y);
    Expr s2 = s*s; 
    Expr c2 = c*c;
    Expr sh2 = sh*sh;
    Expr ch2 = ch*ch;
    Expr pi2 = pi*pi;
    Expr uEx = s*ch;
    Expr eu = exp(uEx);
    Expr f = -(ch*eu*(-1 + pi2)*s) + ch2*(c2*eu*pi2 - s2) + eu*s2*sh2;

    Expr eqn = Integral(interior, exp(u)*(grad*u)*(grad*v)
      + v*f + v*u*u, quad, watchMe)
      + Integral(right, v*exp(u)*pi*cosh(y), quad,watchBC);
    /* Define the Dirichlet BC */
    Expr bc = EssentialBC(left+top, v*(u-uEx), quad, watchBC);

    Expr eqn2 = Integral(interior, exp(u)*(grad*u)*(grad*v)
      + v*f + v*u*u, quad2, watchMe)
      + Integral(right, v*exp(u)*pi*cosh(y), quad2,watchBC);
    /* Define the Dirichlet BC */
    Expr bc2 = EssentialBC(left+top, v*(u-uEx), quad2, watchBC);


    DiscreteSpace discSpace(mesh, new Lagrange(1), vecType);
    Expr soln1 = new DiscreteFunction(discSpace, 0.0, "u0");
    Expr soln2 = new DiscreteFunction(discSpace, 0.0, "u0");
    L2Projector proj(discSpace, uEx);
    Expr uEx0 = proj.project();

    NonlinearProblem nlp(mesh, eqn, bc, v, u, soln1, vecType);
    NonlinearProblem nlp2(mesh, eqn2, bc2, v, u, soln2, vecType);
    
    ParameterXMLFileReader reader("nox-aztec.xml");
    ParameterList noxParams = reader.getParameters();
    NOXSolver solver(noxParams);
    nlp.solve(solver);
    nlp2.solve(solver);

    FieldWriter w = new VTKWriter("NonlinReduced-n" + Teuchos::toString(n));
    w.addMesh(mesh);
    w.addField("soln1", new ExprFieldWrapper(soln1[0]));
    w.addField("soln2", new ExprFieldWrapper(soln2[0]));
    w.addField("exact", new ExprFieldWrapper(uEx0[0]));
    w.write();

    Expr err1 = uEx - soln1;
    Expr errExpr1 = Integral(interior, 
      err1*err1,
      new GaussianQuadrature(4));

    Expr err2 = uEx - soln2;
    Expr errExpr2 = Integral(interior, 
      err2*err2,
      new GaussianQuadrature(4));

    Expr err12 = soln2 - soln1;
    Expr errExpr12 = Integral(interior, 
      err12*err12,
      new GaussianQuadrature(4));
      
    double error1 = ::sqrt(evaluateIntegral(mesh, errExpr1));
    double error2 = ::sqrt(evaluateIntegral(mesh, errExpr2));
    double error12 = ::sqrt(evaluateIntegral(mesh, errExpr12));

    Out::root() << "final result: " << n << " "  << error1 << " " << error2 << " " << error12
                << endl;
        
    h.append(1.0/((double) n));
    errQuad.append(error2);
    errReduced.append(error1);
  }
    
  double pQuad = fitPower(h, errQuad);
  double pRed = fitPower(h, errReduced);
  Out::root() << "exponent (reduced integration) " << pRed << endl;
  Out::root() << "exponent (full integration) " << pQuad << endl;
    

  return SundanceGlobal::checkTest(::fabs(pRed-2.0), 0.1);

}