int main(int argc, char** argv)
{
  try
  {
    const double pi = 4.0*atan(1.0);
    double lambda = 1.25*pi*pi;

    int nx = 32;
    int nt = 10;
    double tFinal = 1.0/lambda;

    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("nt", nt, "Number of timesteps");
    Sundance::setOption("tFinal", tFinal, "Final time");
    
    Sundance::init(&argc, &argv);

    /* Creation of vector type */
    VectorType<double> vecType = new EpetraVectorType();

    /* Set up mesh */
    MeshType meshType = new BasicSimplicialMeshType();
      
    MeshSource meshSrc = new PartitionedRectangleMesher(
      0.0, 1.0, nx,
      0.0, 1.0, nx,
      meshType);
    Mesh mesh = meshSrc.getMesh();

    /* 
     * Specification of cell filters
     */
    CellFilter interior = new MaximalCellFilter();
    CellFilter edges = new DimensionalCellFilter(1);
    CellFilter west = edges.coordSubset(0, 0.0);
    CellFilter east = edges.coordSubset(0, 1.0);
    CellFilter south = edges.coordSubset(1, 0.0);
    CellFilter north = edges.coordSubset(1, 1.0);

    /* set up test and unknown functions */
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    /* set up differential operators */
    Expr grad = gradient(2);

    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);

    Expr t = new Sundance::Parameter(0.0);
    Expr tPrev = new Sundance::Parameter(0.0);


    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uExact = cos(0.5*pi*y)*sin(pi*x)*exp(-lambda*t);
    L2Projector proj(discSpace, uExact);
    Expr uPrev = proj.project();


    /* 
     * We need a quadrature rule for doing the integrations 
     */
    QuadratureFamily quad = new GaussianQuadrature(2);

    double deltaT = tFinal/nt;

    Expr gWest = -pi*exp(-lambda*t)*cos(0.5*pi*y);
    Expr gWestPrev = -pi*exp(-lambda*tPrev)*cos(0.5*pi*y);
    
    /* Create the weak form */
    Expr eqn = Integral(interior, v*(u-uPrev)/deltaT
      + 0.5*(grad*v)*(grad*u + grad*uPrev), quad)
      + Integral(west, -0.5*v*(gWest+gWestPrev), quad);

    Expr bc = EssentialBC(east + north, v*u, quad);

    
    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    
    LinearSolver<double> solver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    FieldWriter w0 = new VTKWriter("TransientHeat2D-0");
    w0.addMesh(mesh);
    w0.addField("T", new ExprFieldWrapper(uPrev[0]));
    w0.write();

    for (int i=0; i<nt; i++)
    {
      t.setParameterValue((i+1)*deltaT);
      tPrev.setParameterValue(i*deltaT);
      Out::root() << "t=" << (i+1)*deltaT << endl;
      Expr uNext = prob.solve(solver);
      
      ostringstream oss;
      oss << "TransientHeat2D-" << i+1;
      FieldWriter w = new VTKWriter(oss.str());
      w.addMesh(mesh);
      w.addField("T", new ExprFieldWrapper(uNext[0]));
      w.write();

      updateDiscreteFunction(uNext, uPrev);
    }


    
    double err = L2Norm(mesh, interior, uExact-uPrev, quad);
    Out::root() << "error norm=" << err << endl;

    double h = 1.0/(nx-1.0);
    double tol = 0.1*(pow(h,2.0) + pow(lambda*deltaT, 2.0));
    Out::root() << "tol=" << tol << endl;
    
    
    Sundance::passFailTest(err, tol);
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
  return Sundance::testStatus();
}
int main(int argc, char** argv)
{
  
  try
		{
      Sundance::init(&argc, &argv);
            
      /* We will do our linear algebra using Epetra */
      VectorType<double> vecType = new EpetraVectorType();

      /* Create a mesh. It will be of type BasisSimplicialMesh, and will
       * be built using a PartitionedLineMesher. */
      MeshType meshType = new BasicSimplicialMeshType();
      int nx = 32;

      MeshSource mesher = new PartitionedRectangleMesher(
        0.0, 1.0, nx,
        0.0, 1.0, nx,
        meshType);
      Mesh mesh = mesher.getMesh();

      /* Create a cell filter that will identify the maximal cells
       * in the interior of the domain */
      CellFilter interior = new MaximalCellFilter();

      /* Make cell filters for the east and west boundaries */
      CellFilter edges = new DimensionalCellFilter(1);
      CellFilter west = edges.coordSubset(0, 0.0);
      CellFilter east = edges.coordSubset(0, 1.0);

      /* Create unknown and test functions */
      Expr u = new UnknownFunction(new Lagrange(1), "u");
      Expr v = new TestFunction(new Lagrange(1), "v");

      /* Create differential operator and coordinate function */
      Expr x = new CoordExpr(0);
      Expr grad = gradient(1);

      /* We need a quadrature rule for doing the integrations */
      QuadratureFamily quad = new GaussianQuadrature(4);

      /* Define the parameter */
      Expr xi = new Sundance::Parameter(0.0);

      /* Construct a forcing term to provide an exact solution for
       * validation purposes. This will involve the parameter. */
      Expr uEx = x*(1.0-x)*(1.0+xi*exp(x));
      Expr f = -(-20 - exp(x)*xi*(1 + 32*x + 10*x*x + 
          exp(x)*(-1 + 2*x*(2 + x))*xi))/10.0;

      /* Define the weak form, using the parameter expression. This weak form
       * can be used for all parameter values. */
      Expr eqn = Integral(interior, 
        (1.0 + 0.1*xi*exp(x))*(grad*v)*(grad*u) - f*v, quad);

      /* Define the Dirichlet BC */
      Expr h = new CellDiameterExpr();
      Expr bc = EssentialBC(east + west, v*u/h, quad);

      /* We can now set up the linear problem. This can be reused
       * for different parameter values. */
      LinearProblem prob(mesh, eqn, bc, v, u, vecType);

      /* make a projector for the exact solution. Just like the
       * problem, this can be reused for different parameter values. */
      DiscreteSpace ds(mesh, new Lagrange(1), vecType);
      L2Projector proj(ds, uEx);

      /* Get the solver and declare variables for the results */
      LinearSolver<double> solver = LinearSolverBuilder::createSolver("aztec-ml.xml");
      Expr soln;
      SolverState<double> state;

      /* Set up the sweep from xi=0 to xi=xiMax in nSteps steps. */
      int nSteps = 10;
      double xiMax = 2.0;
      
      /* Make an array in which to keep the observed errors */
      Array<double> err(nSteps);

      /* Do the sweep */
      for (int n=0; n<nSteps; n++)
      {
        /* Update the parameter value */
        double xiVal = xiMax*n/(nSteps - 1.0);
        xi.setParameterValue(xiVal);
        Out::root() << "step n=" << n << " of " << nSteps << " xi=" << xiVal;

        /* Solve the problem. The updated parameter value is automatically used. */
        state = prob.solve(solver, soln);

        TEUCHOS_TEST_FOR_EXCEPTION(state.finalState() != SolveConverged,
          std::runtime_error,
          "solve failed!");

        /* Project the exact solution onto a discrrete space for viz. The updated
         * parameter value is automatically used. */
        Expr uEx0 = proj.project();

        /* Write the approximate and exact solutions for viz */
        FieldWriter w = new VTKWriter("ParameterSweep-" + Teuchos::toString(n));
        w.addMesh(mesh);
        w.addField("u", new ExprFieldWrapper(soln[0]));
        w.addField("uEx", new ExprFieldWrapper(uEx0[0]));
        w.write();

        /* Compute the L2 norm of the error */
        err[n] = L2Norm(mesh, interior, soln-uEx, quad);
        Out::root() << " L2 error = " << err[n] << endl;
      } 

      /* The errors are O(h^2), so use that to set a tolerance */
      double hVal = 1.0/(nx-1.0);
      double fudge = 2.0;
      double tol = fudge*hVal*hVal;

      /* Find the max error over all parameter values */
      double maxErr = *std::max_element(err.begin(), err.end());

      /* Check the error */
      Sundance::passFailTest(maxErr, tol);
    }
	catch(std::exception& e)
		{
      Sundance::handleException(e);
		}
  Sundance::finalize(); 
  return Sundance::testStatus(); 
}