Beispiel #1
0
int ClusterDoturCommand::execute(){
	try {
	
		if (abort) { if (calledHelp) { return 0; }  return 2;	}
		
        
        ClusterClassic* cluster = new ClusterClassic(cutoff, method, sim);
        
        NameAssignment* nameMap = NULL;
        CountTable* ct = NULL;
        map<string, int> counts;
        if(namefile != "") {	
			nameMap = new NameAssignment(namefile);
			nameMap->readMap();
            cluster->readPhylipFile(phylipfile, nameMap);
            delete nameMap;
		}else if (countfile != "") {
            ct = new CountTable();
            ct->readTable(countfile, false, false);
            cluster->readPhylipFile(phylipfile, ct);
            counts = ct->getNameMap();
            delete ct;
        }else {
            cluster->readPhylipFile(phylipfile, nameMap);
        }
        tag = cluster->getTag();
        
		if (m->getControl_pressed()) { delete cluster; return 0; }
		
		list = cluster->getListVector();
		rabund = cluster->getRAbundVector();
								
		if (outputDir == "") { outputDir += util.hasPath(phylipfile); }
		fileroot = outputDir + util.getRootName(util.getSimpleName(phylipfile));
			
        map<string, string> variables; 
        variables["[filename]"] = fileroot;
        variables["[clustertag]"] = tag;
        string sabundFileName = getOutputFileName("sabund", variables);
        string rabundFileName = getOutputFileName("rabund", variables);
        //if (countfile != "") { variables["[tag2]"] = "unique_list"; }
        string listFileName = getOutputFileName("list", variables);
        
        if (countfile == "") {
            util.openOutputFile(sabundFileName,	sabundFile);
            util.openOutputFile(rabundFileName,	rabundFile);
            outputNames.push_back(sabundFileName); outputTypes["sabund"].push_back(sabundFileName);
            outputNames.push_back(rabundFileName); outputTypes["rabund"].push_back(rabundFileName);
            
        }
		util.openOutputFile(listFileName,	listFile);
        outputNames.push_back(listFileName); outputTypes["list"].push_back(listFileName);
		
		float previousDist = 0.00000;
		float rndPreviousDist = 0.00000;
		oldRAbund = *rabund;
		oldList = *list;
        bool printHeaders = true;
		
        int estart = time(NULL); int loop = 0;
	
		while ((cluster->getSmallDist() <= cutoff) && (cluster->getNSeqs() > 1)){
			if (m->getControl_pressed()) { delete cluster; delete list; delete rabund; if(countfile == "") {rabundFile.close(); sabundFile.close();  util.mothurRemove((fileroot+ tag + ".rabund")); util.mothurRemove((fileroot+ tag + ".sabund")); }
                listFile.close(); util.mothurRemove((fileroot+ tag + ".list")); outputTypes.clear();  return 0;  }
		
			cluster->update(cutoff);
	
			float dist = cluster->getSmallDist();
			float rndDist = util.ceilDist(dist, precision);
            
            //cout << loop << '\t' << dist << '\t' << oldList.getNumBins() << endl; loop++;

			if(previousDist <= 0.0000 && dist != previousDist)  { printData("unique", counts, printHeaders);                                }
			else if(rndDist != rndPreviousDist)                 { printData(toString(rndPreviousDist,  length-1), counts, printHeaders);    }
		
			previousDist = dist;
			rndPreviousDist = rndDist;
			oldRAbund = *rabund;
			oldList = *list;
		}
	
		if(previousDist <= 0.0000)          { printData("unique", counts, printHeaders);                            }
		else if(rndPreviousDist<cutoff)     { printData(toString(rndPreviousDist, length-1), counts, printHeaders); }
		
        if (countfile == "") {
            sabundFile.close();
            rabundFile.close();
        }
		listFile.close();
		
		delete cluster;  delete list; delete rabund;
		
		//set list file as new current listfile
		string currentName = "";
		itTypes = outputTypes.find("list");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setListFile(currentName); } }
		
		//set rabund file as new current rabundfile
		itTypes = outputTypes.find("rabund");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setRabundFile(currentName); } }
		
		//set sabund file as new current sabundfile
		itTypes = outputTypes.find("sabund");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setSabundFile(currentName); } }
		
		m->mothurOut("\nOutput File Names: \n"); 
		for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i] +"\n"); 	} m->mothurOutEndLine();

		m->mothurOut("It took " + toString(time(NULL) - estart) + " seconds to cluster"); m->mothurOutEndLine();

		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterDoturCommand", "execute");
		exit(1);
	}
}
//***************************************************************************************************************
int SummaryQualCommand::execute(){
	try{
		
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
		int start = time(NULL);
		int numSeqs = 0;
		
		vector<int> position;
		vector<int> averageQ;
		vector< vector<int> > scores;
				
		if (m->control_pressed) { return 0; }
		
		if (namefile != "") { nameMap = m->readNames(namefile); }
		else if (countfile != "") {
            CountTable ct;
            ct.readTable(countfile, false, false);
            nameMap = ct.getNameMap();
        }
        
		vector<unsigned long long> positions; 
#if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
		positions = m->divideFile(qualfile, processors);
		for (int i = 0; i < (positions.size()-1); i++) {	lines.push_back(linePair(positions[i], positions[(i+1)]));	}
#else	
		if (processors == 1) {
			lines.push_back(linePair(0, 1000)); 
		}else {
			positions = m->setFilePosFasta(qualfile, numSeqs); 
            if (numSeqs < processors) { processors = numSeqs; }
			
			//figure out how many sequences you have to process
			int numSeqsPerProcessor = numSeqs / processors;
			for (int i = 0; i < processors; i++) {
				int startIndex =  i * numSeqsPerProcessor;
				if(i == (processors - 1)){	numSeqsPerProcessor = numSeqs - i * numSeqsPerProcessor; 	}
				lines.push_back(linePair(positions[startIndex], numSeqsPerProcessor));
			}
		}
#endif
		
		
		if(processors == 1){ numSeqs = driverCreateSummary(position, averageQ, scores, qualfile, lines[0]);  }
		else{  numSeqs = createProcessesCreateSummary(position, averageQ, scores, qualfile);  }
		
		if (m->control_pressed) {  return 0; }
		
		//print summary file
        map<string, string> variables; 
		variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(qualfile));
		string summaryFile = getOutputFileName("summary",variables);
		printQual(summaryFile, position, averageQ, scores);
		
		if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
		
		//output results to screen
		cout.setf(ios::fixed, ios::floatfield); cout.setf(ios::showpoint);
		m->mothurOutEndLine();
		m->mothurOut("Position\tNumSeqs\tAverageQ"); m->mothurOutEndLine();
		for (int i = 0; i < position.size(); i+=100) {
			float average = averageQ[i] / (float) position[i];
			cout << i << '\t' << position[i] << '\t' << average;
			m->mothurOutJustToLog(toString(i) + "\t" + toString(position[i]) + "\t" + toString(average)); m->mothurOutEndLine();
		}
		
		m->mothurOutEndLine();
		m->mothurOut("It took " + toString(time(NULL) - start) + " secs to create the summary file for " + toString(numSeqs) + " sequences."); m->mothurOutEndLine(); m->mothurOutEndLine();
		m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		m->mothurOut(summaryFile); m->mothurOutEndLine();	outputNames.push_back(summaryFile); outputTypes["summary"].push_back(summaryFile);
		m->mothurOutEndLine();
		
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "SummaryQualCommand", "execute");
		exit(1);
	}
}
Beispiel #3
0
int SeqSummaryCommand::execute(){
	try{
		
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
		//set current fasta to fastafile
		m->setFastaFile(fastafile);
		
        map<string, string> variables; 
		variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(fastafile));
		string summaryFile = getOutputFileName("summary",variables);
				
		int numSeqs = 0;
		
		vector<int> startPosition;
		vector<int> endPosition;
		vector<int> seqLength;
		vector<int> ambigBases;
		vector<int> longHomoPolymer;
		
		if (namefile != "") { nameMap = m->readNames(namefile); }
        else if (countfile != "") {
            CountTable ct;
            ct.readTable(countfile, false, false);
            nameMap = ct.getNameMap();
        }
		
		if (m->control_pressed) { return 0; }
			
#ifdef USE_MPI	
				int pid, numSeqsPerProcessor; 
				int tag = 2001;
				int startTag = 1; int endTag = 2; int lengthTag = 3; int baseTag = 4; int lhomoTag = 5;
				int outMode=MPI_MODE_CREATE|MPI_MODE_WRONLY; 
				vector<unsigned long long> MPIPos;
				
				MPI_Status status; 
				MPI_Status statusOut;
				MPI_File inMPI; 
				MPI_File outMPI; 
				MPI_Comm_size(MPI_COMM_WORLD, &processors);
				MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
							
				char tempFileName[1024];
				strcpy(tempFileName, fastafile.c_str());
				
				char sumFileName[1024];
				strcpy(sumFileName, summaryFile.c_str());
		
				MPI_File_open(MPI_COMM_WORLD, tempFileName, MPI_MODE_RDONLY, MPI_INFO_NULL, &inMPI);  //comm, filename, mode, info, filepointer
				MPI_File_open(MPI_COMM_WORLD, sumFileName, outMode, MPI_INFO_NULL, &outMPI);
				
				if (m->control_pressed) {  MPI_File_close(&inMPI);  MPI_File_close(&outMPI); return 0;  }
				
				if (pid == 0) { //you are the root process
						//print header
						string outputString = "seqname\tstart\tend\tnbases\tambigs\tpolymer\tnumSeqs\n";	
						int length = outputString.length();
						char* buf2 = new char[length];
						memcpy(buf2, outputString.c_str(), length);
					
						MPI_File_write_shared(outMPI, buf2, length, MPI_CHAR, &statusOut);
						delete buf2;
						
						MPIPos = m->setFilePosFasta(fastafile, numSeqs); //fills MPIPos, returns numSeqs
					
						for(int i = 1; i < processors; i++) { 
							MPI_Send(&numSeqs, 1, MPI_INT, i, tag, MPI_COMM_WORLD);
							MPI_Send(&MPIPos[0], (numSeqs+1), MPI_LONG, i, tag, MPI_COMM_WORLD);
						}
						
						//figure out how many sequences you have to do
						numSeqsPerProcessor = numSeqs / processors;
						int startIndex =  pid * numSeqsPerProcessor;
						if(pid == (processors - 1)){	numSeqsPerProcessor = numSeqs - pid * numSeqsPerProcessor; 	}
						
						//do your part
						MPICreateSummary(startIndex, numSeqsPerProcessor, startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, inMPI, outMPI, MPIPos);
						
				}else { //i am the child process
			
					MPI_Recv(&numSeqs, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &status);
					MPIPos.resize(numSeqs+1);
					MPI_Recv(&MPIPos[0], (numSeqs+1), MPI_LONG, 0, tag, MPI_COMM_WORLD, &status);
				
					//figure out how many sequences you have to align
					numSeqsPerProcessor = numSeqs / processors;
					int startIndex =  pid * numSeqsPerProcessor;
					if(pid == (processors - 1)){	numSeqsPerProcessor = numSeqs - pid * numSeqsPerProcessor; 	}
				
					//do your part
					MPICreateSummary(startIndex, numSeqsPerProcessor, startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, inMPI, outMPI, MPIPos);
				}
				
				MPI_File_close(&inMPI);
				MPI_File_close(&outMPI);
				MPI_Barrier(MPI_COMM_WORLD); //make everyone wait - just in case
				
				if (pid == 0) {
					//get the info from the child processes
					for(int i = 1; i < processors; i++) { 
						int size;
						MPI_Recv(&size, 1, MPI_INT, i, tag, MPI_COMM_WORLD, &status);

						vector<int> temp; temp.resize(size+1);
						
						for(int j = 0; j < 5; j++) { 
						
							MPI_Recv(&temp[0], (size+1), MPI_INT, i, 2001, MPI_COMM_WORLD, &status); 
							int receiveTag = temp[temp.size()-1];  //child process added a int to the end to indicate what count this is for
							
							if (receiveTag == startTag) { 
								for (int k = 0; k < size; k++) {		startPosition.push_back(temp[k]);	}
							}else if (receiveTag == endTag) { 
								for (int k = 0; k < size; k++) {		endPosition.push_back(temp[k]);	}
							}else if (receiveTag == lengthTag) { 
								for (int k = 0; k < size; k++) {		seqLength.push_back(temp[k]);	}
							}else if (receiveTag == baseTag) { 
								for (int k = 0; k < size; k++) {		ambigBases.push_back(temp[k]);	}
							}else if (receiveTag == lhomoTag) { 
								for (int k = 0; k < size; k++) {		longHomoPolymer.push_back(temp[k]);	}
							}
						} 
					}

				}else{
				
					//send my counts
					int size = startPosition.size();
					MPI_Send(&size, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);
					
					startPosition.push_back(startTag);
					int ierr = MPI_Send(&(startPosition[0]), (size+1), MPI_INT, 0, 2001, MPI_COMM_WORLD);
					endPosition.push_back(endTag);
					ierr = MPI_Send (&(endPosition[0]), (size+1), MPI_INT, 0, 2001, MPI_COMM_WORLD);
					seqLength.push_back(lengthTag);
					ierr = MPI_Send(&(seqLength[0]), (size+1), MPI_INT, 0, 2001, MPI_COMM_WORLD);
					ambigBases.push_back(baseTag);
					ierr = MPI_Send(&(ambigBases[0]), (size+1), MPI_INT, 0, 2001, MPI_COMM_WORLD);
					longHomoPolymer.push_back(lhomoTag);
					ierr = MPI_Send(&(longHomoPolymer[0]), (size+1), MPI_INT, 0, 2001, MPI_COMM_WORLD);
				}
				
				MPI_Barrier(MPI_COMM_WORLD); //make everyone wait - just in case
#else
			vector<unsigned long long> positions; 
			#if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
				positions = m->divideFile(fastafile, processors);
				for (int i = 0; i < (positions.size()-1); i++) {	lines.push_back(new linePair(positions[i], positions[(i+1)]));	}
			#else
				positions = m->setFilePosFasta(fastafile, numSeqs); 
                if (positions.size() < processors) { processors = positions.size(); }
		
				//figure out how many sequences you have to process
				int numSeqsPerProcessor = numSeqs / processors;
				for (int i = 0; i < processors; i++) {
					int startIndex =  i * numSeqsPerProcessor;
					if(i == (processors - 1)){	numSeqsPerProcessor = numSeqs - i * numSeqsPerProcessor; 	}
					lines.push_back(new linePair(positions[startIndex], numSeqsPerProcessor));
				}
			#endif
			

			if(processors == 1){
				numSeqs = driverCreateSummary(startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, fastafile, summaryFile, lines[0]);
			}else{
				numSeqs = createProcessesCreateSummary(startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, fastafile, summaryFile); 
			}
			
			if (m->control_pressed) {  return 0; }
#endif
			
		#ifdef USE_MPI
			if (pid == 0) { 
		#endif
		
		sort(startPosition.begin(), startPosition.end());
		sort(endPosition.begin(), endPosition.end());
		sort(seqLength.begin(), seqLength.end());
		sort(ambigBases.begin(), ambigBases.end());
		sort(longHomoPolymer.begin(), longHomoPolymer.end());
		int size = startPosition.size();
		
		//find means
		unsigned long long meanStartPosition, meanEndPosition, meanSeqLength, meanAmbigBases, meanLongHomoPolymer;
		meanStartPosition = 0; meanEndPosition = 0; meanSeqLength = 0; meanAmbigBases = 0; meanLongHomoPolymer = 0;
		for (int i = 0; i < size; i++) {
			meanStartPosition += startPosition[i];
			meanEndPosition += endPosition[i];
			meanSeqLength += seqLength[i];
			meanAmbigBases += ambigBases[i];
			meanLongHomoPolymer += longHomoPolymer[i];
		}
                
        double meanstartPosition, meanendPosition, meanseqLength, meanambigBases, meanlongHomoPolymer;
                
		meanstartPosition = meanStartPosition / (double) size; meanendPosition = meanEndPosition /(double) size; meanlongHomoPolymer = meanLongHomoPolymer / (double) size; meanseqLength = meanSeqLength / (double) size; meanambigBases = meanAmbigBases /(double) size;
				
		int ptile0_25	= int(size * 0.025);
		int ptile25		= int(size * 0.250);
		int ptile50		= int(size * 0.500);
		int ptile75		= int(size * 0.750);
		int ptile97_5	= int(size * 0.975);
		int ptile100	= size - 1;
		
		//to compensate for blank sequences that would result in startPosition and endPostion equalling -1
		if (startPosition[0] == -1) {  startPosition[0] = 0;	}
		if (endPosition[0] == -1)	{  endPosition[0] = 0;		}
		
		if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
		
		m->mothurOutEndLine();
		m->mothurOut("\t\tStart\tEnd\tNBases\tAmbigs\tPolymer\tNumSeqs"); m->mothurOutEndLine();
		m->mothurOut("Minimum:\t" + toString(startPosition[0]) + "\t" + toString(endPosition[0]) + "\t" + toString(seqLength[0]) + "\t" + toString(ambigBases[0]) + "\t" + toString(longHomoPolymer[0]) + "\t" + toString(1)); m->mothurOutEndLine();
		m->mothurOut("2.5%-tile:\t" + toString(startPosition[ptile0_25]) + "\t" + toString(endPosition[ptile0_25]) + "\t" + toString(seqLength[ptile0_25]) + "\t" + toString(ambigBases[ptile0_25]) + "\t"+ toString(longHomoPolymer[ptile0_25]) + "\t" + toString(ptile0_25+1)); m->mothurOutEndLine();
		m->mothurOut("25%-tile:\t" + toString(startPosition[ptile25]) + "\t" + toString(endPosition[ptile25]) + "\t" + toString(seqLength[ptile25]) + "\t" + toString(ambigBases[ptile25]) + "\t" + toString(longHomoPolymer[ptile25]) + "\t" + toString(ptile25+1)); m->mothurOutEndLine();
		m->mothurOut("Median: \t" + toString(startPosition[ptile50]) + "\t" + toString(endPosition[ptile50]) + "\t" + toString(seqLength[ptile50]) + "\t" + toString(ambigBases[ptile50]) + "\t" + toString(longHomoPolymer[ptile50]) + "\t" + toString(ptile50+1)); m->mothurOutEndLine();
		m->mothurOut("75%-tile:\t" + toString(startPosition[ptile75]) + "\t" + toString(endPosition[ptile75]) + "\t" + toString(seqLength[ptile75]) + "\t" + toString(ambigBases[ptile75]) + "\t" + toString(longHomoPolymer[ptile75]) + "\t" + toString(ptile75+1)); m->mothurOutEndLine();
		m->mothurOut("97.5%-tile:\t" + toString(startPosition[ptile97_5]) + "\t" + toString(endPosition[ptile97_5]) + "\t" + toString(seqLength[ptile97_5]) + "\t" + toString(ambigBases[ptile97_5]) + "\t" + toString(longHomoPolymer[ptile97_5]) + "\t" + toString(ptile97_5+1)); m->mothurOutEndLine();
		m->mothurOut("Maximum:\t" + toString(startPosition[ptile100]) + "\t" + toString(endPosition[ptile100]) + "\t" + toString(seqLength[ptile100]) + "\t" + toString(ambigBases[ptile100]) + "\t" + toString(longHomoPolymer[ptile100]) + "\t" + toString(ptile100+1)); m->mothurOutEndLine();
		m->mothurOut("Mean:\t" + toString(meanstartPosition) + "\t" + toString(meanendPosition) + "\t" + toString(meanseqLength) + "\t" + toString(meanambigBases) + "\t" + toString(meanlongHomoPolymer)); m->mothurOutEndLine();

		if ((namefile == "") && (countfile == "")) {  m->mothurOut("# of Seqs:\t" + toString(numSeqs)); m->mothurOutEndLine(); }
		else { m->mothurOut("# of unique seqs:\t" + toString(numSeqs)); m->mothurOutEndLine(); m->mothurOut("total # of seqs:\t" + toString(startPosition.size())); m->mothurOutEndLine(); }
		
		if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
		
		m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		m->mothurOut(summaryFile); m->mothurOutEndLine();	outputNames.push_back(summaryFile); outputTypes["summary"].push_back(summaryFile);
		m->mothurOutEndLine();
		
		#ifdef USE_MPI
			}
		#endif

        //set fasta file as new current fastafile
		string current = "";
		itTypes = outputTypes.find("summary");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { current = (itTypes->second)[0]; m->setSummaryFile(current); }
		}
        
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "SeqSummaryCommand", "execute");
		exit(1);
	}
}
Beispiel #4
0
//**********************************************************************************************************************
SharedCommand::SharedCommand(string option)  {
	try {
        abort = false; calledHelp = false; pickedGroups=false;
		allLines = 1;

		//allow user to run help
		if(option == "help") { help(); abort = true; calledHelp = true; }
		else if(option == "citation") { citation(); abort = true; calledHelp = true;}

		else {

			 vector<string> myArray = setParameters();

			 OptionParser parser(option);
			 map<string, string> parameters = parser.getParameters();

			 ValidParameters validParameter;
			 map<string, string>::iterator it;

			 //check to make sure all parameters are valid for command
			 for (it = parameters.begin(); it != parameters.end(); it++) {
				 if (!validParameter.isValidParameter(it->first, myArray, it->second)) {  abort = true;  }
			 }

			 //if the user changes the input directory command factory will send this info to us in the output parameter
			string inputDir = validParameter.valid(parameters, "inputdir");
			 if (inputDir == "not found"){	inputDir = "";		}
			 else {
				 string path;
				 it = parameters.find("list");
				 //user has given a template file
				 if(it != parameters.end()){
					 path = util.hasPath(it->second);
					 //if the user has not given a path then, add inputdir. else leave path alone.
					 if (path == "") {	parameters["list"] = inputDir + it->second;		}
				 }

				 it = parameters.find("group");
				 //user has given a template file
				 if(it != parameters.end()){
					 path = util.hasPath(it->second);
					 //if the user has not given a path then, add inputdir. else leave path alone.
					 if (path == "") {	parameters["group"] = inputDir + it->second;		}
				 }

				 it = parameters.find("count");
				 //user has given a template file
				 if(it != parameters.end()){
					 path = util.hasPath(it->second);
					 //if the user has not given a path then, add inputdir. else leave path alone.
					 if (path == "") {	parameters["count"] = inputDir + it->second;		}
				 }

                 it = parameters.find("biom");
				 //user has given a template file
				 if(it != parameters.end()){
					 path = util.hasPath(it->second);
					 //if the user has not given a path then, add inputdir. else leave path alone.
					 if (path == "") {	parameters["biom"] = inputDir + it->second;		}
				 }
			 }

             vector<string> tempOutNames;
             outputTypes["shared"] = tempOutNames;
             outputTypes["group"] = tempOutNames;
             outputTypes["map"] = tempOutNames;

			 //if the user changes the output directory command factory will send this info to us in the output parameter
			 outputDir = validParameter.valid(parameters, "outputdir");		if (outputDir == "not found"){	outputDir = "";	}

			 //check for required parameters
			 listfile = validParameter.validFile(parameters, "list");
			 if (listfile == "not open") { listfile = ""; abort = true; }
			 else if (listfile == "not found") { listfile = "";  }
			 else { current->setListFile(listfile); }

             biomfile = validParameter.validFile(parameters, "biom");
             if (biomfile == "not open") { biomfile = ""; abort = true; }
             else if (biomfile == "not found") { biomfile = "";  }
             else { current->setBiomFile(biomfile); }

			 ordergroupfile = validParameter.validFile(parameters, "ordergroup");
			 if (ordergroupfile == "not open") { abort = true; }
			 else if (ordergroupfile == "not found") { ordergroupfile = ""; }

			 groupfile = validParameter.validFile(parameters, "group");
			 if (groupfile == "not open") { groupfile = ""; abort = true; }
			 else if (groupfile == "not found") { groupfile = ""; }
			 else {  current->setGroupFile(groupfile); }

             countfile = validParameter.validFile(parameters, "count");
             if (countfile == "not open") { countfile = ""; abort = true; }
             else if (countfile == "not found") { countfile = ""; }
             else {
                 current->setCountFile(countfile);
                 CountTable temp;
                 if (!temp.testGroups(countfile)) {
                     m->mothurOut("\n[WARNING]: Your count file does not have group info, all reads will be assigned to mothurGroup.\n");
                     
                     temp.readTable(countfile, false, false); //dont read groups
                     map<string, int> seqs = temp.getNameMap();
                     
                     CountTable newCountTable;
                     newCountTable.addGroup("mothurGroup");
                     
                     for (map<string, int>::iterator it = seqs.begin(); it != seqs.end(); it++) {
                         vector<int> counts; counts.push_back(it->second);
                         newCountTable.push_back(it->first, counts);
                     }
                     
                     string newCountfileName = util.getRootName(countfile) + "mothurGroup" + util.getExtension(countfile);
                     newCountTable.printTable(newCountfileName);
                     
                     current->setCountFile(newCountfileName);
                     countfile = newCountfileName;
                     outputNames.push_back(newCountfileName);
                 }
             }

            if ((biomfile == "") && (listfile == "") && (countfile == "")) { //you must provide at least one of the following
				//is there are current file available for either of these?
				//give priority to list, then biom, then count
				listfile = current->getListFile();
				if (listfile != "") {  m->mothurOut("Using " + listfile + " as input file for the list parameter.\n");  }
				else {
					biomfile = current->getBiomFile();
                    if (biomfile != "") {  m->mothurOut("Using " + biomfile + " as input file for the biom parameter.\n"); }
					else {
                        countfile = current->getCountFile();
                        if (countfile != "") {  m->mothurOut("Using " + countfile + " as input file for the count parameter.\n");  }
                        else {
                            m->mothurOut("[ERROR]: No valid current files. You must provide a list or biom or count file before you can use the make.shared command.\n");  abort = true;
                        }

					}
				}
			}
			else if ((biomfile != "") && (listfile != "")) { m->mothurOut("When executing a make.shared command you must enter ONLY ONE of the following: list or biom.\n"); abort = true; }

			if (listfile != "") {
				if ((groupfile == "") && (countfile == "")) {
					groupfile = current->getGroupFile();
					if (groupfile != "") {  m->mothurOut("Using " + groupfile + " as input file for the group parameter.\n");  }
					else {
						countfile = current->getCountFile();
                        if (countfile != "") {  m->mothurOut("Using " + countfile + " as input file for the count parameter.\n"); }
                        else { m->mothurOut("[ERROR]: You need to provide a groupfile or countfile if you are going to use the list format.\n");  abort = true; }
					}
				}
			}


			 string groups = validParameter.valid(parameters, "groups");
			 if (groups == "not found") { groups = ""; }
			 else {
                 pickedGroups=true;
				 util.splitAtDash(groups, Groups);
                if (Groups.size() != 0) { if (Groups[0]== "all") { Groups.clear(); } }
			 }

			 //check for optional parameter and set defaults
			 // ...at some point should added some additional type checking...
			 string label = validParameter.valid(parameters, "label");
			 if (label == "not found") { label = ""; }
			 else {
				 if(label != "all") {  util.splitAtDash(label, labels);  allLines = 0;  }
				 else { allLines = 1;  }
			 }
            
            if ((listfile == "") && (biomfile == "") && (countfile != "")) { //building a shared file from a count file, require label
                if (labels.size() == 0) {
                    m->mothurOut("[ERROR]: You must provide a label when converting a count file to a shared file, please correct.\n");  abort = true;
                }
            }
		}

	}
	catch(exception& e) {
		m->errorOut(e, "SharedCommand", "SharedCommand");
		exit(1);
	}
}
Beispiel #5
0
int ClusterCommand::execute(){
	try {
	
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
		//phylip file given and cutoff not given - use cluster.classic because it uses less memory and is faster
		if ((format == "phylip") && (cutoff > 10.0)) {
			m->mothurOutEndLine(); m->mothurOut("You are using a phylip file and no cutoff.  I will run cluster.classic to save memory and time."); m->mothurOutEndLine();
			
			//run unique.seqs for deconvolute results
			string inputString = "phylip=" + distfile;
			if (namefile != "") { inputString += ", name=" + namefile; }
            else if (countfile != "") { inputString += ", count=" + countfile; }
			inputString += ", precision=" + toString(precision);
			inputString += ", method=" + method;
			if (hard)	{ inputString += ", hard=T";	}
			else		{ inputString += ", hard=F";	}
			if (sim)	{ inputString += ", sim=T";		}
			else		{ inputString += ", sim=F";		}

			
			m->mothurOutEndLine(); 
			m->mothurOut("/------------------------------------------------------------/"); m->mothurOutEndLine(); 
			m->mothurOut("Running command: cluster.classic(" + inputString + ")"); m->mothurOutEndLine(); 
			
			Command* clusterClassicCommand = new ClusterDoturCommand(inputString);
			clusterClassicCommand->execute();
			delete clusterClassicCommand;
			
			m->mothurOut("/------------------------------------------------------------/"); m->mothurOutEndLine();  

			return 0;
		}
		
		ReadMatrix* read;
		if (format == "column") { read = new ReadColumnMatrix(columnfile, sim); }	//sim indicates whether its a similarity matrix
		else if (format == "phylip") { read = new ReadPhylipMatrix(phylipfile, sim); }
		
		read->setCutoff(cutoff);
		
		NameAssignment* nameMap = NULL;
        CountTable* ct = NULL;
        map<string, int> counts;
		if(namefile != ""){	
			nameMap = new NameAssignment(namefile);
			nameMap->readMap();
            read->read(nameMap);
		}else if (countfile != "") {
            ct = new CountTable();
            ct->readTable(countfile, false, false);
            read->read(ct);
            counts = ct->getNameMap();
        }else { read->read(nameMap); }
		
		list = read->getListVector();
		matrix = read->getDMatrix();
        
		if(countfile != "") {
            rabund = new RAbundVector();
            createRabund(ct, list, rabund); //creates an rabund that includes the counts for the unique list
            delete ct;
        }else { rabund = new RAbundVector(list->getRAbundVector()); }
		delete read;
		
		if (m->control_pressed) { //clean up
			delete list; delete matrix; delete rabund; if(countfile == ""){rabundFile.close(); sabundFile.close();  m->mothurRemove((fileroot+ tag + ".rabund")); m->mothurRemove((fileroot+ tag + ".sabund")); }
			listFile.close(); m->mothurRemove((fileroot+ tag + ".list")); outputTypes.clear(); return 0;
		}
		
		//create cluster
		if (method == "furthest")	{	cluster = new CompleteLinkage(rabund, list, matrix, cutoff, method, adjust); }
		else if(method == "nearest"){	cluster = new SingleLinkage(rabund, list, matrix, cutoff, method, adjust); }
		else if(method == "average"){	cluster = new AverageLinkage(rabund, list, matrix, cutoff, method, adjust);	}
		else if(method == "weighted"){	cluster = new WeightedLinkage(rabund, list, matrix, cutoff, method, adjust);	}
		tag = cluster->getTag();
		
		if (outputDir == "") { outputDir += m->hasPath(distfile); }
		fileroot = outputDir + m->getRootName(m->getSimpleName(distfile));
		
        map<string, string> variables; 
        variables["[filename]"] = fileroot;
        variables["[clustertag]"] = tag;
        string sabundFileName = getOutputFileName("sabund", variables);
        string rabundFileName = getOutputFileName("rabund", variables);
        if (countfile != "") { variables["[tag2]"] = "unique_list"; }
        string listFileName = getOutputFileName("list", variables);
        
        if (countfile == "") {
            m->openOutputFile(sabundFileName,	sabundFile);
            m->openOutputFile(rabundFileName,	rabundFile);
            outputNames.push_back(sabundFileName); outputTypes["sabund"].push_back(sabundFileName);
            outputNames.push_back(rabundFileName); outputTypes["rabund"].push_back(rabundFileName);

        }
		m->openOutputFile(listFileName,	listFile);
        outputNames.push_back(listFileName); outputTypes["list"].push_back(listFileName);
        list->printHeaders(listFile);
		
		time_t estart = time(NULL);
		float previousDist = 0.00000;
		float rndPreviousDist = 0.00000;
		oldRAbund = *rabund;
		oldList = *list;

		print_start = true;
		start = time(NULL);
		loops = 0;
		double saveCutoff = cutoff;
		
		while (matrix->getSmallDist() < cutoff && matrix->getNNodes() > 0){  
		
			if (m->control_pressed) { //clean up
				delete list; delete matrix; delete rabund; delete cluster;
				if(countfile == "") {rabundFile.close(); sabundFile.close();  m->mothurRemove((fileroot+ tag + ".rabund")); m->mothurRemove((fileroot+ tag + ".sabund")); }
                listFile.close(); m->mothurRemove((fileroot+ tag + ".list")); outputTypes.clear(); return 0;
			}
		
			if (print_start && m->isTrue(timing)) {
				m->mothurOut("Clustering (" + tag + ") dist " + toString(matrix->getSmallDist()) + "/" 
					+ toString(m->roundDist(matrix->getSmallDist(), precision)) 
					+ "\t(precision: " + toString(precision) + ", Nodes: " + toString(matrix->getNNodes()) + ")");
				cout.flush();
				print_start = false;
			}

			loops++;

			cluster->update(cutoff);
            
            float dist = matrix->getSmallDist();
			float rndDist;
			if (hard) {
				rndDist = m->ceilDist(dist, precision); 
			}else{
				rndDist = m->roundDist(dist, precision); 
			}

			if(previousDist <= 0.0000 && dist != previousDist){
				printData("unique", counts);
			}
			else if(rndDist != rndPreviousDist){
				printData(toString(rndPreviousDist,  length-1), counts);
			}
		
			previousDist = dist;
			rndPreviousDist = rndDist;
			oldRAbund = *rabund;
			oldList = *list;
		}

		if (print_start && m->isTrue(timing)) {
			m->mothurOut("Clustering (" + tag + ") for distance " + toString(previousDist) + "/" + toString(rndPreviousDist) 
					 + "\t(precision: " + toString(precision) + ", Nodes: " + toString(matrix->getNNodes()) + ")");
			cout.flush();
	 		print_start = false;
		}
		
		if(previousDist <= 0.0000){
			printData("unique", counts);
		}
		else if(rndPreviousDist<cutoff){
			printData(toString(rndPreviousDist, length-1), counts);
		}
		
		delete matrix;
		delete list;
		delete rabund;
		delete cluster;
        if (countfile == "") {
            sabundFile.close();
            rabundFile.close();
        }
		listFile.close();
	
		if (saveCutoff != cutoff) { 
			if (hard)	{  saveCutoff = m->ceilDist(saveCutoff, precision);	}
			else		{	saveCutoff = m->roundDist(saveCutoff, precision);  }

			m->mothurOut("changed cutoff to " + toString(cutoff)); m->mothurOutEndLine(); 
		}
		
		//set list file as new current listfile
		string current = "";
		itTypes = outputTypes.find("list");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { current = (itTypes->second)[0]; m->setListFile(current); }
		}
		
		//set rabund file as new current rabundfile
		itTypes = outputTypes.find("rabund");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { current = (itTypes->second)[0]; m->setRabundFile(current); }
		}
		
		//set sabund file as new current sabundfile
		itTypes = outputTypes.find("sabund");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { current = (itTypes->second)[0]; m->setSabundFile(current); }
		}
		
		m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i]); m->mothurOutEndLine();	}
		m->mothurOutEndLine();

		
		//if (m->isTrue(timing)) {
			m->mothurOut("It took " + toString(time(NULL) - estart) + " seconds to cluster"); m->mothurOutEndLine();
		//}
		
		
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterCommand", "execute");
		exit(1);
	}
}
int SeqSummaryCommand::execute(){
	try{
		
		if (abort == true) { if (calledHelp) { return 0; }  return 2;	}
		
        int start = time(NULL);
        
		//set current fasta to fastafile
		m->setFastaFile(fastafile);
		
        map<string, string> variables; 
		variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(fastafile));
		string summaryFile = getOutputFileName("summary",variables);
				
		long long numSeqs = 0;
        long long size = 0;
        long long numUniques = 0;
		map<int, long long> startPosition;
		map<int, long long> endPosition;
		map<int, long long> seqLength;
		map<int, long long> ambigBases;
		map<int, long long> longHomoPolymer;
		
        if (namefile != "") { nameMap = m->readNames(namefile); numUniques = nameMap.size(); }
        else if (countfile != "") {
            CountTable ct;
            ct.readTable(countfile, false, false);
            nameMap = ct.getNameMap();
            size = ct.getNumSeqs();
            numUniques = ct.getNumUniqueSeqs();
        }
		
		if (m->control_pressed) { return 0; }
			

			vector<unsigned long long> positions; 
			#if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix)
				positions = m->divideFile(fastafile, processors);
				for (int i = 0; i < (positions.size()-1); i++) {	lines.push_back(new linePair(positions[i], positions[(i+1)]));	}
			#else
				positions = m->setFilePosFasta(fastafile, numSeqs); 
                if (numSeqs < processors) { processors = numSeqs; }
		
				//figure out how many sequences you have to process
				int numSeqsPerProcessor = numSeqs / processors;
				for (int i = 0; i < processors; i++) {
					int startIndex =  i * numSeqsPerProcessor;
					if(i == (processors - 1)){	numSeqsPerProcessor = numSeqs - i * numSeqsPerProcessor; 	}
					lines.push_back(new linePair(positions[startIndex], numSeqsPerProcessor));
				}
			#endif
			

			if(processors == 1){
				numSeqs = driverCreateSummary(startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, fastafile, summaryFile, lines[0]);
			}else{
				numSeqs = createProcessesCreateSummary(startPosition, endPosition, seqLength, ambigBases, longHomoPolymer, fastafile, summaryFile); 
			}
			
			if (m->control_pressed) {  return 0; }
			
		
        
        //set size
        if (countfile != "") {}//already set
        else if (namefile == "") { size = numSeqs; }
        else { for (map<int, long long>::iterator it = startPosition.begin(); it != startPosition.end(); it++) { size += it->second; } }
        
        if ((namefile != "") || (countfile != "")) {
            string type = "count";
            if (namefile != "") { type = "name"; }
            if (numSeqs != numUniques) { // do fasta and name/count files match
                m->mothurOut("[ERROR]: Your " + type + " file contains " + toString(numUniques) + " unique sequences, but your fasta file contains " + toString(numSeqs) + ". File mismatch detected, quitting command.\n"); m->control_pressed = true;
            }
        }
        
        if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
        
        long long ptile0_25	= 1+(long long)(size * 0.025); //number of sequences at 2.5%
        long long ptile25		= 1+(long long)(size * 0.250); //number of sequences at 25%
        long long ptile50		= 1+(long long)(size * 0.500);
        long long ptile75		= 1+(long long)(size * 0.750);
        long long ptile97_5	= 1+(long long)(size * 0.975);
        long long ptile100	= (long long)(size);
        vector<int> starts; starts.resize(7,0); vector<int> ends; ends.resize(7,0); vector<int> ambigs; ambigs.resize(7,0); vector<int> lengths; lengths.resize(7,0); vector<int> homops; homops.resize(7,0);
        
		//find means
		long long meanStartPosition, meanEndPosition, meanSeqLength, meanAmbigBases, meanLongHomoPolymer;
        meanStartPosition = 0; meanEndPosition = 0; meanSeqLength = 0; meanAmbigBases = 0; meanLongHomoPolymer = 0;
        //minimum
        if ((startPosition.begin())->first == -1) { starts[0] = 0; }
        else {starts[0] = (startPosition.begin())->first; }
        long long totalSoFar = 0;
        //set all values to min
        starts[1] = starts[0]; starts[2] = starts[0]; starts[3] = starts[0]; starts[4] = starts[0]; starts[5] = starts[0];
        int lastValue = 0;
        for (map<int, long long>::iterator it = startPosition.begin(); it != startPosition.end(); it++) {
            int value = it->first; if (value == -1) { value = 0; }
            meanStartPosition += (value*it->second);
            totalSoFar += it->second;
            if (((totalSoFar <= ptile0_25) && (totalSoFar > 1)) || ((lastValue < ptile0_25) && (totalSoFar > ptile0_25))){  starts[1] = value;   } //save value
            if (((totalSoFar <= ptile25) && (totalSoFar > ptile0_25)) ||  ((lastValue < ptile25) && (totalSoFar > ptile25))) { starts[2] = value;  } //save value
            if (((totalSoFar <= ptile50) && (totalSoFar > ptile25)) ||  ((lastValue < ptile50) && (totalSoFar > ptile50))) {  starts[3] = value; } //save value
            if (((totalSoFar <= ptile75) && (totalSoFar > ptile50)) ||  ((lastValue < ptile75) && (totalSoFar > ptile75))) {  starts[4] = value; } //save value
            if (((totalSoFar <= ptile97_5) && (totalSoFar > ptile75)) ||  ((lastValue < ptile97_5) && (totalSoFar > ptile97_5))) {  starts[5] = value;  } //save value
            if ((totalSoFar <= ptile100) && (totalSoFar > ptile97_5)) {  starts[6] = value; } //save value
            lastValue = totalSoFar;
        }
        starts[6] = (startPosition.rbegin())->first;
        
        if ((endPosition.begin())->first == -1) { ends[0] = 0; }
        else {ends[0] = (endPosition.begin())->first; }
        totalSoFar = 0;
        //set all values to min
        ends[1] = ends[0]; ends[2] = ends[0]; ends[3] = ends[0]; ends[4] = ends[0]; ends[5] = ends[0];
        lastValue = 0;
        for (map<int, long long>::iterator it = endPosition.begin(); it != endPosition.end(); it++) {
            int value = it->first; if (value == -1) { value = 0; }
            meanEndPosition += (value*it->second);
            totalSoFar += it->second;
            
            if (((totalSoFar <= ptile0_25) && (totalSoFar > 1)) || ((lastValue < ptile0_25) && (totalSoFar > ptile0_25))){  ends[1] = value;  } //save value
            if (((totalSoFar <= ptile25) && (totalSoFar > ptile0_25)) ||  ((lastValue < ptile25) && (totalSoFar > ptile25))) { ends[2] = value;  } //save value
            if (((totalSoFar <= ptile50) && (totalSoFar > ptile25)) ||  ((lastValue < ptile50) && (totalSoFar > ptile50))) {  ends[3] = value; } //save value
            if (((totalSoFar <= ptile75) && (totalSoFar > ptile50)) ||  ((lastValue < ptile75) && (totalSoFar > ptile75))) {  ends[4] = value; } //save value
            if (((totalSoFar <= ptile97_5) && (totalSoFar > ptile75)) ||  ((lastValue < ptile97_5) && (totalSoFar > ptile97_5))) {  ends[5] = value;  } //save value
            if ((totalSoFar <= ptile100) && (totalSoFar > ptile97_5)) {   ends[6] = value; } //save value
            lastValue = totalSoFar;
        }
        ends[6] = (endPosition.rbegin())->first;
        
        if ((seqLength.begin())->first == -1) { lengths[0] = 0; }
        else {lengths[0] = (seqLength.begin())->first; }
        //set all values to min
        lengths[1] = lengths[0]; lengths[2] = lengths[0]; lengths[3] = lengths[0]; lengths[4] = lengths[0]; lengths[5] = lengths[0];
        totalSoFar = 0;
        lastValue = 0;
        for (map<int, long long>::iterator it = seqLength.begin(); it != seqLength.end(); it++) {
            int value = it->first;
            meanSeqLength += (value*it->second);
            totalSoFar += it->second;
            
            if (((totalSoFar <= ptile0_25) && (totalSoFar > 1)) || ((lastValue < ptile0_25) && (totalSoFar > ptile0_25))){  lengths[1] = value;  } //save value
            if (((totalSoFar <= ptile25) && (totalSoFar > ptile0_25)) ||  ((lastValue < ptile25) && (totalSoFar > ptile25))) {   lengths[2] = value;  } //save value
            if (((totalSoFar <= ptile50) && (totalSoFar > ptile25)) ||  ((lastValue < ptile50) && (totalSoFar > ptile50))) {  lengths[3] = value; } //save value
            if (((totalSoFar <= ptile75) && (totalSoFar > ptile50)) ||  ((lastValue < ptile75) && (totalSoFar > ptile75))) {  lengths[4] = value; } //save value
            if (((totalSoFar <= ptile97_5) && (totalSoFar > ptile75)) ||  ((lastValue < ptile97_5) && (totalSoFar > ptile97_5))) {  lengths[5] = value;  } //save value
            if ((totalSoFar <= ptile100) && (totalSoFar > ptile97_5)) {  lengths[6] = value; } //save value
            lastValue = totalSoFar;
        }
        lengths[6] = (seqLength.rbegin())->first;
                
        if ((ambigBases.begin())->first == -1) { ambigs[0] = 0; }
        else {ambigs[0] = (ambigBases.begin())->first; }
        //set all values to min
        ambigs[1] = ambigs[0]; ambigs[2] = ambigs[0]; ambigs[3] = ambigs[0]; ambigs[4] = ambigs[0]; ambigs[5] = ambigs[0];
        totalSoFar = 0;
        lastValue = 0;
        for (map<int, long long>::iterator it = ambigBases.begin(); it != ambigBases.end(); it++) {
            int value = it->first;
            meanAmbigBases += (value*it->second);
            totalSoFar += it->second;
            
            if (((totalSoFar <= ptile0_25) && (totalSoFar > 1)) || ((lastValue < ptile0_25) && (totalSoFar > ptile0_25))){  ambigs[1] = value;  } //save value
            if (((totalSoFar <= ptile25) && (totalSoFar > ptile0_25)) ||  ((lastValue < ptile25) && (totalSoFar > ptile25))) {   ambigs[2] = value;  } //save value
            if (((totalSoFar <= ptile50) && (totalSoFar > ptile25)) ||  ((lastValue < ptile50) && (totalSoFar > ptile50))) {  ambigs[3] = value; } //save value
            if (((totalSoFar <= ptile75) && (totalSoFar > ptile50)) ||  ((lastValue < ptile75) && (totalSoFar > ptile75))) {  ambigs[4] = value; } //save value
            if (((totalSoFar <= ptile97_5) && (totalSoFar > ptile75)) ||  ((lastValue < ptile97_5) && (totalSoFar > ptile97_5))) {  ambigs[5] = value;  } //save value
            if ((totalSoFar <= ptile100) && (totalSoFar > ptile97_5)) {  ambigs[6] = value; } //save value
            lastValue = totalSoFar;
        }
        ambigs[6] = (ambigBases.rbegin())->first;
        
        
        if ((longHomoPolymer.begin())->first == -1) { homops[0] = 0; }
        else {homops[0] = (longHomoPolymer.begin())->first; }
        //set all values to min
        homops[1] = homops[0]; homops[2] = homops[0]; homops[3] = homops[0]; homops[4] = homops[0]; homops[5] = homops[0];
        totalSoFar = 0;
        lastValue = 0;
        for (map<int, long long>::iterator it = longHomoPolymer.begin(); it != longHomoPolymer.end(); it++) {
            int value = it->first;
            meanLongHomoPolymer += (it->first*it->second);
            totalSoFar += it->second;
            
            if (((totalSoFar <= ptile0_25) && (totalSoFar > 1)) || ((lastValue < ptile0_25) && (totalSoFar > ptile0_25))){  homops[1] = value;  } //save value
            if (((totalSoFar <= ptile25) && (totalSoFar > ptile0_25)) ||  ((lastValue < ptile25) && (totalSoFar > ptile25))) {   homops[2] = value;  } //save value
            if (((totalSoFar <= ptile50) && (totalSoFar > ptile25)) ||  ((lastValue < ptile50) && (totalSoFar > ptile50))) {  homops[3] = value; } //save value
            if (((totalSoFar <= ptile75) && (totalSoFar > ptile50)) ||  ((lastValue < ptile75) && (totalSoFar > ptile75))) {  homops[4] = value; } //save value
            if (((totalSoFar <= ptile97_5) && (totalSoFar > ptile75)) ||  ((lastValue < ptile97_5) && (totalSoFar > ptile97_5))) {  homops[5] = value;  } //save value
            if ((totalSoFar <= ptile100) && (totalSoFar > ptile97_5)) {  homops[6] = value; } //save value
            lastValue = totalSoFar;
        }
        homops[6] = (longHomoPolymer.rbegin())->first;
        		      
        double meanstartPosition, meanendPosition, meanseqLength, meanambigBases, meanlongHomoPolymer;
                
		meanstartPosition = meanStartPosition / (double) size; meanendPosition = meanEndPosition /(double) size; meanlongHomoPolymer = meanLongHomoPolymer / (double) size; meanseqLength = meanSeqLength / (double) size; meanambigBases = meanAmbigBases /(double) size;
		
		if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
		
		m->mothurOutEndLine();
		m->mothurOut("\t\tStart\tEnd\tNBases\tAmbigs\tPolymer\tNumSeqs"); m->mothurOutEndLine();
		m->mothurOut("Minimum:\t" + toString(starts[0]) + "\t" + toString(ends[0]) + "\t" + toString(lengths[0]) + "\t" + toString(ambigs[0]) + "\t" + toString(homops[0]) + "\t" + toString(1)); m->mothurOutEndLine();
		m->mothurOut("2.5%-tile:\t" + toString(starts[1]) + "\t" + toString(ends[1]) + "\t" + toString(lengths[1]) + "\t" + toString(ambigs[1]) + "\t" + toString(homops[1]) + "\t" + toString(ptile0_25)); m->mothurOutEndLine();
		m->mothurOut("25%-tile:\t" + toString(starts[2]) + "\t" + toString(ends[2]) + "\t" + toString(lengths[2]) + "\t" + toString(ambigs[2]) + "\t" + toString(homops[2]) + "\t" + toString(ptile25)); m->mothurOutEndLine();
		m->mothurOut("Median: \t" + toString(starts[3]) + "\t" + toString(ends[3]) + "\t" + toString(lengths[3]) + "\t" + toString(ambigs[3]) + "\t" + toString(homops[3]) + "\t" + toString(ptile50)); m->mothurOutEndLine();
		m->mothurOut("75%-tile:\t" + toString(starts[4]) + "\t" + toString(ends[4]) + "\t" + toString(lengths[4]) + "\t" + toString(ambigs[4]) + "\t" + toString(homops[4]) + "\t" + toString(ptile75)); m->mothurOutEndLine();
		m->mothurOut("97.5%-tile:\t" + toString(starts[5]) + "\t" + toString(ends[5]) + "\t" + toString(lengths[5]) + "\t" + toString(ambigs[5]) + "\t" + toString(homops[5]) + "\t" + toString(ptile97_5)); m->mothurOutEndLine();
		m->mothurOut("Maximum:\t" + toString(starts[6]) + "\t" + toString(ends[6]) + "\t" + toString(lengths[6]) + "\t" + toString(ambigs[6]) + "\t" + toString(homops[6]) + "\t" + toString(ptile100)); m->mothurOutEndLine();
		m->mothurOut("Mean:\t" + toString(meanstartPosition) + "\t" + toString(meanendPosition) + "\t" + toString(meanseqLength) + "\t" + toString(meanambigBases) + "\t" + toString(meanlongHomoPolymer)); m->mothurOutEndLine();
		if ((namefile == "") && (countfile == "")) {  m->mothurOut("# of Seqs:\t" + toString(numSeqs)); m->mothurOutEndLine(); }
		else { m->mothurOut("# of unique seqs:\t" + toString(numSeqs)); m->mothurOutEndLine(); m->mothurOut("total # of seqs:\t" + toString(size)); m->mothurOutEndLine(); }
		
		if (m->control_pressed) {  m->mothurRemove(summaryFile); return 0; }
		
		m->mothurOutEndLine();
		m->mothurOut("Output File Names: "); m->mothurOutEndLine();
		m->mothurOut(summaryFile); m->mothurOutEndLine();	outputNames.push_back(summaryFile); outputTypes["summary"].push_back(summaryFile);
		m->mothurOutEndLine();

        if ((namefile == "") && (countfile == "")) {  m->mothurOut("It took " + toString(time(NULL) - start) + " secs to summarize " + toString(numSeqs) + " sequences.\n");  }
        else{ m->mothurOut("It took " + toString(time(NULL) - start) + " secs to summarize " + toString(size) + " sequences.\n");   }
        
        //set fasta file as new current fastafile
		string current = "";
		itTypes = outputTypes.find("summary");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { current = (itTypes->second)[0]; m->setSummaryFile(current); }
		}
        
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "SeqSummaryCommand", "execute");
		exit(1);
	}
}
Beispiel #7
0
int OptiBlastMatrix::readBlast(){
    try {
        Utils util;
        map<string, long long> nameAssignment;
        if (namefile != "") { util.readNames(namefile, nameAssignment); }
        else if (countfile != "") {
            CountTable ct; ct.readTable(countfile, false, true);
            map<string, int> temp = ct.getNameMap();
            for (map<string, int>::iterator it = temp.begin(); it!= temp.end(); it++) {  nameAssignment[it->first] = it->second; }
        }
        else { readBlastNames(nameAssignment);  }
        int count = 0;
        for (map<string, long long>::iterator it = nameAssignment.begin(); it!= nameAssignment.end(); it++) {
            it->second = count; count++;
            nameMap.push_back(it->first);
            overlapNameMap.push_back(it->first);
        }
        
        m->mothurOut("Reading Blast File... "); cout.flush();
        
        string firstName, secondName, eScore, currentRow; currentRow = "";
        string repeatName = "";
        float distance, thisoverlap, refScore;
        float percentId;
        float numBases, mismatch, gap, startQuery, endQuery, startRef, endRef, score, lengthThisSeq;
        map<string, float> thisRowsBlastScores;
        
        ///////////////////// Read to eliminate singletons ///////////////////////
        ifstream fileHandle;
        util.openInputFile(distFile, fileHandle);
        
        map<int, int> singletonIndexSwap;
        map<int, int> blastSingletonIndexSwap;
        vector<bool> singleton; singleton.resize(nameAssignment.size(), true);
        vector<bool> overlapSingleton; overlapSingleton.resize(nameAssignment.size(), true);
        vector< map<string,float> > dists;  dists.resize(nameAssignment.size());
        
        if (!fileHandle.eof()) {
            //read in line from file
            fileHandle >> firstName >> secondName >> percentId >> numBases >> mismatch >> gap >> startQuery >> endQuery >> startRef >> endRef >> eScore >> score;
            util.gobble(fileHandle);
            
            currentRow = firstName;
            lengthThisSeq = numBases;
            repeatName = firstName + secondName;
            
            if (firstName == secondName) {   refScore = score;  }
            else{
                thisRowsBlastScores[secondName] = score;
                
                //calc overlap score
                thisoverlap = 1.0 - (percentId * (lengthThisSeq - startQuery) / endRef / 100.0 - penalty);
                
                //if there is a valid overlap, add it
                if ((startRef <= length) && ((endQuery+length) >= lengthThisSeq) && (thisoverlap <= cutoff)) {
                    //convert name to number
                    map<string,long long>::iterator itA = nameAssignment.find(firstName);
                    map<string,long long>::iterator itB = nameAssignment.find(secondName);
                    if(itA == nameAssignment.end()){  m->mothurOut("AAError: Sequence '" + firstName + "' was not found in the names file, please correct\n"); exit(1);  }
                    if(itB == nameAssignment.end()){  m->mothurOut("ABError: Sequence '" + secondName + "' was not found in the names file, please correct\n"); exit(1);  }

                    int indexA = (itA->second);
                    int indexB = (itB->second);
                    overlapSingleton[indexA] = false;
                    overlapSingleton[indexB] = false;
                    blastSingletonIndexSwap[indexA] = indexA;
                    blastSingletonIndexSwap[indexB] = indexB;
                }
            }
        }else { m->mothurOut("Error in your blast file, cannot read."); m->mothurOutEndLine(); exit(1); }
        
        
        while(fileHandle){  //let's assume it's a triangular matrix...
            
            if (m->getControl_pressed()) { fileHandle.close(); return 0; }
            
            //read in line from file
            fileHandle >> firstName >> secondName >> percentId >> numBases >> mismatch >> gap >> startQuery >> endQuery >> startRef >> endRef >> eScore >> score;
            util.gobble(fileHandle);
            
            string temp = firstName + secondName; //to check if this file has repeat lines, ie. is this a blast instead of a blscreen file
            
            //if this is a new pairing
            if (temp != repeatName) {
                repeatName = temp;
                
                if (currentRow == firstName) {
                    if (firstName == secondName) {  refScore = score; }
                    else{
                        //save score
                        thisRowsBlastScores[secondName] = score;
                        
                        //calc overlap score
                        thisoverlap = 1.0 - (percentId * (lengthThisSeq - startQuery) / endRef / 100.0 - penalty);
                        
                        //if there is a valid overlap, add it
                        if ((startRef <= length) && ((endQuery+length) >= lengthThisSeq) && (thisoverlap <= cutoff)) {
                            //convert name to number
                            map<string,long long>::iterator itA = nameAssignment.find(firstName);
                            map<string,long long>::iterator itB = nameAssignment.find(secondName);
                            if(itA == nameAssignment.end()){  m->mothurOut("AAError: Sequence '" + firstName + "' was not found in the names file, please correct\n"); exit(1);  }
                            if(itB == nameAssignment.end()){  m->mothurOut("ABError: Sequence '" + secondName + "' was not found in the names file, please correct\n"); exit(1);  }
                            int indexA = (itA->second);
                            int indexB = (itB->second);
                            overlapSingleton[indexA] = false;
                            overlapSingleton[indexB] = false;
                            blastSingletonIndexSwap[indexA] = indexA;
                            blastSingletonIndexSwap[indexB] = indexB;
                        }
                    } //end else
                }else { //end row
                    //convert blast scores to distance and add cell to sparse matrix if we can
                    map<string, float>::iterator it;
                    map<string, float>::iterator itDist;
                    for(it=thisRowsBlastScores.begin(); it!=thisRowsBlastScores.end(); it++) {
                        distance = 1.0 - (it->second / refScore);
                        
                        //do we already have the distance calculated for b->a
                        map<string,long long>::iterator itA = nameAssignment.find(currentRow);
                        map<string,long long>::iterator itB = nameAssignment.find(it->first);
                        itDist = dists[itB->second].find(itA->first);
                        
                        //if we have it then compare
                        if (itDist != dists[itB->second].end()) {
                            
                            //if you want the minimum blast score ratio, then pick max distance
                            if(minWanted) {	 distance = max(itDist->second, distance);  }
                            else{	distance = min(itDist->second, distance);  }
                            
                            //is this distance below cutoff
                            if (distance <= cutoff) {
                                int indexA = (itA->second);
                                int indexB = (itB->second);
                                singleton[indexA] = false;
                                singleton[indexB] = false;
                                singletonIndexSwap[indexA] = indexA;
                                singletonIndexSwap[indexB] = indexB;
                            }
                            //not going to need this again
                            dists[itB->second].erase(itDist);
                        }else { //save this value until we get the other ratio
                            dists[itA->second][it->first] = distance;
                        }
                    }
                    //clear out last rows info
                    thisRowsBlastScores.clear();
                    
                    currentRow = firstName;
                    lengthThisSeq = numBases;
                    
                    //add this row to thisRowsBlastScores
                    if (firstName == secondName) {   refScore = score;  }
                    else{ //add this row to thisRowsBlastScores
                        thisRowsBlastScores[secondName] = score;
                        
                        //calc overlap score
                        thisoverlap = 1.0 - (percentId * (lengthThisSeq - startQuery) / endRef / 100.0 - penalty);
                        
                        //if there is a valid overlap, add it
                        if ((startRef <= length) && ((endQuery+length) >= lengthThisSeq) && (thisoverlap <= cutoff)) {
                            //convert name to number
                            map<string,long long>::iterator itA = nameAssignment.find(firstName);
                            map<string,long long>::iterator itB = nameAssignment.find(secondName);
                            if(itA == nameAssignment.end()){  m->mothurOut("AAError: Sequence '" + firstName + "' was not found in the names file, please correct\n"); exit(1);  }
                            if(itB == nameAssignment.end()){  m->mothurOut("ABError: Sequence '" + secondName + "' was not found in the names file, please correct\n"); exit(1);  }
                            int indexA = (itA->second);
                            int indexB = (itB->second);
                            overlapSingleton[indexA] = false;
                            overlapSingleton[indexB] = false;
                            blastSingletonIndexSwap[indexA] = indexA;
                            blastSingletonIndexSwap[indexB] = indexB;
                        }
                    }
                }//end if current row
            }//end if repeat
        }
        fileHandle.close();
        
        //convert blast scores to distance and add cell to sparse matrix if we can
        map<string, float>::iterator it;
        map<string, float>::iterator itDist;
        for(it=thisRowsBlastScores.begin(); it!=thisRowsBlastScores.end(); it++) {
            distance = 1.0 - (it->second / refScore);
            
            //do we already have the distance calculated for b->a
            map<string,long long>::iterator itA = nameAssignment.find(currentRow);
            map<string,long long>::iterator itB = nameAssignment.find(it->first);
            itDist = dists[itB->second].find(itA->first);
            
            //if we have it then compare
            if (itDist != dists[itB->second].end()) {
                
                //if you want the minimum blast score ratio, then pick max distance
                if(minWanted) {	 distance = max(itDist->second, distance);  }
                else{	distance = min(itDist->second, distance);  }
                
                //is this distance below cutoff
                if (distance <= cutoff) {
                    int indexA = (itA->second);
                    int indexB = (itB->second);
                    singleton[indexA] = false;
                    singleton[indexB] = false;
                    singletonIndexSwap[indexA] = indexA;
                    singletonIndexSwap[indexB] = indexB;
                }
                //not going to need this again
                dists[itB->second].erase(itDist);
            }else { //save this value until we get the other ratio
                dists[itA->second][it->first] = distance;
            }
        }
        //clear out info
        thisRowsBlastScores.clear();
        dists.clear();
        
        //////////////////////////////////////////////////////////////////////////
        int nonSingletonCount = 0;
        for (int i = 0; i < singleton.size(); i++) {
            if (!singleton[i]) { //if you are a singleton
                singletonIndexSwap[i] = nonSingletonCount;
                nonSingletonCount++;
            }else { singletons.push_back(nameMap[i]); }
        }
        singleton.clear();
        
        int overlapNonSingletonCount = 0;
        for (int i = 0; i < overlapSingleton.size(); i++) {
            if (!overlapSingleton[i]) { //if you are a singleton
                blastSingletonIndexSwap[i] = overlapNonSingletonCount;
                overlapNonSingletonCount++;
            }
        }
        overlapSingleton.clear();
        
        ifstream in;
        util.openInputFile(distFile, in);
        
        dists.resize(nameAssignment.size());
        closeness.resize(nonSingletonCount);
        blastOverlap.resize(overlapNonSingletonCount);
        
        map<string, string> names;
        if (namefile != "") {
            util.readNames(namefile, names);
            for (int i = 0; i < singletons.size(); i++) {
                singletons[i] = names[singletons[i]];
            }
        }
        
        m->mothurOut(" halfway ... "); cout.flush();
        
        if (!in.eof()) {
            //read in line from file
            in >> firstName >> secondName >> percentId >> numBases >> mismatch >> gap >> startQuery >> endQuery >> startRef >> endRef >> eScore >> score;
            util.gobble(fileHandle);
            
            currentRow = firstName;
            lengthThisSeq = numBases;
            repeatName = firstName + secondName;
            
            if (firstName == secondName) {   refScore = score;  }
            else{
                //convert name to number
                map<string,long long>::iterator itA = nameAssignment.find(firstName);
                map<string,long long>::iterator itB = nameAssignment.find(secondName);
                if(itA == nameAssignment.end()){  m->mothurOut("AAError: Sequence '" + firstName + "' was not found in the names file, please correct\n"); exit(1);  }
                if(itB == nameAssignment.end()){  m->mothurOut("ABError: Sequence '" + secondName + "' was not found in the names file, please correct\n"); exit(1);  }
                
                thisRowsBlastScores[secondName] = score;
                
                if (namefile != "") {
                    firstName = names[firstName];  //redundant names
                    secondName = names[secondName]; //redundant names
                }
                
                nameMap[singletonIndexSwap[itA->second]] = firstName;
                nameMap[singletonIndexSwap[itB->second]] = secondName;
                
                //calc overlap score
                thisoverlap = 1.0 - (percentId * (lengthThisSeq - startQuery) / endRef / 100.0 - penalty);
                
                //if there is a valid overlap, add it
                if ((startRef <= length) && ((endQuery+length) >= lengthThisSeq) && (thisoverlap <= cutoff)) {
                    int indexA = (itA->second);
                    int indexB = (itB->second);
                    
                    int newB = blastSingletonIndexSwap[indexB];
                    int newA = blastSingletonIndexSwap[indexA];
                    blastOverlap[newA].insert(newB);
                    blastOverlap[newB].insert(newA);
                    
                    overlapNameMap[newA] = firstName;
                    overlapNameMap[newB] = secondName;
                }
            }
        }else { m->mothurOut("Error in your blast file, cannot read."); m->mothurOutEndLine(); exit(1); }