int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        if (platform.getPropertyDefaultValue("CudaPrecision") == "double") {
            testTransform<double2>(false, 28, 25, 30);
            testTransform<double2>(true, 28, 25, 25);
            testTransform<double2>(true, 25, 28, 25);
            testTransform<double2>(true, 25, 25, 28);
            testTransform<double2>(true, 21, 25, 27);
        }
        else {
            testTransform<float2>(false, 28, 25, 30);
            testTransform<float2>(true, 28, 25, 25);
            testTransform<float2>(true, 25, 28, 25);
            testTransform<float2>(true, 25, 25, 28);
            testTransform<float2>(true, 21, 25, 27);
        }
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
void testTransform(bool realToComplex, int xsize, int ysize, int zsize) {
    System system;
    system.addParticle(0.0);
    CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false",
            platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()),
            platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler()));
    CudaContext& context = *platformData.contexts[0];
    context.initialize();
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Real2> original(xsize*ysize*zsize);
    vector<t_complex> reference(original.size());
    for (int i = 0; i < (int) original.size(); i++) {
        Real2 value;
        value.x = (float) genrand_real2(sfmt);
        value.y = (float) genrand_real2(sfmt);
        original[i] = value;
        reference[i] = t_complex(value.x, value.y);
    }
    for (int i = 0; i < (int) reference.size(); i++) {
        if (realToComplex)
            reference[i] = t_complex(i%2 == 0 ? original[i/2].x : original[i/2].y, 0);
        else
            reference[i] = t_complex(original[i].x, original[i].y);
    }
    CudaArray grid1(context, original.size(), sizeof(Real2), "grid1");
    CudaArray grid2(context, original.size(), sizeof(Real2), "grid2");
    grid1.upload(original);
    CudaFFT3D fft(context, xsize, ysize, zsize, realToComplex);

    // Perform a forward FFT, then verify the result is correct.

    fft.execFFT(grid1, grid2, true);
    vector<Real2> result;
    grid2.download(result);
    fftpack_t plan;
    fftpack_init_3d(&plan, xsize, ysize, zsize);
    fftpack_exec_3d(plan, FFTPACK_FORWARD, &reference[0], &reference[0]);
    int outputZSize = (realToComplex ? zsize/2+1 : zsize);
    for (int x = 0; x < xsize; x++)
        for (int y = 0; y < ysize; y++)
            for (int z = 0; z < outputZSize; z++) {
                int index1 = x*ysize*zsize + y*zsize + z;
                int index2 = x*ysize*outputZSize + y*outputZSize + z;
                ASSERT_EQUAL_TOL(reference[index1].re, result[index2].x, 1e-3);
                ASSERT_EQUAL_TOL(reference[index1].im, result[index2].y, 1e-3);
            }
    fftpack_destroy(plan);

    // Perform a backward transform and see if we get the original values.

    fft.execFFT(grid2, grid1, false);
    grid1.download(result);
    double scale = 1.0/(xsize*ysize*zsize);
    int valuesToCheck = (realToComplex ? original.size()/2 : original.size());
    for (int i = 0; i < valuesToCheck; ++i) {
        ASSERT_EQUAL_TOL(original[i].x, scale*result[i].x, 1e-4);
        ASSERT_EQUAL_TOL(original[i].y, scale*result[i].y, 1e-4);
    }
}
Beispiel #3
0
void verifySorting(vector<float> array) {
    // Sort the array.

    System system;
    system.addParticle(0.0);
    CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false",
            platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()));
    CudaContext& context = *platformData.contexts[0];
    context.initialize();
    CudaArray data(context, array.size(), 4, "sortData");
    data.upload(array);
    CudaSort sort(context, new SortTrait(), array.size());
    sort.sort(data);
    vector<float> sorted;
    data.download(sorted);

    // Verify that it is in sorted order.

    for (int i = 1; i < (int) sorted.size(); i++)
        ASSERT(sorted[i-1] <= sorted[i]);

    // Make sure the sorted array contains the same values as the original one.

    multiset<float> elements1(array.begin(), array.end());
    multiset<float> elements2(sorted.begin(), sorted.end());
    ASSERT(elements1 == elements2);
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testCoulomb();
        testLJ();
        testExclusionsAnd14();
        testCutoff();
        testCutoff14();
        testPeriodic();
        testLargeSystem();
        //testBlockInteractions(false);
        //testBlockInteractions(true);
        testDispersionCorrection();
        testChangingParameters();
        testParallelComputation(NonbondedForce::NoCutoff);
        testParallelComputation(NonbondedForce::Ewald);
        testParallelComputation(NonbondedForce::PME);
        testSwitchingFunction(NonbondedForce::CutoffNonPeriodic);
        testSwitchingFunction(NonbondedForce::PME);
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testSingleBond();
        testConstraints();
        testVelocityConstraints();
        testConstrainedMasslessParticles();
        testWithThermostat();
        testMonteCarlo();
        testSum();
        testParameter();
        testRandomDistributions();
        testPerDofVariables();
        testForceGroups();
        testRespa();
        testMergedRandoms();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
void testParallelComputation() {
    System system;
    const int numParticles = 200;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    CustomCompoundBondForce* force = new CustomCompoundBondForce(2, ("(distance(p1,p2)-1.1)^2"));
    vector<int> particles(2);
    vector<double> params;
    for (int i = 1; i < numParticles; i++) {
        particles[0] = i-1;
        particles[1] = i;
        force->addBond(particles, params);
    }
    system.addForce(force);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numParticles; i++)
        positions[i] = Vec3(i, 0, 0);
    VerletIntegrator integrator1(0.01);
    Context context1(system, integrator1, platform);
    context1.setPositions(positions);
    State state1 = context1.getState(State::Forces | State::Energy);
    VerletIntegrator integrator2(0.01);
    string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex());
    map<string, string> props;
    props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex;
    Context context2(system, integrator2, platform, props);
    context2.setPositions(positions);
    State state2 = context2.getState(State::Forces | State::Energy);
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
}
void testParallelComputation() {
    System system;
    const int numParticles = 200;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    HarmonicAngleForce* force = new HarmonicAngleForce();
    for (int i = 2; i < numParticles; i++)
        force->addAngle(i-2, i-1, i, 1.1, i);
    system.addForce(force);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numParticles; i++)
        positions[i] = Vec3(i, i%2, 0);
    VerletIntegrator integrator1(0.01);
    Context context1(system, integrator1, platform);
    context1.setPositions(positions);
    State state1 = context1.getState(State::Forces | State::Energy);
    VerletIntegrator integrator2(0.01);
    string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex());
    map<string, string> props;
    props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex;
    Context context2(system, integrator2, platform, props);
    context2.setPositions(positions);
    State state2 = context2.getState(State::Forces | State::Energy);
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testSimpleExpression();
        testParameters();
        testManyParameters();
        testExclusions();
        testCutoff();
        testPeriodic();
        testTriclinic();
        testContinuous1DFunction();
        testContinuous2DFunction();
        testContinuous3DFunction();
        testDiscrete1DFunction();
        testDiscrete2DFunction();
        testDiscrete3DFunction();
        testCoulombLennardJones();
        testParallelComputation();
        testSwitchingFunction();
        testLongRangeCorrection();
        testInteractionGroups();
        testLargeInteractionGroup();
        testInteractionGroupLongRangeCorrection();
        testMultipleCutoffs();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
void testParallelComputation() {
    System system;
    const int numParticles = 200;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    CustomExternalForce* force = new CustomExternalForce("x^2+y^2+z^2");
    vector<double> params;
    for (int i = 0; i < numParticles; i++)
        force->addParticle(i, params);
    system.addForce(force);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numParticles; i++)
        positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt));
    VerletIntegrator integrator1(0.01);
    Context context1(system, integrator1, platform);
    context1.setPositions(positions);
    State state1 = context1.getState(State::Forces | State::Energy);
    VerletIntegrator integrator2(0.01);
    string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex());
    map<string, string> props;
    props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex;
    Context context2(system, integrator2, platform, props);
    context2.setPositions(positions);
    State state2 = context2.getState(State::Forces | State::Energy);
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
}
void testParallelComputation(NonbondedForce::NonbondedMethod method) {
    System system;
    const int numParticles = 200;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    NonbondedForce* force = new NonbondedForce();
    for (int i = 0; i < numParticles; i++)
        force->addParticle(i%2-0.5, 0.5, 1.0);
    force->setNonbondedMethod(method);
    system.addForce(force);
    system.setDefaultPeriodicBoxVectors(Vec3(5,0,0), Vec3(0,5,0), Vec3(0,0,5));
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numParticles; i++)
        positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt));
    for (int i = 0; i < numParticles; ++i)
        for (int j = 0; j < i; ++j) {
            Vec3 delta = positions[i]-positions[j];
            if (delta.dot(delta) < 0.1)
                force->addException(i, j, 0, 1, 0);
        }
    
    // Create two contexts, one with a single device and one with two devices.
    
    VerletIntegrator integrator1(0.01);
    Context context1(system, integrator1, platform);
    context1.setPositions(positions);
    State state1 = context1.getState(State::Forces | State::Energy);
    VerletIntegrator integrator2(0.01);
    string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex());
    map<string, string> props;
    props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex;
    Context context2(system, integrator2, platform, props);
    context2.setPositions(positions);
    State state2 = context2.getState(State::Forces | State::Energy);
    
    // See if they agree.
    
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
    
    // Modify some particle parameters and see if they still agree.

    for (int i = 0; i < numParticles; i += 5) {
        double charge, sigma, epsilon;
        force->getParticleParameters(i, charge, sigma, epsilon);
        force->setParticleParameters(i, 0.9*charge, sigma, epsilon);
    }
    force->updateParametersInContext(context1);
    force->updateParametersInContext(context2);
    state1 = context1.getState(State::Forces | State::Energy);
    state2 = context2.getState(State::Forces | State::Energy);
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testCMAPTorsions();
        testChangingParameters();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testAngles();
        testParallelComputation();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testHarmonicBond();
        testComplexFunction();
        testCustomWeights();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
Beispiel #14
0
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testUniformValues();
        testLogValues();
        testShortList();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testSingleBond();
        testConstraints();
        testConstrainedClusters();
        testArgonBox();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testMasslessParticle();
        testTwoParticleAverage();
        testThreeParticleAverage();
        testOutOfPlane();
        testConservationLaws();
        testReordering();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}
void testParallelComputation() {
    System system;
    const int numParticles = 200;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    CustomNonbondedForce* force = new CustomNonbondedForce("4*eps*((sigma/r)^12-(sigma/r)^6); sigma=0.5; eps=1");
    vector<double> params;
    for (int i = 0; i < numParticles; i++)
        force->addParticle(params);
    system.addForce(force);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numParticles; i++)
        positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt));
    for (int i = 0; i < numParticles; ++i)
        for (int j = 0; j < i; ++j) {
            Vec3 delta = positions[i]-positions[j];
            if (delta.dot(delta) < 0.1)
                force->addExclusion(i, j);
        }
    VerletIntegrator integrator1(0.01);
    Context context1(system, integrator1, platform);
    context1.setPositions(positions);
    State state1 = context1.getState(State::Forces | State::Energy);
    VerletIntegrator integrator2(0.01);
    string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex());
    map<string, string> props;
    props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex;
    Context context2(system, integrator2, platform, props);
    context2.setPositions(positions);
    State state2 = context2.getState(State::Forces | State::Energy);
    ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5);
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        testNoCutoff();
        testCutoff();
        testPeriodic();
        testExclusions();
        testAllTerms();
        testParameters();
        testTabulatedFunctions();
        testTypeFilters();
        testLargeSystem();
        testCentralParticleModeNoCutoff();
        testCentralParticleModeCutoff();
        testCentralParticleModeLargeSystem();
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}