int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); if (platform.getPropertyDefaultValue("CudaPrecision") == "double") { testTransform<double2>(false, 28, 25, 30); testTransform<double2>(true, 28, 25, 25); testTransform<double2>(true, 25, 28, 25); testTransform<double2>(true, 25, 25, 28); testTransform<double2>(true, 21, 25, 27); } else { testTransform<float2>(false, 28, 25, 30); testTransform<float2>(true, 28, 25, 25); testTransform<float2>(true, 25, 28, 25); testTransform<float2>(true, 25, 25, 28); testTransform<float2>(true, 21, 25, 27); } } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
void testTransform(bool realToComplex, int xsize, int ysize, int zsize) { System system; system.addParticle(0.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()), platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler())); CudaContext& context = *platformData.contexts[0]; context.initialize(); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector<Real2> original(xsize*ysize*zsize); vector<t_complex> reference(original.size()); for (int i = 0; i < (int) original.size(); i++) { Real2 value; value.x = (float) genrand_real2(sfmt); value.y = (float) genrand_real2(sfmt); original[i] = value; reference[i] = t_complex(value.x, value.y); } for (int i = 0; i < (int) reference.size(); i++) { if (realToComplex) reference[i] = t_complex(i%2 == 0 ? original[i/2].x : original[i/2].y, 0); else reference[i] = t_complex(original[i].x, original[i].y); } CudaArray grid1(context, original.size(), sizeof(Real2), "grid1"); CudaArray grid2(context, original.size(), sizeof(Real2), "grid2"); grid1.upload(original); CudaFFT3D fft(context, xsize, ysize, zsize, realToComplex); // Perform a forward FFT, then verify the result is correct. fft.execFFT(grid1, grid2, true); vector<Real2> result; grid2.download(result); fftpack_t plan; fftpack_init_3d(&plan, xsize, ysize, zsize); fftpack_exec_3d(plan, FFTPACK_FORWARD, &reference[0], &reference[0]); int outputZSize = (realToComplex ? zsize/2+1 : zsize); for (int x = 0; x < xsize; x++) for (int y = 0; y < ysize; y++) for (int z = 0; z < outputZSize; z++) { int index1 = x*ysize*zsize + y*zsize + z; int index2 = x*ysize*outputZSize + y*outputZSize + z; ASSERT_EQUAL_TOL(reference[index1].re, result[index2].x, 1e-3); ASSERT_EQUAL_TOL(reference[index1].im, result[index2].y, 1e-3); } fftpack_destroy(plan); // Perform a backward transform and see if we get the original values. fft.execFFT(grid2, grid1, false); grid1.download(result); double scale = 1.0/(xsize*ysize*zsize); int valuesToCheck = (realToComplex ? original.size()/2 : original.size()); for (int i = 0; i < valuesToCheck; ++i) { ASSERT_EQUAL_TOL(original[i].x, scale*result[i].x, 1e-4); ASSERT_EQUAL_TOL(original[i].y, scale*result[i].y, 1e-4); } }
void verifySorting(vector<float> array) { // Sort the array. System system; system.addParticle(0.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory())); CudaContext& context = *platformData.contexts[0]; context.initialize(); CudaArray data(context, array.size(), 4, "sortData"); data.upload(array); CudaSort sort(context, new SortTrait(), array.size()); sort.sort(data); vector<float> sorted; data.download(sorted); // Verify that it is in sorted order. for (int i = 1; i < (int) sorted.size(); i++) ASSERT(sorted[i-1] <= sorted[i]); // Make sure the sorted array contains the same values as the original one. multiset<float> elements1(array.begin(), array.end()); multiset<float> elements2(sorted.begin(), sorted.end()); ASSERT(elements1 == elements2); }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testCoulomb(); testLJ(); testExclusionsAnd14(); testCutoff(); testCutoff14(); testPeriodic(); testLargeSystem(); //testBlockInteractions(false); //testBlockInteractions(true); testDispersionCorrection(); testChangingParameters(); testParallelComputation(NonbondedForce::NoCutoff); testParallelComputation(NonbondedForce::Ewald); testParallelComputation(NonbondedForce::PME); testSwitchingFunction(NonbondedForce::CutoffNonPeriodic); testSwitchingFunction(NonbondedForce::PME); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testSingleBond(); testConstraints(); testVelocityConstraints(); testConstrainedMasslessParticles(); testWithThermostat(); testMonteCarlo(); testSum(); testParameter(); testRandomDistributions(); testPerDofVariables(); testForceGroups(); testRespa(); testMergedRandoms(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
void testParallelComputation() { System system; const int numParticles = 200; for (int i = 0; i < numParticles; i++) system.addParticle(1.0); CustomCompoundBondForce* force = new CustomCompoundBondForce(2, ("(distance(p1,p2)-1.1)^2")); vector<int> particles(2); vector<double> params; for (int i = 1; i < numParticles; i++) { particles[0] = i-1; particles[1] = i; force->addBond(particles, params); } system.addForce(force); vector<Vec3> positions(numParticles); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(i, 0, 0); VerletIntegrator integrator1(0.01); Context context1(system, integrator1, platform); context1.setPositions(positions); State state1 = context1.getState(State::Forces | State::Energy); VerletIntegrator integrator2(0.01); string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex()); map<string, string> props; props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex; Context context2(system, integrator2, platform, props); context2.setPositions(positions); State state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); }
void testParallelComputation() { System system; const int numParticles = 200; for (int i = 0; i < numParticles; i++) system.addParticle(1.0); HarmonicAngleForce* force = new HarmonicAngleForce(); for (int i = 2; i < numParticles; i++) force->addAngle(i-2, i-1, i, 1.1, i); system.addForce(force); vector<Vec3> positions(numParticles); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(i, i%2, 0); VerletIntegrator integrator1(0.01); Context context1(system, integrator1, platform); context1.setPositions(positions); State state1 = context1.getState(State::Forces | State::Energy); VerletIntegrator integrator2(0.01); string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex()); map<string, string> props; props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex; Context context2(system, integrator2, platform, props); context2.setPositions(positions); State state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testSimpleExpression(); testParameters(); testManyParameters(); testExclusions(); testCutoff(); testPeriodic(); testTriclinic(); testContinuous1DFunction(); testContinuous2DFunction(); testContinuous3DFunction(); testDiscrete1DFunction(); testDiscrete2DFunction(); testDiscrete3DFunction(); testCoulombLennardJones(); testParallelComputation(); testSwitchingFunction(); testLongRangeCorrection(); testInteractionGroups(); testLargeInteractionGroup(); testInteractionGroupLongRangeCorrection(); testMultipleCutoffs(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
void testParallelComputation() { System system; const int numParticles = 200; for (int i = 0; i < numParticles; i++) system.addParticle(1.0); CustomExternalForce* force = new CustomExternalForce("x^2+y^2+z^2"); vector<double> params; for (int i = 0; i < numParticles; i++) force->addParticle(i, params); system.addForce(force); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector<Vec3> positions(numParticles); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt)); VerletIntegrator integrator1(0.01); Context context1(system, integrator1, platform); context1.setPositions(positions); State state1 = context1.getState(State::Forces | State::Energy); VerletIntegrator integrator2(0.01); string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex()); map<string, string> props; props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex; Context context2(system, integrator2, platform, props); context2.setPositions(positions); State state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); }
void testParallelComputation(NonbondedForce::NonbondedMethod method) { System system; const int numParticles = 200; for (int i = 0; i < numParticles; i++) system.addParticle(1.0); NonbondedForce* force = new NonbondedForce(); for (int i = 0; i < numParticles; i++) force->addParticle(i%2-0.5, 0.5, 1.0); force->setNonbondedMethod(method); system.addForce(force); system.setDefaultPeriodicBoxVectors(Vec3(5,0,0), Vec3(0,5,0), Vec3(0,0,5)); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector<Vec3> positions(numParticles); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt)); for (int i = 0; i < numParticles; ++i) for (int j = 0; j < i; ++j) { Vec3 delta = positions[i]-positions[j]; if (delta.dot(delta) < 0.1) force->addException(i, j, 0, 1, 0); } // Create two contexts, one with a single device and one with two devices. VerletIntegrator integrator1(0.01); Context context1(system, integrator1, platform); context1.setPositions(positions); State state1 = context1.getState(State::Forces | State::Energy); VerletIntegrator integrator2(0.01); string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex()); map<string, string> props; props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex; Context context2(system, integrator2, platform, props); context2.setPositions(positions); State state2 = context2.getState(State::Forces | State::Energy); // See if they agree. ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); // Modify some particle parameters and see if they still agree. for (int i = 0; i < numParticles; i += 5) { double charge, sigma, epsilon; force->getParticleParameters(i, charge, sigma, epsilon); force->setParticleParameters(i, 0.9*charge, sigma, epsilon); } force->updateParametersInContext(context1); force->updateParametersInContext(context2); state1 = context1.getState(State::Forces | State::Energy); state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testCMAPTorsions(); testChangingParameters(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testAngles(); testParallelComputation(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testHarmonicBond(); testComplexFunction(); testCustomWeights(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testUniformValues(); testLogValues(); testShortList(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testSingleBond(); testConstraints(); testConstrainedClusters(); testArgonBox(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testMasslessParticle(); testTwoParticleAverage(); testThreeParticleAverage(); testOutOfPlane(); testConservationLaws(); testReordering(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }
void testParallelComputation() { System system; const int numParticles = 200; for (int i = 0; i < numParticles; i++) system.addParticle(1.0); CustomNonbondedForce* force = new CustomNonbondedForce("4*eps*((sigma/r)^12-(sigma/r)^6); sigma=0.5; eps=1"); vector<double> params; for (int i = 0; i < numParticles; i++) force->addParticle(params); system.addForce(force); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector<Vec3> positions(numParticles); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(5*genrand_real2(sfmt), 5*genrand_real2(sfmt), 5*genrand_real2(sfmt)); for (int i = 0; i < numParticles; ++i) for (int j = 0; j < i; ++j) { Vec3 delta = positions[i]-positions[j]; if (delta.dot(delta) < 0.1) force->addExclusion(i, j); } VerletIntegrator integrator1(0.01); Context context1(system, integrator1, platform); context1.setPositions(positions); State state1 = context1.getState(State::Forces | State::Energy); VerletIntegrator integrator2(0.01); string deviceIndex = platform.getPropertyValue(context1, CudaPlatform::CudaDeviceIndex()); map<string, string> props; props[CudaPlatform::CudaDeviceIndex()] = deviceIndex+","+deviceIndex; Context context2(system, integrator2, platform, props); context2.setPositions(positions); State state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-5); }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testNoCutoff(); testCutoff(); testPeriodic(); testExclusions(); testAllTerms(); testParameters(); testTabulatedFunctions(); testTypeFilters(); testLargeSystem(); testCentralParticleModeNoCutoff(); testCentralParticleModeCutoff(); testCentralParticleModeLargeSystem(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }