void testTransform(bool realToComplex, int xsize, int ysize, int zsize) {
    System system;
    system.addParticle(0.0);
    CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false",
            platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()),
            platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler()));
    CudaContext& context = *platformData.contexts[0];
    context.initialize();
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Real2> original(xsize*ysize*zsize);
    vector<t_complex> reference(original.size());
    for (int i = 0; i < (int) original.size(); i++) {
        Real2 value;
        value.x = (float) genrand_real2(sfmt);
        value.y = (float) genrand_real2(sfmt);
        original[i] = value;
        reference[i] = t_complex(value.x, value.y);
    }
    for (int i = 0; i < (int) reference.size(); i++) {
        if (realToComplex)
            reference[i] = t_complex(i%2 == 0 ? original[i/2].x : original[i/2].y, 0);
        else
            reference[i] = t_complex(original[i].x, original[i].y);
    }
    CudaArray grid1(context, original.size(), sizeof(Real2), "grid1");
    CudaArray grid2(context, original.size(), sizeof(Real2), "grid2");
    grid1.upload(original);
    CudaFFT3D fft(context, xsize, ysize, zsize, realToComplex);

    // Perform a forward FFT, then verify the result is correct.

    fft.execFFT(grid1, grid2, true);
    vector<Real2> result;
    grid2.download(result);
    fftpack_t plan;
    fftpack_init_3d(&plan, xsize, ysize, zsize);
    fftpack_exec_3d(plan, FFTPACK_FORWARD, &reference[0], &reference[0]);
    int outputZSize = (realToComplex ? zsize/2+1 : zsize);
    for (int x = 0; x < xsize; x++)
        for (int y = 0; y < ysize; y++)
            for (int z = 0; z < outputZSize; z++) {
                int index1 = x*ysize*zsize + y*zsize + z;
                int index2 = x*ysize*outputZSize + y*outputZSize + z;
                ASSERT_EQUAL_TOL(reference[index1].re, result[index2].x, 1e-3);
                ASSERT_EQUAL_TOL(reference[index1].im, result[index2].y, 1e-3);
            }
    fftpack_destroy(plan);

    // Perform a backward transform and see if we get the original values.

    fft.execFFT(grid2, grid1, false);
    grid1.download(result);
    double scale = 1.0/(xsize*ysize*zsize);
    int valuesToCheck = (realToComplex ? original.size()/2 : original.size());
    for (int i = 0; i < valuesToCheck; ++i) {
        ASSERT_EQUAL_TOL(original[i].x, scale*result[i].x, 1e-4);
        ASSERT_EQUAL_TOL(original[i].y, scale*result[i].y, 1e-4);
    }
}
示例#2
0
void verifySorting(vector<float> array) {
    // Sort the array.

    System system;
    system.addParticle(0.0);
    CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false",
            platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()));
    CudaContext& context = *platformData.contexts[0];
    context.initialize();
    CudaArray data(context, array.size(), 4, "sortData");
    data.upload(array);
    CudaSort sort(context, new SortTrait(), array.size());
    sort.sort(data);
    vector<float> sorted;
    data.download(sorted);

    // Verify that it is in sorted order.

    for (int i = 1; i < (int) sorted.size(); i++)
        ASSERT(sorted[i-1] <= sorted[i]);

    // Make sure the sorted array contains the same values as the original one.

    multiset<float> elements1(array.begin(), array.end());
    multiset<float> elements2(sorted.begin(), sorted.end());
    ASSERT(elements1 == elements2);
}
int main(int argc, char* argv[]) {
    try {
        if (argc > 1)
            platform.setPropertyDefaultValue("CudaPrecision", string(argv[1]));
        if (platform.getPropertyDefaultValue("CudaPrecision") == "double") {
            testTransform<double2>(false, 28, 25, 30);
            testTransform<double2>(true, 28, 25, 25);
            testTransform<double2>(true, 25, 28, 25);
            testTransform<double2>(true, 25, 25, 28);
            testTransform<double2>(true, 21, 25, 27);
        }
        else {
            testTransform<float2>(false, 28, 25, 30);
            testTransform<float2>(true, 28, 25, 25);
            testTransform<float2>(true, 25, 28, 25);
            testTransform<float2>(true, 25, 25, 28);
            testTransform<float2>(true, 21, 25, 27);
        }
    }
    catch(const exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
    return 0;
}