void testTransform(bool realToComplex, int xsize, int ysize, int zsize) { System system; system.addParticle(0.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()), platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler())); CudaContext& context = *platformData.contexts[0]; context.initialize(); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector<Real2> original(xsize*ysize*zsize); vector<t_complex> reference(original.size()); for (int i = 0; i < (int) original.size(); i++) { Real2 value; value.x = (float) genrand_real2(sfmt); value.y = (float) genrand_real2(sfmt); original[i] = value; reference[i] = t_complex(value.x, value.y); } for (int i = 0; i < (int) reference.size(); i++) { if (realToComplex) reference[i] = t_complex(i%2 == 0 ? original[i/2].x : original[i/2].y, 0); else reference[i] = t_complex(original[i].x, original[i].y); } CudaArray grid1(context, original.size(), sizeof(Real2), "grid1"); CudaArray grid2(context, original.size(), sizeof(Real2), "grid2"); grid1.upload(original); CudaFFT3D fft(context, xsize, ysize, zsize, realToComplex); // Perform a forward FFT, then verify the result is correct. fft.execFFT(grid1, grid2, true); vector<Real2> result; grid2.download(result); fftpack_t plan; fftpack_init_3d(&plan, xsize, ysize, zsize); fftpack_exec_3d(plan, FFTPACK_FORWARD, &reference[0], &reference[0]); int outputZSize = (realToComplex ? zsize/2+1 : zsize); for (int x = 0; x < xsize; x++) for (int y = 0; y < ysize; y++) for (int z = 0; z < outputZSize; z++) { int index1 = x*ysize*zsize + y*zsize + z; int index2 = x*ysize*outputZSize + y*outputZSize + z; ASSERT_EQUAL_TOL(reference[index1].re, result[index2].x, 1e-3); ASSERT_EQUAL_TOL(reference[index1].im, result[index2].y, 1e-3); } fftpack_destroy(plan); // Perform a backward transform and see if we get the original values. fft.execFFT(grid2, grid1, false); grid1.download(result); double scale = 1.0/(xsize*ysize*zsize); int valuesToCheck = (realToComplex ? original.size()/2 : original.size()); for (int i = 0; i < valuesToCheck; ++i) { ASSERT_EQUAL_TOL(original[i].x, scale*result[i].x, 1e-4); ASSERT_EQUAL_TOL(original[i].y, scale*result[i].y, 1e-4); } }
void verifySorting(vector<float> array) { // Sort the array. System system; system.addParticle(0.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory())); CudaContext& context = *platformData.contexts[0]; context.initialize(); CudaArray data(context, array.size(), 4, "sortData"); data.upload(array); CudaSort sort(context, new SortTrait(), array.size()); sort.sort(data); vector<float> sorted; data.download(sorted); // Verify that it is in sorted order. for (int i = 1; i < (int) sorted.size(); i++) ASSERT(sorted[i-1] <= sorted[i]); // Make sure the sorted array contains the same values as the original one. multiset<float> elements1(array.begin(), array.end()); multiset<float> elements2(sorted.begin(), sorted.end()); ASSERT(elements1 == elements2); }
int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); if (platform.getPropertyDefaultValue("CudaPrecision") == "double") { testTransform<double2>(false, 28, 25, 30); testTransform<double2>(true, 28, 25, 25); testTransform<double2>(true, 25, 28, 25); testTransform<double2>(true, 25, 25, 28); testTransform<double2>(true, 21, 25, 27); } else { testTransform<float2>(false, 28, 25, 30); testTransform<float2>(true, 28, 25, 25); testTransform<float2>(true, 25, 28, 25); testTransform<float2>(true, 25, 25, 28); testTransform<float2>(true, 21, 25, 27); } } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }