Beispiel #1
0
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output,
         int k, double radius)
{
  // Convert data to PointCloud<T>
  PointCloud<PointNormal>::Ptr xyznormals (new PointCloud<PointNormal>);
  fromROSMsg (*input, *xyznormals);

  // Estimate
  TicToc tt;
  tt.tic ();
  
  print_highlight (stderr, "Computing ");

  FPFHEstimation<PointNormal, PointNormal, FPFHSignature33> ne;
  ne.setInputCloud (xyznormals);
  ne.setInputNormals (xyznormals);
  ne.setSearchMethod (search::KdTree<PointNormal>::Ptr (new search::KdTree<PointNormal>));
  ne.setKSearch (k);
  ne.setRadiusSearch (radius);
  
  PointCloud<FPFHSignature33> fpfhs;
  ne.compute (fpfhs);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", fpfhs.width * fpfhs.height); print_info (" points]\n");

  // Convert data back
  sensor_msgs::PointCloud2 output_fpfhs;
  toROSMsg (fpfhs, output_fpfhs);
  concatenateFields (*input, output_fpfhs, output);
}
/*! @brief runs the whole processing pipeline for FPFH features
 *
 * @note At the moment the evaluation results will be printed to console.
 *
 * @param[in] in the labeled input point cloud
 * @param[out] ref_out the reference point cloud after the preprocessing steps
 * @param[out] fpfh_out the labeled point cloud after the classifing process
 */
void processFPFH(const PointCloud<PointXYZRGB>::Ptr in,
                 PointCloud<PointXYZRGB>::Ptr ref_out,
                 PointCloud<PointXYZRGB>::Ptr fpfh_out)
{
  PointCloud<Normal>::Ptr n(new PointCloud<Normal>());
  PointCloud<FPFHSignature33>::Ptr fpfh(new PointCloud<FPFHSignature33>());

  // Passthrough filtering (needs to be done to remove NaNs)
  cout << "FPFH: Pass (with " << in->points.size() << " points)" << endl;
  PassThrough<PointXYZRGB> pass;
  pass.setInputCloud(in);
  pass.setFilterFieldName("z");
  pass.setFilterLimits(0.0f, pass_depth_);
  pass.filter(*ref_out);

  // Optional voxelgrid filtering
  if (fpfh_vox_enable_)
  {
    cout << "FPFH: Voxel (with " << ref_out->points.size() << " points)" << endl;
    VoxelGrid<PointXYZRGB> vox;
    vox.setInputCloud(ref_out);
    vox.setLeafSize(fpfh_vox_, fpfh_vox_, fpfh_vox_);
    vox.filter(*ref_out);
  }

  #ifdef PCL_VERSION_COMPARE //fuerte
    pcl::search::KdTree<PointXYZRGB>::Ptr tree (new pcl::search::KdTree<PointXYZRGB>());
  #else //electric
    pcl::KdTreeFLANN<PointXYZRGB>::Ptr tree (new pcl::KdTreeFLANN<PointXYZRGB> ());
  #endif
  //KdTree<PointXYZRGB>::Ptr tree(new KdTreeFLANN<PointXYZRGB>());
  tree->setInputCloud(ref_out);

  // Optional surface smoothing
  if(fpfh_mls_enable_)
  {
    cout << "FPFH: MLS (with " << ref_out->points.size() << " points)" << endl;

    #ifdef PCL_VERSION_COMPARE
      std::cerr << "MLS has changed completely in PCL 1.7! Requires redesign of entire program" << std::endl;
      exit(0);
    #else
      MovingLeastSquares<PointXYZRGB, Normal> mls;
      mls.setInputCloud(ref_out);
      mls.setOutputNormals(n);
      mls.setPolynomialFit(true);
      mls.setPolynomialOrder(2);
      mls.setSearchMethod(tree);
      mls.setSearchRadius(fpfh_rn_);
      mls.reconstruct(*ref_out);
    #endif
    cout << "FPFH: flip normals (with " << ref_out->points.size() << " points)" << endl;
    for (size_t i = 0; i < ref_out->points.size(); ++i)
    {
      flipNormalTowardsViewpoint(ref_out->points[i], 0.0f, 0.0f, 0.0f,
                                 n->points[i].normal[0],
                                 n->points[i].normal[1],
                                 n->points[i].normal[2]);
    }
  }
  else
  {
    cout << "FPFH: Normals (with " << ref_out->points.size() << " points)" << endl;
    NormalEstimation<PointXYZRGB, Normal> norm;
    norm.setInputCloud(ref_out);
    norm.setSearchMethod(tree);
    norm.setRadiusSearch(fpfh_rn_);
    norm.compute(*n);
  }

  // FPFH estimation
  #ifdef PCL_VERSION_COMPARE //fuerte
    tree.reset(new pcl::search::KdTree<PointXYZRGB>());
  #else //electric
    tree.reset(new KdTreeFLANN<PointXYZRGB> ());
  #endif
  tree->setInputCloud(ref_out);
  cout << "FPFH: estimation (with " << ref_out->points.size() << " points)" << endl;
  FPFHEstimation<PointXYZRGB, Normal, FPFHSignature33> fpfhE;
  fpfhE.setInputCloud(ref_out);
  fpfhE.setInputNormals(n);
  fpfhE.setSearchMethod(tree);
  fpfhE.setRadiusSearch(fpfh_rf_);
  fpfhE.compute(*fpfh);

  cout << "FPFH: classification " << endl;
  *fpfh_out = *ref_out;

  CvSVM svm;
  svm.load(fpfh_svm_model_.c_str());
  cv::Mat fpfh_histo(1, 33, CV_32FC1);

  int exp_rgb, pre_rgb, predict;
  cob_3d_mapping_common::LabelResults stats(fl2label(fpfh_rn_),fl2label(fpfh_rf_),fpfh_mls_enable_);
  for (size_t idx = 0; idx < ref_out->points.size(); idx++)
  {
    exp_rgb = *reinterpret_cast<int*>(&ref_out->points[idx].rgb); // expected label
    memcpy(fpfh_histo.ptr<float>(0), fpfh->points[idx].histogram, sizeof(fpfh->points[idx].histogram));
    predict = (int)svm.predict(fpfh_histo);
    //cout << predict << endl;
    switch(predict)
    {
    case SVM_PLANE:
      pre_rgb = LBL_PLANE;
      if (exp_rgb != LBL_PLANE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_PLANE]++;
      break;
    case SVM_EDGE:
      pre_rgb = LBL_EDGE;
      if (exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGE]++;
      if (exp_rgb != LBL_COR && exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGECORNER]++;
      break;
    case SVM_COR:
      pre_rgb = LBL_COR;
      if (exp_rgb != LBL_COR && exp_rgb != LBL_UNDEF) stats.fp[EVAL_COR]++;
      if (exp_rgb != LBL_COR && exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGECORNER]++;
      break;
    case SVM_SPH:
      pre_rgb = LBL_SPH;
      if (exp_rgb != LBL_SPH && exp_rgb != LBL_UNDEF) stats.fp[EVAL_SPH]++;
      if (exp_rgb != LBL_SPH && exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CURVED]++;
      break;
    case SVM_CYL:
      pre_rgb = LBL_CYL;
      if (exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CYL]++;
      if (exp_rgb != LBL_SPH && exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CURVED]++;
      break;
    default:
      pre_rgb = LBL_UNDEF;
      break;
    }

    switch(exp_rgb)
    {
    case LBL_PLANE:
      if (pre_rgb != exp_rgb) stats.fn[EVAL_PLANE]++;
      stats.exp[EVAL_PLANE]++;
      break;
    case LBL_EDGE:
      if (pre_rgb != exp_rgb)
      {
	stats.fn[EVAL_EDGE]++;
	if (pre_rgb != LBL_COR) stats.fn[EVAL_EDGECORNER]++;
      }
      stats.exp[EVAL_EDGE]++;
      stats.exp[EVAL_EDGECORNER]++;
      break;
    case LBL_COR:
      if (pre_rgb != exp_rgb)
      {
	stats.fn[EVAL_COR]++;
	if (pre_rgb != LBL_EDGE) stats.fn[EVAL_EDGECORNER]++;
      }
      stats.exp[EVAL_COR]++;
      stats.exp[EVAL_EDGECORNER]++;
      break;
    case LBL_SPH:
      if (pre_rgb != exp_rgb)
      {
	stats.fn[EVAL_SPH]++;
	if (pre_rgb != LBL_CYL) stats.fn[EVAL_CURVED]++;
      }
      stats.exp[EVAL_SPH]++;
      stats.exp[EVAL_CURVED]++;
      break;
    case LBL_CYL:
      if (pre_rgb != exp_rgb)
      {
	stats.fn[EVAL_CYL]++;
	if (pre_rgb != LBL_SPH) stats.fn[EVAL_CURVED]++;
      }
      stats.exp[EVAL_CYL]++;
      stats.exp[EVAL_CURVED]++;
      break;
    default:
      stats.undef++;
      break;
    }
    fpfh_out->points[idx].rgb = *reinterpret_cast<float*>(&pre_rgb);
  }
  cout << "FPFH:\n" << stats << endl << endl;
}