void compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output, int k, double radius) { // Convert data to PointCloud<T> PointCloud<PointNormal>::Ptr xyznormals (new PointCloud<PointNormal>); fromROSMsg (*input, *xyznormals); // Estimate TicToc tt; tt.tic (); print_highlight (stderr, "Computing "); FPFHEstimation<PointNormal, PointNormal, FPFHSignature33> ne; ne.setInputCloud (xyznormals); ne.setInputNormals (xyznormals); ne.setSearchMethod (search::KdTree<PointNormal>::Ptr (new search::KdTree<PointNormal>)); ne.setKSearch (k); ne.setRadiusSearch (radius); PointCloud<FPFHSignature33> fpfhs; ne.compute (fpfhs); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", fpfhs.width * fpfhs.height); print_info (" points]\n"); // Convert data back sensor_msgs::PointCloud2 output_fpfhs; toROSMsg (fpfhs, output_fpfhs); concatenateFields (*input, output_fpfhs, output); }
/*! @brief runs the whole processing pipeline for FPFH features * * @note At the moment the evaluation results will be printed to console. * * @param[in] in the labeled input point cloud * @param[out] ref_out the reference point cloud after the preprocessing steps * @param[out] fpfh_out the labeled point cloud after the classifing process */ void processFPFH(const PointCloud<PointXYZRGB>::Ptr in, PointCloud<PointXYZRGB>::Ptr ref_out, PointCloud<PointXYZRGB>::Ptr fpfh_out) { PointCloud<Normal>::Ptr n(new PointCloud<Normal>()); PointCloud<FPFHSignature33>::Ptr fpfh(new PointCloud<FPFHSignature33>()); // Passthrough filtering (needs to be done to remove NaNs) cout << "FPFH: Pass (with " << in->points.size() << " points)" << endl; PassThrough<PointXYZRGB> pass; pass.setInputCloud(in); pass.setFilterFieldName("z"); pass.setFilterLimits(0.0f, pass_depth_); pass.filter(*ref_out); // Optional voxelgrid filtering if (fpfh_vox_enable_) { cout << "FPFH: Voxel (with " << ref_out->points.size() << " points)" << endl; VoxelGrid<PointXYZRGB> vox; vox.setInputCloud(ref_out); vox.setLeafSize(fpfh_vox_, fpfh_vox_, fpfh_vox_); vox.filter(*ref_out); } #ifdef PCL_VERSION_COMPARE //fuerte pcl::search::KdTree<PointXYZRGB>::Ptr tree (new pcl::search::KdTree<PointXYZRGB>()); #else //electric pcl::KdTreeFLANN<PointXYZRGB>::Ptr tree (new pcl::KdTreeFLANN<PointXYZRGB> ()); #endif //KdTree<PointXYZRGB>::Ptr tree(new KdTreeFLANN<PointXYZRGB>()); tree->setInputCloud(ref_out); // Optional surface smoothing if(fpfh_mls_enable_) { cout << "FPFH: MLS (with " << ref_out->points.size() << " points)" << endl; #ifdef PCL_VERSION_COMPARE std::cerr << "MLS has changed completely in PCL 1.7! Requires redesign of entire program" << std::endl; exit(0); #else MovingLeastSquares<PointXYZRGB, Normal> mls; mls.setInputCloud(ref_out); mls.setOutputNormals(n); mls.setPolynomialFit(true); mls.setPolynomialOrder(2); mls.setSearchMethod(tree); mls.setSearchRadius(fpfh_rn_); mls.reconstruct(*ref_out); #endif cout << "FPFH: flip normals (with " << ref_out->points.size() << " points)" << endl; for (size_t i = 0; i < ref_out->points.size(); ++i) { flipNormalTowardsViewpoint(ref_out->points[i], 0.0f, 0.0f, 0.0f, n->points[i].normal[0], n->points[i].normal[1], n->points[i].normal[2]); } } else { cout << "FPFH: Normals (with " << ref_out->points.size() << " points)" << endl; NormalEstimation<PointXYZRGB, Normal> norm; norm.setInputCloud(ref_out); norm.setSearchMethod(tree); norm.setRadiusSearch(fpfh_rn_); norm.compute(*n); } // FPFH estimation #ifdef PCL_VERSION_COMPARE //fuerte tree.reset(new pcl::search::KdTree<PointXYZRGB>()); #else //electric tree.reset(new KdTreeFLANN<PointXYZRGB> ()); #endif tree->setInputCloud(ref_out); cout << "FPFH: estimation (with " << ref_out->points.size() << " points)" << endl; FPFHEstimation<PointXYZRGB, Normal, FPFHSignature33> fpfhE; fpfhE.setInputCloud(ref_out); fpfhE.setInputNormals(n); fpfhE.setSearchMethod(tree); fpfhE.setRadiusSearch(fpfh_rf_); fpfhE.compute(*fpfh); cout << "FPFH: classification " << endl; *fpfh_out = *ref_out; CvSVM svm; svm.load(fpfh_svm_model_.c_str()); cv::Mat fpfh_histo(1, 33, CV_32FC1); int exp_rgb, pre_rgb, predict; cob_3d_mapping_common::LabelResults stats(fl2label(fpfh_rn_),fl2label(fpfh_rf_),fpfh_mls_enable_); for (size_t idx = 0; idx < ref_out->points.size(); idx++) { exp_rgb = *reinterpret_cast<int*>(&ref_out->points[idx].rgb); // expected label memcpy(fpfh_histo.ptr<float>(0), fpfh->points[idx].histogram, sizeof(fpfh->points[idx].histogram)); predict = (int)svm.predict(fpfh_histo); //cout << predict << endl; switch(predict) { case SVM_PLANE: pre_rgb = LBL_PLANE; if (exp_rgb != LBL_PLANE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_PLANE]++; break; case SVM_EDGE: pre_rgb = LBL_EDGE; if (exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGE]++; if (exp_rgb != LBL_COR && exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGECORNER]++; break; case SVM_COR: pre_rgb = LBL_COR; if (exp_rgb != LBL_COR && exp_rgb != LBL_UNDEF) stats.fp[EVAL_COR]++; if (exp_rgb != LBL_COR && exp_rgb != LBL_EDGE && exp_rgb != LBL_UNDEF) stats.fp[EVAL_EDGECORNER]++; break; case SVM_SPH: pre_rgb = LBL_SPH; if (exp_rgb != LBL_SPH && exp_rgb != LBL_UNDEF) stats.fp[EVAL_SPH]++; if (exp_rgb != LBL_SPH && exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CURVED]++; break; case SVM_CYL: pre_rgb = LBL_CYL; if (exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CYL]++; if (exp_rgb != LBL_SPH && exp_rgb != LBL_CYL && exp_rgb != LBL_UNDEF) stats.fp[EVAL_CURVED]++; break; default: pre_rgb = LBL_UNDEF; break; } switch(exp_rgb) { case LBL_PLANE: if (pre_rgb != exp_rgb) stats.fn[EVAL_PLANE]++; stats.exp[EVAL_PLANE]++; break; case LBL_EDGE: if (pre_rgb != exp_rgb) { stats.fn[EVAL_EDGE]++; if (pre_rgb != LBL_COR) stats.fn[EVAL_EDGECORNER]++; } stats.exp[EVAL_EDGE]++; stats.exp[EVAL_EDGECORNER]++; break; case LBL_COR: if (pre_rgb != exp_rgb) { stats.fn[EVAL_COR]++; if (pre_rgb != LBL_EDGE) stats.fn[EVAL_EDGECORNER]++; } stats.exp[EVAL_COR]++; stats.exp[EVAL_EDGECORNER]++; break; case LBL_SPH: if (pre_rgb != exp_rgb) { stats.fn[EVAL_SPH]++; if (pre_rgb != LBL_CYL) stats.fn[EVAL_CURVED]++; } stats.exp[EVAL_SPH]++; stats.exp[EVAL_CURVED]++; break; case LBL_CYL: if (pre_rgb != exp_rgb) { stats.fn[EVAL_CYL]++; if (pre_rgb != LBL_SPH) stats.fn[EVAL_CURVED]++; } stats.exp[EVAL_CYL]++; stats.exp[EVAL_CURVED]++; break; default: stats.undef++; break; } fpfh_out->points[idx].rgb = *reinterpret_cast<float*>(&pre_rgb); } cout << "FPFH:\n" << stats << endl << endl; }