// A utility function for cloning the apply instruction.
static FullApplySite CloneApply(FullApplySite AI, SILBuilder &Builder) {
  // Clone the Apply.
  Builder.setCurrentDebugScope(AI.getDebugScope());
  Builder.addOpenedArchetypeOperands(AI.getInstruction());
  auto Args = AI.getArguments();
  SmallVector<SILValue, 8> Ret(Args.size());
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    Ret[i] = Args[i];

  FullApplySite NAI;

  switch (AI.getInstruction()->getKind()) {
  case SILInstructionKind::ApplyInst:
    NAI = Builder.createApply(AI.getLoc(), AI.getCallee(),
                                   AI.getSubstitutions(),
                                   Ret,
                                   cast<ApplyInst>(AI)->isNonThrowing());
    break;
  case SILInstructionKind::TryApplyInst: {
    auto *TryApplyI = cast<TryApplyInst>(AI.getInstruction());
    NAI = Builder.createTryApply(AI.getLoc(), AI.getCallee(),
                                      AI.getSubstitutions(),
                                      Ret,
                                      TryApplyI->getNormalBB(),
                                      TryApplyI->getErrorBB());
    }
    break;
  default:
    llvm_unreachable("Trying to clone an unsupported apply instruction");
  }

  NAI.getInstruction();
  return NAI;
}
Beispiel #2
0
/// Attempt to devirtualize the given apply if possible, and return a
/// new instruction in that case, or nullptr otherwise.
DevirtualizationResult
swift::tryDevirtualizeApply(FullApplySite AI, ClassHierarchyAnalysis *CHA) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize: " << *AI.getInstruction());

  // Devirtualize apply instructions that call witness_method instructions:
  //
  //   %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
  //   %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
  //
  if (isa<WitnessMethodInst>(AI.getCallee()))
    return tryDevirtualizeWitnessMethod(AI);

  /// Optimize a class_method and alloc_ref pair into a direct function
  /// reference:
  ///
  /// \code
  /// %XX = alloc_ref $Foo
  /// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
  /// \endcode
  ///
  ///  or
  ///
  /// %XX = metatype $...
  /// %YY = class_method %XX : ...
  ///
  ///  into
  ///
  /// %YY = function_ref @...
  if (auto *CMI = dyn_cast<ClassMethodInst>(AI.getCallee())) {
    auto &M = AI.getModule();
    auto Instance = stripUpCasts(CMI->getOperand());
    auto ClassType = Instance->getType();
    if (ClassType.is<MetatypeType>())
      ClassType = ClassType.getMetatypeInstanceType(M);

    auto *CD = ClassType.getClassOrBoundGenericClass();

    if (isEffectivelyFinalMethod(AI, ClassType, CD, CHA))
      return tryDevirtualizeClassMethod(AI, Instance);

    // Try to check if the exact dynamic type of the instance is statically
    // known.
    if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(),
                                                        CMI->getModule(),
                                                        CHA))
      return tryDevirtualizeClassMethod(AI, Instance);
  }

  if (isa<SuperMethodInst>(AI.getCallee())) {
    if (AI.hasSelfArgument()) {
      return tryDevirtualizeClassMethod(AI, AI.getSelfArgument());
    }

    // It is an invocation of a class method.
    // Last operand is the metatype that should be used for dispatching.
    return tryDevirtualizeClassMethod(AI, AI.getArguments().back());
  }

  return std::make_pair(nullptr, FullApplySite());
}
Beispiel #3
0
/// \brief Returns true, if a method implementation corresponding to
/// the class_method applied to an instance of the class CD is
/// effectively final, i.e. it is statically known to be not overridden
/// by any subclasses of the class CD.
///
/// \p AI  invocation instruction
/// \p ClassType type of the instance
/// \p CD  static class of the instance whose method is being invoked
/// \p CHA class hierarchy analysis
bool isEffectivelyFinalMethod(FullApplySite AI,
                              SILType ClassType,
                              ClassDecl *CD,
                              ClassHierarchyAnalysis *CHA) {
  if (CD && CD->isFinal())
    return true;

  const DeclContext *DC = AI.getModule().getAssociatedContext();

  // Without an associated context we cannot perform any
  // access-based optimizations.
  if (!DC)
    return false;

  auto *CMI = cast<MethodInst>(AI.getCallee());

  if (!calleesAreStaticallyKnowable(AI.getModule(), CMI->getMember()))
    return false;

  auto *Method = CMI->getMember().getAbstractFunctionDecl();
  assert(Method && "Expected abstract function decl!");
  assert(!Method->isFinal() && "Unexpected indirect call to final method!");

  // If this method is not overridden in the module,
  // there is no other implementation.
  if (!Method->isOverridden())
    return true;

  // Class declaration may be nullptr, e.g. for cases like:
  // func foo<C:Base>(c: C) {}, where C is a class, but
  // it does not have a class decl.
  if (!CD)
    return false;

  if (!CHA)
    return false;

  // This is a private or a module internal class.
  //
  // We can analyze the class hierarchy rooted at it and
  // eventually devirtualize a method call more efficiently.

  ClassHierarchyAnalysis::ClassList Subs;
  getAllSubclasses(CHA, CD, ClassType, AI.getModule(), Subs);

  // This is the implementation of the method to be used
  // if the exact class of the instance would be CD.
  auto *ImplMethod = CD->findImplementingMethod(Method);

  // First, analyze all direct subclasses.
  for (auto S : Subs) {
    // Check if the subclass overrides a method and provides
    // a different implementation.
    auto *ImplFD = S->findImplementingMethod(Method);
    if (ImplFD != ImplMethod)
      return false;
  }

  return true;
}
Beispiel #4
0
bool AliasAnalysis::canApplyDecrementRefCount(FullApplySite FAS, SILValue Ptr) {
  // Treat applications of @noreturn functions as decrementing ref counts. This
  // causes the apply to become a sink barrier for ref count increments.
  if (FAS.getCallee().getType().getAs<SILFunctionType>()->isNoReturn())
    return true;

  /// If the pointer cannot escape to the function we are done.
  if (!EA->canEscapeTo(Ptr, FAS))
    return false;

  SideEffectAnalysis::FunctionEffects ApplyEffects;
  SEA->getEffects(ApplyEffects, FAS);

  auto &GlobalEffects = ApplyEffects.getGlobalEffects();
  if (ApplyEffects.mayReadRC() || GlobalEffects.mayRelease())
    return true;

  /// The function has no unidentified releases, so let's look at the arguments
  // in detail.
  for (unsigned Idx = 0, End = FAS.getNumArguments(); Idx < End; ++Idx) {
    auto &ArgEffect = ApplyEffects.getParameterEffects()[Idx];
    if (ArgEffect.mayRelease()) {
      // The function may release this argument, so check if the pointer can
      // escape to it.
      if (EA->canEscapeToValue(Ptr, FAS.getArgument(Idx)))
        return true;
    }
  }
  return false;
}
Beispiel #5
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType,
                                       OptRemark::Emitter *ORE,
                                       bool isEffectivelyFinalMethod) {

  LLVM_DEBUG(llvm::dbgs() << "    Trying to devirtualize : "
                          << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  LLVM_DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *MI = cast<MethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    LLVM_DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable "
                               "or vtable method for this class.\n");
    return false;
  }

  // We need to disable the  “effectively final” opt if a function is inlinable
  if (isEffectivelyFinalMethod && AI.getFunction()->getResilienceExpansion() ==
                                      ResilienceExpansion::Minimal) {
    LLVM_DEBUG(llvm::dbgs() << "        FAIL: Could not optimize function "
                               "because it is an effectively-final inlinable: "
                            << AI.getFunction()->getName() << "\n");
    return false;
  }

  // Mandatory inlining does class method devirtualization. I'm not sure if this
  // is really needed, but some test rely on this.
  // So even for Onone functions we have to do it if the SILStage is raw.
  if (F->getModule().getStage() != SILStage::Raw && !F->shouldOptimize()) {
    // Do not consider functions that should not be optimized.
    LLVM_DEBUG(llvm::dbgs() << "        FAIL: Could not optimize function "
                            << " because it is marked no-opt: " << F->getName()
                            << "\n");
    return false;
  }

  if (AI.getFunction()->isSerialized()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!F->hasValidLinkageForFragileRef())
      return false;
  }

  return true;
}
Beispiel #6
0
/// Attempt to devirtualize the given apply if possible, and return a
/// new instruction in that case, or nullptr otherwise.
DevirtualizationResult swift::tryDevirtualizeApply(FullApplySite AI) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize: " << *AI.getInstruction());

  // Devirtualize apply instructions that call witness_method instructions:
  //
  //   %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
  //   %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
  //
  if (isa<WitnessMethodInst>(AI.getCallee()))
    return tryDevirtualizeWitnessMethod(AI);

  /// Optimize a class_method and alloc_ref pair into a direct function
  /// reference:
  ///
  /// \code
  /// %XX = alloc_ref $Foo
  /// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
  /// \endcode
  ///
  ///  or
  ///
  /// %XX = metatype $...
  /// %YY = class_method %XX : ...
  ///
  ///  into
  ///
  /// %YY = function_ref @...
  if (auto *CMI = dyn_cast<ClassMethodInst>(AI.getCallee())) {
    // Check if the class member is known to be final.
    if (isKnownFinal(CMI->getModule(), CMI->getMember()))
      return tryDevirtualizeClassMethod(AI, CMI->getOperand());

    // Try to check if the exact dynamic type of the instance is statically
    // known.
    if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand()))
      return tryDevirtualizeClassMethod(AI, Instance);
  }

  return std::make_pair(nullptr, FullApplySite());
}
Beispiel #7
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType) {

  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *MI = cast<MethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable or "
                          "vtable method for this class.\n");
    return false;
  }

  if (!F->shouldOptimize()) {
    // Do not consider functions that should not be optimized.
    DEBUG(llvm::dbgs() << "        FAIL: Could not optimize function "
                       << " because it is marked no-opt: " << F->getName()
                       << "\n");
    return false;
  }

  if (AI.getFunction()->isSerialized()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!F->hasValidLinkageForFragileRef())
      return false;
  }

  if (MI->isVolatile()) {
    // dynamic dispatch is semantically required, can't devirtualize
    return false;
  }

  return true;
}
Beispiel #8
0
// Start with the substitutions from the apply.
// Try to propagate them to find out the real substitutions required
// to invoke the method.
static ArrayRef<Substitution>
getSubstitutionsForCallee(SILModule &M, CanSILFunctionType GenCalleeType,
                          SILType ClassInstanceType, FullApplySite AI) {
  // *NOTE*:
  // Apply instruction substitutions are for the Member from a protocol or
  // class B, where this member was first defined, before it got overridden by
  // derived classes.
  //
  // The implementation F (the implementing method) which was found may have
  // a different set of generic parameters, e.g. because it is implemented by a
  // class D1 derived from B.
  //
  // ClassInstanceType may have a type different from both the type B
  // the Member belongs to and from the ClassInstanceType, e.g. if
  // ClassInstance is of a class D2, which is derived from D1, but does not
  // override the Member.
  //
  // As a result, substitutions provided by AI are for Member, whereas
  // substitutions in ClassInstanceType are for D2. And substitutions for D1
  // are not available directly in a general case. Therefore, they have to
  // be computed.
  //
  // What we know for sure:
  //   B is a superclass of D1
  //   D1 is a superclass of D2.
  // D1 can be the same as D2. D1 can be the same as B.
  //
  // So, substitutions from AI are for class B.
  // Substitutions for class D1 by means of bindSuperclass(), which starts
  // with a bound type ClassInstanceType and checks its superclasses until it
  // finds a bound superclass matching D1 and returns its substitutions.

  // Class F belongs to.
  CanType FSelfClass = GenCalleeType->getSelfParameter().getType();

  SILType FSelfSubstType;
  Module *Module = M.getSwiftModule();

  ArrayRef<Substitution> ClassSubs;

  if (GenCalleeType->isPolymorphic()) {
    // Declaration of the class F belongs to.
    if (auto *FSelfTypeDecl = FSelfClass.getNominalOrBoundGenericNominal()) {
      // Get the unbound generic type F belongs to.
      CanType FSelfGenericType =
        FSelfTypeDecl->getDeclaredType()->getCanonicalType();

      assert((isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType()) ||
              isa<NominalType>(ClassInstanceType.getSwiftRValueType())) &&
             "Self type should be either a bound generic type"
             "or a non-generic type");

      assert((isa<UnboundGenericType>(FSelfGenericType) ||
              isa<NominalType>(FSelfGenericType)) &&
             "Method implementation self type should be generic");

      if (isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType())) {
        auto BoundBaseType = bindSuperclass(FSelfGenericType,
                                            ClassInstanceType);
        if (auto BoundTy = BoundBaseType->getAs<BoundGenericType>()) {
          ClassSubs = BoundTy->getSubstitutions(Module, nullptr);
        }
      }
    }
  } else {
    // If the callee is not polymorphic, no substitutions are required.
    return {};
  }

  if (ClassSubs.empty())
    return AI.getSubstitutions();

  auto AISubs = AI.getSubstitutions();

  CanSILFunctionType AIGenCalleeType =
      AI.getCallee().getType().castTo<SILFunctionType>();

  CanType AISelfClass = AIGenCalleeType->getSelfParameter().getType();

  unsigned NextMethodParamIdx = 0;
  unsigned NumMethodParams = 0;
  if (AIGenCalleeType->isPolymorphic()) {
    NextMethodParamIdx = 0;
    // Generic parameters of the method start after generic parameters
    // of the instance class.
    if (auto AISelfClassSig =
            AISelfClass.getClassBound()->getGenericSignature()) {
      NextMethodParamIdx = AISelfClassSig->getGenericParams().size();
    }
    NumMethodParams = AISubs.size() - NextMethodParamIdx;
  }

  unsigned NumSubs = ClassSubs.size() + NumMethodParams;

  if (ClassSubs.size() == NumSubs)
    return ClassSubs;

  // Mix class subs with method specific subs from the AI substitutions.

  // Assumptions: AI substitutions contain first the substitutions for
  // a class of the method being invoked and then the substitutions
  // for a method being invoked.
  auto Subs = M.getASTContext().Allocate<Substitution>(NumSubs);

  unsigned i = 0;
  for (auto &S : ClassSubs) {
    Subs[i++] = S;
  }

  for (; i < NumSubs; ++i, ++NextMethodParamIdx) {
    Subs[i] = AISubs[NextMethodParamIdx];
  }

  return Subs;
}
Beispiel #9
0
/// \brief Inlines all mandatory inlined functions into the body of a function,
/// first recursively inlining all mandatory apply instructions in those
/// functions into their bodies if necessary.
///
/// \param F the function to be processed
/// \param AI nullptr if this is being called from the top level; the relevant
///   ApplyInst requiring the recursive call when non-null
/// \param FullyInlinedSet the set of all functions already known to be fully
///   processed, to avoid processing them over again
/// \param SetFactory an instance of ImmutableFunctionSet::Factory
/// \param CurrentInliningSet the set of functions currently being inlined in
///   the current call stack of recursive calls
///
/// \returns true if successful, false if failed due to circular inlining.
static bool
runOnFunctionRecursively(SILFunction *F, FullApplySite AI,
                         DenseFunctionSet &FullyInlinedSet,
                         ImmutableFunctionSet::Factory &SetFactory,
                         ImmutableFunctionSet CurrentInliningSet,
                         ClassHierarchyAnalysis *CHA) {
  // Avoid reprocessing functions needlessly.
  if (FullyInlinedSet.count(F))
    return true;

  // Prevent attempt to circularly inline.
  if (CurrentInliningSet.contains(F)) {
    // This cannot happen on a top-level call, so AI should be non-null.
    assert(AI && "Cannot have circular inline without apply");
    SILLocation L = AI.getLoc();
    assert(L && "Must have location for transparent inline apply");
    diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
             diag::circular_transparent);
    return false;
  }

  // Add to the current inlining set (immutably, so we only affect the set
  // during this call and recursive subcalls).
  CurrentInliningSet = SetFactory.add(CurrentInliningSet, F);

  SmallVector<std::pair<SILValue, ParameterConvention>, 16> CaptureArgs;
  SmallVector<SILValue, 32> FullArgs;

  for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
    for (auto II = BI->begin(), IE = BI->end(); II != IE; ++II) {
      FullApplySite InnerAI = FullApplySite::isa(&*II);

      if (!InnerAI)
        continue;

      auto *ApplyBlock = InnerAI.getParent();

      // *NOTE* If devirtualization succeeds, sometimes II will not be InnerAI,
      // but a casted result of InnerAI or even a block argument due to
      // abstraction changes when calling the witness or class method. We still
      // know that InnerAI dominates II though.
      std::tie(InnerAI, II) = tryDevirtualizeApplyHelper(InnerAI, II, CHA);
      if (!InnerAI)
        continue;

      SILValue CalleeValue = InnerAI.getCallee();
      bool IsThick;
      PartialApplyInst *PAI;
      SILFunction *CalleeFunction = getCalleeFunction(
          F, InnerAI, IsThick, CaptureArgs, FullArgs, PAI);

      if (!CalleeFunction)
        continue;

      // Then recursively process it first before trying to inline it.
      if (!runOnFunctionRecursively(CalleeFunction, InnerAI,
                                    FullyInlinedSet, SetFactory,
                                    CurrentInliningSet, CHA)) {
        // If we failed due to circular inlining, then emit some notes to
        // trace back the failure if we have more information.
        // FIXME: possibly it could be worth recovering and attempting other
        // inlines within this same recursive call rather than simply
        // propagating the failure.
        if (AI) {
          SILLocation L = AI.getLoc();
          assert(L && "Must have location for transparent inline apply");
          diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
                   diag::note_while_inlining);
        }
        return false;
      }

      // Get our list of substitutions.
      auto Subs = (PAI
                   ? PAI->getSubstitutionMap()
                   : InnerAI.getSubstitutionMap());

      SILOpenedArchetypesTracker OpenedArchetypesTracker(F);
      F->getModule().registerDeleteNotificationHandler(
          &OpenedArchetypesTracker);
      // The callee only needs to know about opened archetypes used in
      // the substitution list.
      OpenedArchetypesTracker.registerUsedOpenedArchetypes(
          InnerAI.getInstruction());
      if (PAI) {
        OpenedArchetypesTracker.registerUsedOpenedArchetypes(PAI);
      }

      SILInliner Inliner(*F, *CalleeFunction,
                         SILInliner::InlineKind::MandatoryInline, Subs,
                         OpenedArchetypesTracker);
      if (!Inliner.canInlineFunction(InnerAI)) {
        // See comment above about casting when devirtualizing and how this
        // sometimes causes II and InnerAI to be different and even in different
        // blocks.
        II = InnerAI.getInstruction()->getIterator();
        continue;
      }

      // Inline function at I, which also changes I to refer to the first
      // instruction inlined in the case that it succeeds. We purposely
      // process the inlined body after inlining, because the inlining may
      // have exposed new inlining opportunities beyond those present in
      // the inlined function when processed independently.
      LLVM_DEBUG(llvm::errs() << "Inlining @" << CalleeFunction->getName()
                              << " into @" << InnerAI.getFunction()->getName()
                              << "\n");

      // If we intend to inline a thick function, then we need to balance the
      // reference counts for correctness.
      if (IsThick) {
        bool IsCalleeGuaranteed =
            PAI &&
            PAI->getType().castTo<SILFunctionType>()->isCalleeGuaranteed();
        fixupReferenceCounts(II, CalleeValue, CaptureArgs, IsCalleeGuaranteed);
      }

      // Decrement our iterator (carefully, to avoid going off the front) so it
      // is valid after inlining is done.  Inlining deletes the apply, and can
      // introduce multiple new basic blocks.
      II = prev_or_default(II, ApplyBlock->begin(), ApplyBlock->end());

      Inliner.inlineFunction(InnerAI, FullArgs);

      // We were able to inline successfully. Remove the apply.
      InnerAI.getInstruction()->eraseFromParent();

      // Reestablish our iterator if it wrapped.
      if (II == ApplyBlock->end())
        II = ApplyBlock->begin();

      // Update the iterator when instructions are removed.
      DeleteInstructionsHandler DeletionHandler(II);

      // Now that the IR is correct, see if we can remove dead callee
      // computations (e.g. dead partial_apply closures).
      cleanupCalleeValue(CalleeValue, FullArgs);

      // Reposition iterators possibly invalidated by mutation.
      BI = SILFunction::iterator(ApplyBlock);
      IE = ApplyBlock->end();
      assert(BI == SILFunction::iterator(II->getParent()) &&
             "Mismatch between the instruction and basic block");
      ++NumMandatoryInlines;
    }
  }

  // Keep track of full inlined functions so we don't waste time recursively
  // reprocessing them.
  FullyInlinedSet.insert(F);
  return true;
}
Beispiel #10
0
/// Return true if inlining this call site is profitable.
bool SILPerformanceInliner::isProfitableToInline(FullApplySite AI,
                                              unsigned loopDepthOfAI,
                                              DominanceAnalysis *DA,
                                              SILLoopAnalysis *LA,
                                              ConstantTracker &callerTracker,
                                              unsigned &NumCallerBlocks) {
  SILFunction *Callee = AI.getCalleeFunction();
  
  if (Callee->getInlineStrategy() == AlwaysInline)
    return true;
  
  ConstantTracker constTracker(Callee, &callerTracker, AI);
  
  DominanceInfo *DT = DA->get(Callee);
  SILLoopInfo *LI = LA->get(Callee);

  DominanceOrder domOrder(&Callee->front(), DT, Callee->size());
  
  // Calculate the inlining cost of the callee.
  unsigned CalleeCost = 0;
  unsigned Benefit = InlineCostThreshold > 0 ? InlineCostThreshold :
                                               RemovedCallBenefit;
  Benefit += loopDepthOfAI * LoopBenefitFactor;
  int testThreshold = TestThreshold;

  while (SILBasicBlock *block = domOrder.getNext()) {
    constTracker.beginBlock();
    unsigned loopDepth = LI->getLoopDepth(block);
    for (SILInstruction &I : *block) {
      constTracker.trackInst(&I);
      
      auto ICost = instructionInlineCost(I);
      
      if (testThreshold >= 0) {
        // We are in test-mode: use a simplified cost model.
        CalleeCost += testCost(&I);
      } else {
        // Use the regular cost model.
        CalleeCost += unsigned(ICost);
      }
      
      if (ApplyInst *AI = dyn_cast<ApplyInst>(&I)) {
        
        // Check if the callee is passed as an argument. If so, increase the
        // threshold, because inlining will (probably) eliminate the closure.
        SILInstruction *def = constTracker.getDefInCaller(AI->getCallee());
        if (def && (isa<FunctionRefInst>(def) || isa<PartialApplyInst>(def))) {

          DEBUG(llvm::dbgs() << "        Boost: apply const function at"
                             << *AI);
          Benefit += ConstCalleeBenefit + loopDepth * LoopBenefitFactor;
          testThreshold *= 2;
        }
      }
    }
    // Don't count costs in blocks which are dead after inlining.
    SILBasicBlock *takenBlock = getTakenBlock(block->getTerminator(),
                                              constTracker);
    if (takenBlock) {
      Benefit += ConstTerminatorBenefit + TestOpt;
      DEBUG(llvm::dbgs() << "      Take bb" << takenBlock->getDebugID() <<
            " of" << *block->getTerminator());
      domOrder.pushChildrenIf(block, [=] (SILBasicBlock *child) {
        return child->getSinglePredecessor() != block || child == takenBlock;
      });
    } else {
      domOrder.pushChildren(block);
    }
  }

  unsigned Threshold = Benefit; // The default.
  if (testThreshold >= 0) {
    // We are in testing mode.
    Threshold = testThreshold;
  } else if (AI.getFunction()->isThunk()) {
    // Only inline trivial functions into thunks (which will not increase the
    // code size).
    Threshold = TrivialFunctionThreshold;
  } else {
    // The default case.
    // We reduce the benefit if the caller is too large. For this we use a
    // cubic function on the number of caller blocks. This starts to prevent
    // inlining at about 800 - 1000 caller blocks.
    unsigned blockMinus =
      (NumCallerBlocks * NumCallerBlocks) / BlockLimitDenominator *
                          NumCallerBlocks / BlockLimitDenominator;
    if (Threshold > blockMinus + TrivialFunctionThreshold)
      Threshold -= blockMinus;
    else
      Threshold = TrivialFunctionThreshold;
  }

  if (CalleeCost > Threshold) {
    DEBUG(llvm::dbgs() << "        NO: Function too big to inline, "
          "cost: " << CalleeCost << ", threshold: " << Threshold << "\n");
    return false;
  }
  DEBUG(llvm::dbgs() << "        YES: ready to inline, "
        "cost: " << CalleeCost << ", threshold: " << Threshold << "\n");
  NumCallerBlocks += Callee->size();
  return true;
}
/// Insert monomorphic inline caches for a specific class or metatype
/// type \p SubClassTy.
static FullApplySite speculateMonomorphicTarget(FullApplySite AI,
                                                SILType SubType,
                                                CheckedCastBranchInst *&CCBI) {
  CCBI = nullptr;
  // Bail if this class_method cannot be devirtualized.
  if (!canDevirtualizeClassMethod(AI, SubType))
    return FullApplySite();

  // Create a diamond shaped control flow and a checked_cast_branch
  // instruction that checks the exact type of the object.
  // This cast selects between two paths: one that calls the slow dynamic
  // dispatch and one that calls the specific method.
  auto It = AI.getInstruction()->getIterator();
  SILFunction *F = AI.getFunction();
  SILBasicBlock *Entry = AI.getParent();

  // Iden is the basic block containing the direct call.
  SILBasicBlock *Iden = F->createBasicBlock();
  // Virt is the block containing the slow virtual call.
  SILBasicBlock *Virt = F->createBasicBlock();
  Iden->createBBArg(SubType);

  SILBasicBlock *Continue = Entry->splitBasicBlock(It);

  SILBuilderWithScope Builder(Entry, AI.getInstruction());
  // Create the checked_cast_branch instruction that checks at runtime if the
  // class instance is identical to the SILType.

  ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());

  CCBI = Builder.createCheckedCastBranch(AI.getLoc(), /*exact*/ true,
                                       CMI->getOperand(), SubType, Iden,
                                       Virt);
  It = CCBI->getIterator();

  SILBuilderWithScope VirtBuilder(Virt, AI.getInstruction());
  SILBuilderWithScope IdenBuilder(Iden, AI.getInstruction());
  // This is the class reference downcasted into subclass SubType.
  SILValue DownCastedClassInstance = Iden->getBBArg(0);

  // Copy the two apply instructions into the two blocks.
  FullApplySite IdenAI = CloneApply(AI, IdenBuilder);
  FullApplySite VirtAI = CloneApply(AI, VirtBuilder);

  // See if Continue has a release on self as the instruction right after the
  // apply. If it exists, move it into position in the diamond.
  if (auto *Release =
          dyn_cast<StrongReleaseInst>(std::next(Continue->begin()))) {
    if (Release->getOperand() == CMI->getOperand()) {
      VirtBuilder.createStrongRelease(Release->getLoc(), CMI->getOperand());
      IdenBuilder.createStrongRelease(Release->getLoc(),
                                      DownCastedClassInstance);
      Release->eraseFromParent();
    }
  }

  // Create a PHInode for returning the return value from both apply
  // instructions.
  SILArgument *Arg = Continue->createBBArg(AI.getType());
  if (!isa<TryApplyInst>(AI)) {
    IdenBuilder.createBranch(AI.getLoc(), Continue,
                             ArrayRef<SILValue>(IdenAI.getInstruction()));
    VirtBuilder.createBranch(AI.getLoc(), Continue,
                             ArrayRef<SILValue>(VirtAI.getInstruction()));
  }

  // Remove the old Apply instruction.
  if (!isa<TryApplyInst>(AI))
    AI.getInstruction()->replaceAllUsesWith(Arg);
  auto *OriginalBB = AI.getParent();
  AI.getInstruction()->eraseFromParent();
  if (OriginalBB->empty())
    OriginalBB->removeFromParent();

  // Update the stats.
  NumTargetsPredicted++;

  // Devirtualize the apply instruction on the identical path.
  auto NewInstPair = devirtualizeClassMethod(IdenAI, DownCastedClassInstance);
  assert(NewInstPair.first && "Expected to be able to devirtualize apply!");
  replaceDeadApply(IdenAI, NewInstPair.first);

  // Split critical edges resulting from VirtAI.
  if (auto *TAI = dyn_cast<TryApplyInst>(VirtAI)) {
    auto *ErrorBB = TAI->getFunction()->createBasicBlock();
    ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType());
    Builder.setInsertionPoint(ErrorBB);
    Builder.createBranch(TAI->getLoc(), TAI->getErrorBB(),
                         {ErrorBB->getBBArg(0)});

    auto *NormalBB = TAI->getFunction()->createBasicBlock();
    NormalBB->createBBArg(TAI->getNormalBB()->getBBArg(0)->getType());
    Builder.setInsertionPoint(NormalBB);
    Builder.createBranch(TAI->getLoc(), TAI->getNormalBB(),
                        {NormalBB->getBBArg(0) });

    Builder.setInsertionPoint(VirtAI.getInstruction());
    SmallVector<SILValue, 4> Args;
    for (auto Arg : VirtAI.getArguments()) {
      Args.push_back(Arg);
    }
    FullApplySite NewVirtAI = Builder.createTryApply(VirtAI.getLoc(), VirtAI.getCallee(),
        VirtAI.getSubstCalleeSILType(), VirtAI.getSubstitutions(),
        Args, NormalBB, ErrorBB);
    VirtAI.getInstruction()->eraseFromParent();
    VirtAI = NewVirtAI;
  }

  return VirtAI;
}
Beispiel #12
0
/// \brief Inlines all mandatory inlined functions into the body of a function,
/// first recursively inlining all mandatory apply instructions in those
/// functions into their bodies if necessary.
///
/// \param F the function to be processed
/// \param AI nullptr if this is being called from the top level; the relevant
///   ApplyInst requiring the recursive call when non-null
/// \param FullyInlinedSet the set of all functions already known to be fully
///   processed, to avoid processing them over again
/// \param SetFactory an instance of ImmutableFunctionSet::Factory
/// \param CurrentInliningSet the set of functions currently being inlined in
///   the current call stack of recursive calls
///
/// \returns true if successful, false if failed due to circular inlining.
static bool
runOnFunctionRecursively(SILFunction *F, FullApplySite AI,
                         SILModule::LinkingMode Mode,
                         DenseFunctionSet &FullyInlinedSet,
                         ImmutableFunctionSet::Factory &SetFactory,
                         ImmutableFunctionSet CurrentInliningSet,
                         ClassHierarchyAnalysis *CHA) {
  // Avoid reprocessing functions needlessly.
  if (FullyInlinedSet.count(F))
    return true;

  // Prevent attempt to circularly inline.
  if (CurrentInliningSet.contains(F)) {
    // This cannot happen on a top-level call, so AI should be non-null.
    assert(AI && "Cannot have circular inline without apply");
    SILLocation L = AI.getLoc();
    assert(L && "Must have location for transparent inline apply");
    diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
             diag::circular_transparent);
    return false;
  }

  // Add to the current inlining set (immutably, so we only affect the set
  // during this call and recursive subcalls).
  CurrentInliningSet = SetFactory.add(CurrentInliningSet, F);

  SmallVector<SILValue, 16> CaptureArgs;
  SmallVector<SILValue, 32> FullArgs;

  for (auto FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
    for (auto I = FI->begin(), E = FI->end(); I != E; ++I) {
      FullApplySite InnerAI = FullApplySite::isa(&*I);

      if (!InnerAI)
        continue;

      auto *ApplyBlock = InnerAI.getParent();

      auto NewInstPair = tryDevirtualizeApply(InnerAI, CHA);
      if (auto *NewInst = NewInstPair.first) {
        replaceDeadApply(InnerAI, NewInst);
        if (auto *II = dyn_cast<SILInstruction>(NewInst))
          I = II->getIterator();
        else
          I = NewInst->getParentBlock()->begin();
        auto NewAI = FullApplySite::isa(NewInstPair.second.getInstruction());
        if (!NewAI)
          continue;

        InnerAI = NewAI;
      }

      SILLocation Loc = InnerAI.getLoc();
      SILValue CalleeValue = InnerAI.getCallee();
      bool IsThick;
      PartialApplyInst *PAI;
      SILFunction *CalleeFunction = getCalleeFunction(InnerAI, IsThick,
                                                      CaptureArgs, FullArgs,
                                                      PAI,
                                                      Mode);
      if (!CalleeFunction ||
          CalleeFunction->isTransparent() == IsNotTransparent)
        continue;

      if (F->isFragile() &&
          !CalleeFunction->hasValidLinkageForFragileRef()) {
        if (!CalleeFunction->hasValidLinkageForFragileInline()) {
          llvm::errs() << "caller: " << F->getName() << "\n";
          llvm::errs() << "callee: " << CalleeFunction->getName() << "\n";
          llvm_unreachable("Should never be inlining a resilient function into "
                           "a fragile function");
        }
        continue;
      }

      // Then recursively process it first before trying to inline it.
      if (!runOnFunctionRecursively(CalleeFunction, InnerAI, Mode,
                                    FullyInlinedSet, SetFactory,
                                    CurrentInliningSet, CHA)) {
        // If we failed due to circular inlining, then emit some notes to
        // trace back the failure if we have more information.
        // FIXME: possibly it could be worth recovering and attempting other
        // inlines within this same recursive call rather than simply
        // propagating the failure.
        if (AI) {
          SILLocation L = AI.getLoc();
          assert(L && "Must have location for transparent inline apply");
          diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
                   diag::note_while_inlining);
        }
        return false;
      }

      // Inline function at I, which also changes I to refer to the first
      // instruction inlined in the case that it succeeds. We purposely
      // process the inlined body after inlining, because the inlining may
      // have exposed new inlining opportunities beyond those present in
      // the inlined function when processed independently.
      DEBUG(llvm::errs() << "Inlining @" << CalleeFunction->getName()
                         << " into @" << InnerAI.getFunction()->getName()
                         << "\n");

      // If we intend to inline a thick function, then we need to balance the
      // reference counts for correctness.
      if (IsThick && I != ApplyBlock->begin()) {
        // We need to find an appropriate location for our fix up code
        // We used to do this after inlining Without any modifications
        // This caused us to add a release in a wrong place:
        // It would release a value *before* retaining it!
        // It is really problematic to do this after inlining -
        // Finding a valid insertion point is tricky:
        // Inlining might add new basic blocks and/or remove the apply
        // We want to add the fix up *just before* where the current apply is!
        // Unfortunately, we *can't* add the fix up code here:
        // Inlining might fail for any reason -
        // If that occurred we'd need to undo our fix up code.
        // Instead, we split the current basic block -
        // Making sure we have a basic block that starts with our apply.
        SILBuilderWithScope B(I);
        ApplyBlock = splitBasicBlockAndBranch(B, &*I, nullptr, nullptr);
        I = ApplyBlock->begin();
      }

      // Decrement our iterator (carefully, to avoid going off the front) so it
      // is valid after inlining is done.  Inlining deletes the apply, and can
      // introduce multiple new basic blocks.
      if (I != ApplyBlock->begin())
        --I;
      else
        I = ApplyBlock->end();

      std::vector<Substitution> ApplySubs(InnerAI.getSubstitutions());

      if (PAI) {
        auto PAISubs = PAI->getSubstitutions();
        ApplySubs.insert(ApplySubs.end(), PAISubs.begin(), PAISubs.end());
      }

      SILOpenedArchetypesTracker OpenedArchetypesTracker(*F);
      F->getModule().registerDeleteNotificationHandler(
          &OpenedArchetypesTracker);
      // The callee only needs to know about opened archetypes used in
      // the substitution list.
      OpenedArchetypesTracker.registerUsedOpenedArchetypes(InnerAI.getInstruction());
      if (PAI) {
        OpenedArchetypesTracker.registerUsedOpenedArchetypes(PAI);
      }

      SILInliner Inliner(*F, *CalleeFunction,
                         SILInliner::InlineKind::MandatoryInline,
                         ApplySubs, OpenedArchetypesTracker);
      if (!Inliner.inlineFunction(InnerAI, FullArgs)) {
        I = InnerAI.getInstruction()->getIterator();
        continue;
      }

      // Inlining was successful. Remove the apply.
      InnerAI.getInstruction()->eraseFromParent();

      // Reestablish our iterator if it wrapped.
      if (I == ApplyBlock->end())
        I = ApplyBlock->begin();

      // Update the iterator when instructions are removed.
      DeleteInstructionsHandler DeletionHandler(I);

      // If the inlined apply was a thick function, then we need to balance the
      // reference counts for correctness.
      if (IsThick)
        fixupReferenceCounts(I, Loc, CalleeValue, CaptureArgs);

      // Now that the IR is correct, see if we can remove dead callee
      // computations (e.g. dead partial_apply closures).
      cleanupCalleeValue(CalleeValue, CaptureArgs, FullArgs);

      // Reposition iterators possibly invalidated by mutation.
      FI = SILFunction::iterator(ApplyBlock);
      E = ApplyBlock->end();
      assert(FI == SILFunction::iterator(I->getParent()) &&
             "Mismatch between the instruction and basic block");
      ++NumMandatoryInlines;
    }
  }

  // Keep track of full inlined functions so we don't waste time recursively
  // reprocessing them.
  FullyInlinedSet.insert(F);
  return true;
}
Beispiel #13
0
/// \brief Inlines all mandatory inlined functions into the body of a function,
/// first recursively inlining all mandatory apply instructions in those
/// functions into their bodies if necessary.
///
/// \param F the function to be processed
/// \param AI nullptr if this is being called from the top level; the relevant
///   ApplyInst requiring the recursive call when non-null
/// \param FullyInlinedSet the set of all functions already known to be fully
///   processed, to avoid processing them over again
/// \param SetFactory an instance of ImmutableFunctionSet::Factory
/// \param CurrentInliningSet the set of functions currently being inlined in
///   the current call stack of recursive calls
///
/// \returns true if successful, false if failed due to circular inlining.
static bool
runOnFunctionRecursively(SILFunction *F, FullApplySite AI,
                         SILModule::LinkingMode Mode,
                         DenseFunctionSet &FullyInlinedSet,
                         ImmutableFunctionSet::Factory &SetFactory,
                         ImmutableFunctionSet CurrentInliningSet,
                         ClassHierarchyAnalysis *CHA) {
  // Avoid reprocessing functions needlessly.
  if (FullyInlinedSet.count(F))
    return true;

  // Prevent attempt to circularly inline.
  if (CurrentInliningSet.contains(F)) {
    // This cannot happen on a top-level call, so AI should be non-null.
    assert(AI && "Cannot have circular inline without apply");
    SILLocation L = AI.getLoc();
    assert(L && "Must have location for transparent inline apply");
    diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
             diag::circular_transparent);
    return false;
  }

  // Add to the current inlining set (immutably, so we only affect the set
  // during this call and recursive subcalls).
  CurrentInliningSet = SetFactory.add(CurrentInliningSet, F);

  SmallVector<SILValue, 16> CaptureArgs;
  SmallVector<SILValue, 32> FullArgs;
  for (auto FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
    for (auto I = FI->begin(), E = FI->end(); I != E; ++I) {
      FullApplySite InnerAI = FullApplySite::isa(&*I);

      if (!InnerAI)
        continue;

      auto *ApplyBlock = InnerAI.getParent();

      auto NewInstPair = tryDevirtualizeApply(InnerAI, CHA);
      if (auto *NewInst = NewInstPair.first) {
        replaceDeadApply(InnerAI, NewInst);
        if (auto *II = dyn_cast<SILInstruction>(NewInst))
          I = II->getIterator();
        else
          I = NewInst->getParentBB()->begin();
        auto NewAI = FullApplySite::isa(NewInstPair.second.getInstruction());
        if (!NewAI)
          continue;

        InnerAI = NewAI;
      }

      SILLocation Loc = InnerAI.getLoc();
      SILValue CalleeValue = InnerAI.getCallee();
      bool IsThick;
      PartialApplyInst *PAI;
      SILFunction *CalleeFunction = getCalleeFunction(InnerAI, IsThick,
                                                      CaptureArgs, FullArgs,
                                                      PAI,
                                                      Mode);
      if (!CalleeFunction ||
          CalleeFunction->isTransparent() == IsNotTransparent)
        continue;

      // Then recursively process it first before trying to inline it.
      if (!runOnFunctionRecursively(CalleeFunction, InnerAI, Mode,
                                    FullyInlinedSet, SetFactory,
                                    CurrentInliningSet, CHA)) {
        // If we failed due to circular inlining, then emit some notes to
        // trace back the failure if we have more information.
        // FIXME: possibly it could be worth recovering and attempting other
        // inlines within this same recursive call rather than simply
        // propagating the failure.
        if (AI) {
          SILLocation L = AI.getLoc();
          assert(L && "Must have location for transparent inline apply");
          diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
                   diag::note_while_inlining);
        }
        return false;
      }

      // Inline function at I, which also changes I to refer to the first
      // instruction inlined in the case that it succeeds. We purposely
      // process the inlined body after inlining, because the inlining may
      // have exposed new inlining opportunities beyond those present in
      // the inlined function when processed independently.
      DEBUG(llvm::errs() << "Inlining @" << CalleeFunction->getName()
                         << " into @" << InnerAI.getFunction()->getName()
                         << "\n");

      // Decrement our iterator (carefully, to avoid going off the front) so it
      // is valid after inlining is done.  Inlining deletes the apply, and can
      // introduce multiple new basic blocks.
      if (I != ApplyBlock->begin())
        --I;
      else
        I = ApplyBlock->end();

      TypeSubstitutionMap ContextSubs;
      std::vector<Substitution> ApplySubs(InnerAI.getSubstitutions());

      if (PAI) {
        auto PAISubs = PAI->getSubstitutions();
        ApplySubs.insert(ApplySubs.end(), PAISubs.begin(), PAISubs.end());
      }

      ContextSubs.copyFrom(CalleeFunction->getContextGenericParams()
                                         ->getSubstitutionMap(ApplySubs));

      SILInliner Inliner(*F, *CalleeFunction,
                         SILInliner::InlineKind::MandatoryInline,
                         ContextSubs, ApplySubs);
      if (!Inliner.inlineFunction(InnerAI, FullArgs)) {
        I = InnerAI.getInstruction()->getIterator();
        continue;
      }

      // Inlining was successful. Remove the apply.
      InnerAI.getInstruction()->eraseFromParent();

      // Reestablish our iterator if it wrapped.
      if (I == ApplyBlock->end())
        I = ApplyBlock->begin();
      else
        ++I;

      // If the inlined apply was a thick function, then we need to balance the
      // reference counts for correctness.
      if (IsThick)
        fixupReferenceCounts(I, Loc, CalleeValue, CaptureArgs);

      // Now that the IR is correct, see if we can remove dead callee
      // computations (e.g. dead partial_apply closures).
      cleanupCalleeValue(CalleeValue, CaptureArgs, FullArgs);

      // Reposition iterators possibly invalidated by mutation.
      FI = SILFunction::iterator(ApplyBlock);
      I = ApplyBlock->begin();
      E = ApplyBlock->end();
      ++NumMandatoryInlines;
    }
  }

  // Keep track of full inlined functions so we don't waste time recursively
  // reprocessing them.
  FullyInlinedSet.insert(F);
  return true;
}
Beispiel #14
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // Bail if any generic types parameters of the class instance type are
  // unbound.
  // We cannot devirtualize unbound generic calls yet.
  if (isClassWithUnboundGenericParameters(ClassOrMetatypeType, Mod))
    return false;

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *CMI = cast<ClassMethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, CMI->getMember());

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable or "
                          "vtable method for this class.\n");
    return false;
  }

  if (AI.getFunction()->isFragile()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!(F->isFragile() || isValidLinkageForFragileRef(F->getLinkage()) ||
          F->isExternalDeclaration()))
      return false;
  }

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
                                        ClassOrMetatypeType, AI);

  // For polymorphic functions, bail if the number of substitutions is
  // not the same as the number of expected generic parameters.
  if (GenCalleeType->isPolymorphic()) {
    auto GenericSig = GenCalleeType->getGenericSignature();
    // Get the number of expected generic parameters, which
    // is a sum of the number of explicit generic parameters
    // and the number of their recursive member types exposed
    // through protocol requirements.
    auto DepTypes = GenericSig->getAllDependentTypes();
    unsigned ExpectedGenParamsNum = 0;

    for (auto DT: DepTypes) {
      (void)DT;
      ExpectedGenParamsNum++;
    }

    if (ExpectedGenParamsNum != Subs.size())
      return false;
  }

  // Check if the optimizer knows how to cast the return type.
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType =
        GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);

  // If we have a direct return type, make sure we use the subst callee return
  // type. If we have an indirect return type, AI's return type of the empty
  // tuple should be ok.
  SILType ReturnType = AI.getType();
  if (!SubstCalleeType->hasIndirectResult()) {
    ReturnType = SubstCalleeType->getSILResult();
  }

  if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType()))
      return false;

  return true;
}
Beispiel #15
0
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
///    self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
FullApplySite swift::devirtualizeClassMethod(FullApplySite AI,
                                             SILValue ClassOrMetatype,
                                             OptRemark::Emitter *ORE) {
  LLVM_DEBUG(llvm::dbgs() << "    Trying to devirtualize : "
                          << *AI.getInstruction());

  SILModule &Mod = AI.getModule();
  auto *MI = cast<MethodInst>(AI.getCallee());
  auto ClassOrMetatypeType = ClassOrMetatype->getType();
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  SubstitutionMap Subs =
    getSubstitutionsForCallee(Mod, GenCalleeType,
                              ClassOrMetatypeType.getASTType(),
                              AI);
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
  SILFunctionConventions substConv(SubstCalleeType, Mod);

  SILBuilderWithScope B(AI.getInstruction());
  SILLocation Loc = AI.getLoc();
  FunctionRefInst *FRI = B.createFunctionRef(Loc, F);

  // Create the argument list for the new apply, casting when needed
  // in order to handle covariant indirect return types and
  // contravariant argument types.
  llvm::SmallVector<SILValue, 8> NewArgs;

  auto IndirectResultArgIter = AI.getIndirectSILResults().begin();
  for (auto ResultTy : substConv.getIndirectSILResultTypes()) {
    NewArgs.push_back(
        castValueToABICompatibleType(&B, Loc, *IndirectResultArgIter,
                                     IndirectResultArgIter->getType(), ResultTy));
    ++IndirectResultArgIter;
  }

  auto ParamArgIter = AI.getArgumentsWithoutIndirectResults().begin();
  // Skip the last parameter, which is `self`. Add it below.
  for (auto param : substConv.getParameters().drop_back()) {
    auto paramType = substConv.getSILType(param);
    NewArgs.push_back(
        castValueToABICompatibleType(&B, Loc, *ParamArgIter,
                                     ParamArgIter->getType(), paramType));
    ++ParamArgIter;
  }

  // Add the self argument, upcasting if required because we're
  // calling a base class's method.
  auto SelfParamTy = substConv.getSILType(SubstCalleeType->getSelfParameter());
  NewArgs.push_back(castValueToABICompatibleType(&B, Loc,
                                                 ClassOrMetatype,
                                                 ClassOrMetatypeType,
                                                 SelfParamTy));

  ApplySite NewAS = replaceApplySite(B, Loc, AI, FRI, Subs, NewArgs, substConv);
  FullApplySite NewAI = FullApplySite::isa(NewAS.getInstruction());
  assert(NewAI);

  LLVM_DEBUG(llvm::dbgs() << "        SUCCESS: " << F->getName() << "\n");
  if (ORE)
    ORE->emit([&]() {
        using namespace OptRemark;
        return RemarkPassed("ClassMethodDevirtualized", *AI.getInstruction())
               << "Devirtualized call to class method " << NV("Method", F);
      });
  NumClassDevirt++;

  return NewAI;
}
Beispiel #16
0
/// Attempt to devirtualize the given apply if possible, and return a
/// new instruction in that case, or nullptr otherwise.
ApplySite swift::tryDevirtualizeApply(ApplySite AI,
                                      ClassHierarchyAnalysis *CHA,
                                      OptRemark::Emitter *ORE) {
  LLVM_DEBUG(llvm::dbgs() << "    Trying to devirtualize: "
                          << *AI.getInstruction());

  // Devirtualize apply instructions that call witness_method instructions:
  //
  //   %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
  //   %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
  //
  if (isa<WitnessMethodInst>(AI.getCallee()))
    return tryDevirtualizeWitnessMethod(AI, ORE);

  // TODO: check if we can also de-virtualize partial applies of class methods.
  FullApplySite FAS = FullApplySite::isa(AI.getInstruction());
  if (!FAS)
    return ApplySite();

  /// Optimize a class_method and alloc_ref pair into a direct function
  /// reference:
  ///
  /// \code
  /// %XX = alloc_ref $Foo
  /// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
  /// \endcode
  ///
  ///  or
  ///
  /// %XX = metatype $...
  /// %YY = class_method %XX : ...
  ///
  ///  into
  ///
  /// %YY = function_ref @...
  if (auto *CMI = dyn_cast<ClassMethodInst>(FAS.getCallee())) {
    auto &M = FAS.getModule();
    auto Instance = stripUpCasts(CMI->getOperand());
    auto ClassType = Instance->getType();
    if (ClassType.is<MetatypeType>())
      ClassType = ClassType.getMetatypeInstanceType(M);

    auto *CD = ClassType.getClassOrBoundGenericClass();

    if (isEffectivelyFinalMethod(FAS, ClassType, CD, CHA))
      return tryDevirtualizeClassMethod(FAS, Instance, ORE,
                                        true /*isEffectivelyFinalMethod*/);

    // Try to check if the exact dynamic type of the instance is statically
    // known.
    if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(),
                                                        CMI->getModule(),
                                                        CHA))
      return tryDevirtualizeClassMethod(FAS, Instance, ORE);

    if (auto ExactTy = getExactDynamicType(CMI->getOperand(), CMI->getModule(),
                                           CHA)) {
      if (ExactTy == CMI->getOperand()->getType())
        return tryDevirtualizeClassMethod(FAS, CMI->getOperand(), ORE);
    }
  }

  if (isa<SuperMethodInst>(FAS.getCallee())) {
    if (FAS.hasSelfArgument()) {
      return tryDevirtualizeClassMethod(FAS, FAS.getSelfArgument(), ORE);
    }

    // It is an invocation of a class method.
    // Last operand is the metatype that should be used for dispatching.
    return tryDevirtualizeClassMethod(FAS, FAS.getArguments().back(), ORE);
  }

  return ApplySite();
}
Beispiel #17
0
bool SILPerformanceInliner::isProfitableToInline(FullApplySite AI,
                                                 Weight CallerWeight,
                                                 ConstantTracker &callerTracker,
                                                 int &NumCallerBlocks,
                                                 bool IsGeneric) {
  SILFunction *Callee = AI.getReferencedFunction();
  SILLoopInfo *LI = LA->get(Callee);
  ShortestPathAnalysis *SPA = getSPA(Callee, LI);
  assert(SPA->isValid());

  ConstantTracker constTracker(Callee, &callerTracker, AI);
  DominanceInfo *DT = DA->get(Callee);
  SILBasicBlock *CalleeEntry = &Callee->front();
  DominanceOrder domOrder(CalleeEntry, DT, Callee->size());

  // Calculate the inlining cost of the callee.
  int CalleeCost = 0;
  int Benefit = 0;
  
  // Start with a base benefit.
  int BaseBenefit = RemovedCallBenefit;
  const SILOptions &Opts = Callee->getModule().getOptions();
  
  // For some reason -Ounchecked can accept a higher base benefit without
  // increasing the code size too much.
  if (Opts.Optimization == SILOptions::SILOptMode::OptimizeUnchecked)
    BaseBenefit *= 2;

  CallerWeight.updateBenefit(Benefit, BaseBenefit);

  // Go through all blocks of the function, accumulate the cost and find
  // benefits.
  while (SILBasicBlock *block = domOrder.getNext()) {
    constTracker.beginBlock();
    Weight BlockW = SPA->getWeight(block, CallerWeight);

    for (SILInstruction &I : *block) {
      constTracker.trackInst(&I);
      
      CalleeCost += (int)instructionInlineCost(I);

      if (FullApplySite AI = FullApplySite::isa(&I)) {
        
        // Check if the callee is passed as an argument. If so, increase the
        // threshold, because inlining will (probably) eliminate the closure.
        SILInstruction *def = constTracker.getDefInCaller(AI.getCallee());
        if (def && (isa<FunctionRefInst>(def) || isa<PartialApplyInst>(def)))
          BlockW.updateBenefit(Benefit, RemovedClosureBenefit);
      } else if (auto *LI = dyn_cast<LoadInst>(&I)) {
        // Check if it's a load from a stack location in the caller. Such a load
        // might be optimized away if inlined.
        if (constTracker.isStackAddrInCaller(LI->getOperand()))
          BlockW.updateBenefit(Benefit, RemovedLoadBenefit);
      } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
        // Check if it's a store to a stack location in the caller. Such a load
        // might be optimized away if inlined.
        if (constTracker.isStackAddrInCaller(SI->getDest()))
          BlockW.updateBenefit(Benefit, RemovedStoreBenefit);
      } else if (isa<StrongReleaseInst>(&I) || isa<ReleaseValueInst>(&I)) {
        SILValue Op = stripCasts(I.getOperand(0));
        if (SILArgument *Arg = dyn_cast<SILArgument>(Op)) {
          if (Arg->isFunctionArg() && Arg->getArgumentConvention() ==
              SILArgumentConvention::Direct_Guaranteed) {
            BlockW.updateBenefit(Benefit, RefCountBenefit);
          }
        }
      } else if (auto *BI = dyn_cast<BuiltinInst>(&I)) {
        if (BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath)
          BlockW.updateBenefit(Benefit, FastPathBuiltinBenefit);
      }
    }
    // Don't count costs in blocks which are dead after inlining.
    SILBasicBlock *takenBlock = constTracker.getTakenBlock(block->getTerminator());
    if (takenBlock) {
      BlockW.updateBenefit(Benefit, RemovedTerminatorBenefit);
      domOrder.pushChildrenIf(block, [=] (SILBasicBlock *child) {
        return child->getSinglePredecessor() != block || child == takenBlock;
      });
    } else {
      domOrder.pushChildren(block);
    }
  }

  if (AI.getFunction()->isThunk()) {
    // Only inline trivial functions into thunks (which will not increase the
    // code size).
    if (CalleeCost > TrivialFunctionThreshold)
      return false;

    DEBUG(
      
      dumpCaller(AI.getFunction());
      llvm::dbgs() << "    decision {" << CalleeCost << " into thunk} " <<
          Callee->getName() << '\n';
    );
    return true;
  }
Beispiel #18
0
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
///    self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI,
                                                     SILValue ClassOrMetatype) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();
  auto *CMI = cast<ClassMethodInst>(AI.getCallee());
  auto ClassOrMetatypeType = ClassOrMetatype.getType();
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, CMI->getMember());

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
                                        ClassOrMetatypeType, AI);
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);

  SILBuilderWithScope B(AI.getInstruction());
  FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F);

  // Create the argument list for the new apply, casting when needed
  // in order to handle covariant indirect return types and
  // contravariant argument types.
  llvm::SmallVector<SILValue, 8> NewArgs;
  auto Args = AI.getArguments();
  auto ParamTypes = SubstCalleeType->getParameterSILTypes();

  for (unsigned i = 0, e = Args.size() - 1; i != e; ++i)
    NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), Args[i],
                                                   Args[i].getType(),
                                                   ParamTypes[i]).getValue());

  // Add the self argument, upcasting if required because we're
  // calling a base class's method.
  auto SelfParamTy = SubstCalleeType->getSelfParameter().getSILType();
  NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(),
                                                 ClassOrMetatype,
                                                 ClassOrMetatypeType,
                                                 SelfParamTy).getValue());

  // If we have a direct return type, make sure we use the subst callee return
  // type. If we have an indirect return type, AI's return type of the empty
  // tuple should be ok.
  SILType ResultTy = AI.getType();
  if (!SubstCalleeType->hasIndirectResult()) {
    ResultTy = SubstCalleeType->getSILResult();
  }

  SILType SubstCalleeSILType =
    SILType::getPrimitiveObjectType(SubstCalleeType);
  FullApplySite NewAI;

  SILBasicBlock *ResultBB = nullptr;
  SILBasicBlock *NormalBB = nullptr;
  SILValue ResultValue;
  bool ResultCastRequired = false;
  SmallVector<Operand *, 4> OriginalResultUses;

  if (!isa<TryApplyInst>(AI)) {
    NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy,
                          Subs, NewArgs, cast<ApplyInst>(AI)->isNonThrowing());
    ResultValue = SILValue(NewAI.getInstruction(), 0);
  } else {
    auto *TAI = cast<TryApplyInst>(AI);
    // Create new normal and error BBs only if:
    // - re-using a BB would create a critical edge
    // - or, the result of the new apply would be of different
    //   type than the argument of the original normal BB.
    if (TAI->getNormalBB()->getSinglePredecessor())
      ResultBB = TAI->getNormalBB();
    else {
      ResultBB = B.getFunction().createBasicBlock();
      ResultBB->createBBArg(ResultTy);
    }

    NormalBB = TAI->getNormalBB();

    SILBasicBlock *ErrorBB = nullptr;
    if (TAI->getErrorBB()->getSinglePredecessor())
      ErrorBB = TAI->getErrorBB();
    else {
      ErrorBB = B.getFunction().createBasicBlock();
      ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType());
    }

    NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType,
                             Subs, NewArgs,
                             ResultBB, ErrorBB);
    if (ErrorBB != TAI->getErrorBB()) {
      B.setInsertionPoint(ErrorBB);
      B.createBranch(TAI->getLoc(), TAI->getErrorBB(),
                     {ErrorBB->getBBArg(0)});
    }

    // Does the result value need to be casted?
    ResultCastRequired = ResultTy != NormalBB->getBBArg(0)->getType();

    if (ResultBB != NormalBB)
      B.setInsertionPoint(ResultBB);
    else if (ResultCastRequired) {
      B.setInsertionPoint(NormalBB->begin());
      // Collect all uses, before casting.
      for (auto *Use : NormalBB->getBBArg(0)->getUses()) {
        OriginalResultUses.push_back(Use);
      }
      NormalBB->getBBArg(0)->replaceAllUsesWith(SILUndef::get(AI.getType(), Mod));
      NormalBB->replaceBBArg(0, ResultTy, nullptr);
    }

    // The result value is passed as a parameter to the normal block.
    ResultValue = ResultBB->getBBArg(0);
  }

  // Check if any casting is required for the return value.
  ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue,
                                             ResultTy, AI.getType()).getValue();

  DEBUG(llvm::dbgs() << "        SUCCESS: " << F->getName() << "\n");
  NumClassDevirt++;

  if (NormalBB) {
    if (NormalBB != ResultBB) {
      // If artificial normal BB was introduced, branch
      // to the original normal BB.
      B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue });
    } else if (ResultCastRequired) {
      // Update all original uses by the new value.
      for(auto *Use: OriginalResultUses) {
        Use->set(ResultValue);
      }
    }
    return std::make_pair(NewAI.getInstruction(), NewAI);
  }

  // We need to return a pair of values here:
  // - the first one is the actual result of the devirtualized call, possibly
  //   casted into an appropriate type. This SILValue may be a BB arg, if it
  //   was a cast between optional types.
  // - the second one is the new apply site.
  return std::make_pair(ResultValue.getDef(), NewAI);
}
/// \brief Returns true, if a method implementation to be called by the
/// default case handler of a speculative devirtualization is statically
/// known. This happens if it can be proven that generated
/// checked_cast_br instructions cover all other possible cases.
///
/// \p CHA class hierarchy analysis to be used
/// \p AI  invocation instruction
/// \p CD  static class of the instance whose method is being invoked
/// \p Subs set of direct subclasses of this class
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
                               FullApplySite AI,
                               ClassDecl *CD,
                               ClassHierarchyAnalysis::ClassList &Subs) {
  ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
  auto *Method = CMI->getMember().getFuncDecl();
  const DeclContext *DC = AI.getModule().getAssociatedContext();

  if (CD->isFinal())
    return true;

  // Without an associated context we cannot perform any
  // access-based optimizations.
  if (!DC)
    return false;

  // Only handle classes defined within the SILModule's associated context.
  if (!CD->isChildContextOf(DC))
    return false;

  if (!CD->hasAccessibility())
    return false;

  // Only consider 'private' members, unless we are in whole-module compilation.
  switch (CD->getEffectiveAccess()) {
  case Accessibility::Public:
    return false;
  case Accessibility::Internal:
    if (!AI.getModule().isWholeModule())
      return false;
    break;
  case Accessibility::Private:
    break;
  }

  // This is a private or a module internal class.
  //
  // We can analyze the class hierarchy rooted at it and
  // eventually devirtualize a method call more efficiently.

  // First, analyze all direct subclasses.
  // We know that a dedicated checked_cast_br check is
  // generated for each direct subclass by tryToSpeculateTarget.
  for (auto S : Subs) {
    // Check if the subclass overrides a method
    auto *FD = S->findOverridingDecl(Method);
    if (!FD)
      continue;
    if (CHA->hasKnownDirectSubclasses(S)) {
      // This subclass has its own subclasses and
      // they will use this implementation or provide
      // their own. In either case it is not covered by
      // checked_cast_br instructions generated by
      // tryToSpeculateTarget. Therefore it increases
      // the number of remaining cases to be handled
      // by the default case handler.
      return false;
    }
  }

  // Then, analyze indirect subclasses.

  // Set of indirect subclasses for the class.
  auto &IndirectSubs = CHA->getIndirectSubClasses(CD);

  // Check if any indirect subclasses use an implementation
  // of the method different from the implementation in
  // the current class. If this is the case, then such
  // an indirect subclass would need a dedicated
  // checked_cast_br check to be devirtualized. But this is
  // not done by tryToSpeculateTarget yet and therefore
  // such a subclass should be handled by the "default"
  // case handler, which essentially means that "default"
  // case cannot be devirtualized since it covers more
  // then one alternative.
  for (auto S : IndirectSubs) {
    auto *ImplFD = S->findImplementingMethod(Method);
    if (ImplFD != Method) {
      // Different implementation is used by a subclass.
      // Therefore, the default case is not known.
      return false;
    }
  }

  return true;
}
Beispiel #20
0
// Return the list of functions that can be called via the given apply
// site.
CalleeList CalleeCache::getCalleeList(FullApplySite FAS) const {
  return getCalleeListForCalleeKind(FAS.getCallee());
}
/// \brief Try to speculate the call target for the call \p AI. This function
/// returns true if a change was made.
static bool tryToSpeculateTarget(FullApplySite AI,
                                 ClassHierarchyAnalysis *CHA) {
  ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());

  // We cannot devirtualize in cases where dynamic calls are
  // semantically required.
  if (CMI->isVolatile())
    return false;

  // Strip any upcasts off of our 'self' value, potentially leaving us
  // with a value whose type is closer (in the class hierarchy) to the
  // actual dynamic type.
  auto SubTypeValue = CMI->getOperand().stripUpCasts();
  SILType SubType = SubTypeValue.getType();

  // Bail if any generic types parameters of the class instance type are
  // unbound.
  // We cannot devirtualize unbound generic calls yet.
  if (isNominalTypeWithUnboundGenericParameters(SubType, AI.getModule()))
    return false;

  auto &M = CMI->getModule();
  auto ClassType = SubType;
  if (SubType.is<MetatypeType>())
    ClassType = SubType.getMetatypeInstanceType(M);

  CheckedCastBranchInst *LastCCBI = nullptr;

  ClassDecl *CD = ClassType.getClassOrBoundGenericClass();
  assert(CD && "Expected decl for class type!");

  if (!CHA->hasKnownDirectSubclasses(CD)) {
    // If there is only one possible alternative for this method,
    // try to devirtualize it completely.
    ClassHierarchyAnalysis::ClassList Subs;
    if (isDefaultCaseKnown(CHA, AI, CD, Subs)) {
      auto NewInstPair = tryDevirtualizeClassMethod(AI, SubTypeValue);
      if (NewInstPair.first)
        replaceDeadApply(AI, NewInstPair.first);
      return NewInstPair.second.getInstruction() != nullptr;
    }

    DEBUG(llvm::dbgs() << "Inserting monomorphic speculative call for class " <<
          CD->getName() << "\n");
    return !!speculateMonomorphicTarget(AI, SubType, LastCCBI);
  }

  // True if any instructions were changed or generated.
  bool Changed = false;

  // Collect the direct and indirect subclasses for the class.
  // Sort these subclasses in the order they should be tested by the
  // speculative devirtualization. Different strategies could be used,
  // E.g. breadth-first, depth-first, etc.
  // Currently, let's use the breadth-first strategy.
  // The exact static type of the instance should be tested first.
  auto &DirectSubs = CHA->getDirectSubClasses(CD);
  auto &IndirectSubs = CHA->getIndirectSubClasses(CD);

  SmallVector<ClassDecl *, 8> Subs(DirectSubs);
  Subs.append(IndirectSubs.begin(), IndirectSubs.end());

  if (isa<BoundGenericClassType>(ClassType.getSwiftRValueType())) {
    // Filter out any subclassses that do not inherit from this
    // specific bound class.
    auto RemovedIt = std::remove_if(Subs.begin(),
        Subs.end(),
        [&ClassType, &M](ClassDecl *Sub){
          auto SubCanTy = Sub->getDeclaredType()->getCanonicalType();
          // Unbound generic type can override a method from
          // a bound generic class, but this unbound generic
          // class is not considered to be a subclass of a
          // bound generic class in a general case.
          if (isa<UnboundGenericType>(SubCanTy))
            return false;
          // Handle the usual case here: the class in question
          // should be a real subclass of a bound generic class.
          return !ClassType.isSuperclassOf(
              SILType::getPrimitiveObjectType(SubCanTy));
        });
    Subs.erase(RemovedIt, Subs.end());
  }

  // Number of subclasses which cannot be handled by checked_cast_br checks.
  int NotHandledSubsNum = 0;
  if (Subs.size() > MaxNumSpeculativeTargets) {
    DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many ("
                       << Subs.size() << ") subclasses. Performing speculative "
                         "devirtualization only for the first "
                       << MaxNumSpeculativeTargets << " of them.\n");

    NotHandledSubsNum += (Subs.size() - MaxNumSpeculativeTargets);
    Subs.erase(&Subs[MaxNumSpeculativeTargets], Subs.end());
  }

  DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
        "Inserting polymorphic speculative call.\n");

  // Try to devirtualize the static class of instance
  // if it is possible.
  auto FirstAI = speculateMonomorphicTarget(AI, SubType, LastCCBI);
  if (FirstAI) {
    Changed = true;
    AI = FirstAI;
  }

  // Perform a speculative devirtualization of a method invocation.
  // It replaces an indirect class_method-based call by a code to perform
  // a direct call of the method implementation based on the dynamic class
  // of the instance.
  //
  // The code is generated according to the following principles:
  //
  // - For each direct subclass, a dedicated checked_cast_br instruction
  // is generated to check if a dynamic class of the instance is exactly
  // this subclass.
  //
  // - If this check succeeds, then it jumps to the code which performs a
  // direct call of a method implementation specific to this subclass.
  //
  // - If this check fails, then a different subclass is checked by means of
  // checked_cast_br in a similar way.
  //
  // - Finally, if the instance does not exactly match any of the direct
  // subclasses, the "default" case code is generated, which should handle
  // all remaining alternatives, i.e. it should be able to dispatch to any
  // possible remaining method implementations. Typically this is achieved by
  // using a class_method instruction, which performs an indirect invocation.
  // But if it can be proven that only one specific implementation of
  // a method will be always invoked by this code, then a class_method-based
  // call can be devirtualized and replaced by a more efficient direct
  // invocation of this specific method implementation.
  //
  // Remark: With the current implementation of a speculative devirtualization,
  // if devirtualization of the "default" case is possible, then it would
  // by construction directly invoke the implementation of the method
  // corresponding to the static type of the instance. This may change
  // in the future, if we start using PGO for ordering of checked_cast_br
  // checks.

  // TODO: The ordering of checks may benefit from using a PGO, because
  // the most probable alternatives could be checked first.

  for (auto S : Subs) {
    DEBUG(llvm::dbgs() << "Inserting a speculative call for class "
          << CD->getName() << " and subclass " << S->getName() << "\n");

    CanType CanClassType = S->getDeclaredType()->getCanonicalType();
    SILType ClassType = SILType::getPrimitiveObjectType(CanClassType);
    if (!ClassType.getClassOrBoundGenericClass()) {
      // This subclass cannot be handled. This happens e.g. if it is
      // a generic class.
      NotHandledSubsNum++;
      continue;
    }

    auto ClassOrMetatypeType = ClassType;
    if (auto EMT = SubType.getAs<AnyMetatypeType>()) {
      auto InstTy = ClassType.getSwiftRValueType();
      auto *MetaTy = MetatypeType::get(InstTy, EMT->getRepresentation());
      auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
      ClassOrMetatypeType = SILType::getPrimitiveObjectType(CanMetaTy);
    }

    // Pass the metatype of the subclass.
    auto NewAI = speculateMonomorphicTarget(AI, ClassOrMetatypeType, LastCCBI);
    if (!NewAI) {
      NotHandledSubsNum++;
      continue;
    }
    AI = NewAI;
    Changed = true;
  }

  // Check if there is only a single statically known implementation
  // of the method which can be called by the default case handler.
  if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
    // Devirtualization of remaining cases is not possible,
    // because more than one implementation of the method
    // needs to be handled here. Thus, an indirect call through
    // the class_method cannot be eliminated completely.
    //
    return Changed;
  }

  // At this point it is known that there is only one remaining method
  // implementation which is not covered by checked_cast_br checks yet.
  // So, it is safe to replace a class_method invocation by
  // a direct call of this remaining implementation.
  if (LastCCBI && SubTypeValue == LastCCBI->getOperand()) {
    // Remove last checked_cast_br, because it will always succeed.
    SILBuilderWithScope B(LastCCBI);
    auto CastedValue = B.createUncheckedBitCast(LastCCBI->getLoc(),
                                                LastCCBI->getOperand(),
                                                LastCCBI->getCastType());
    B.createBranch(LastCCBI->getLoc(), LastCCBI->getSuccessBB(), {CastedValue});
    LastCCBI->eraseFromParent();
    return true;
  }
  auto NewInstPair = tryDevirtualizeClassMethod(AI, SubTypeValue);
  assert(NewInstPair.first && "Expected to be able to devirtualize apply!");
  replaceDeadApply(AI, NewInstPair.first);

  return true;
}
Beispiel #22
0
/// Inlines all mandatory inlined functions into the body of a function,
/// first recursively inlining all mandatory apply instructions in those
/// functions into their bodies if necessary.
///
/// \param F the function to be processed
/// \param AI nullptr if this is being called from the top level; the relevant
///   ApplyInst requiring the recursive call when non-null
/// \param FullyInlinedSet the set of all functions already known to be fully
///   processed, to avoid processing them over again
/// \param SetFactory an instance of ImmutableFunctionSet::Factory
/// \param CurrentInliningSet the set of functions currently being inlined in
///   the current call stack of recursive calls
///
/// \returns true if successful, false if failed due to circular inlining.
static bool
runOnFunctionRecursively(SILOptFunctionBuilder &FuncBuilder,
			 SILFunction *F, FullApplySite AI,
                         DenseFunctionSet &FullyInlinedSet,
                         ImmutableFunctionSet::Factory &SetFactory,
                         ImmutableFunctionSet CurrentInliningSet,
                         ClassHierarchyAnalysis *CHA) {
  // Avoid reprocessing functions needlessly.
  if (FullyInlinedSet.count(F))
    return true;

  // Prevent attempt to circularly inline.
  if (CurrentInliningSet.contains(F)) {
    // This cannot happen on a top-level call, so AI should be non-null.
    assert(AI && "Cannot have circular inline without apply");
    SILLocation L = AI.getLoc();
    assert(L && "Must have location for transparent inline apply");
    diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
             diag::circular_transparent);
    return false;
  }

  // Add to the current inlining set (immutably, so we only affect the set
  // during this call and recursive subcalls).
  CurrentInliningSet = SetFactory.add(CurrentInliningSet, F);

  SmallVector<std::pair<SILValue, ParameterConvention>, 16> CaptureArgs;
  SmallVector<SILValue, 32> FullArgs;

  // Visiting blocks in reverse order avoids revisiting instructions after block
  // splitting, which would be quadratic.
  for (auto BI = F->rbegin(), BE = F->rend(), nextBB = BI; BI != BE;
       BI = nextBB) {
    // After inlining, the block iterator will be adjusted to point to the last
    // block containing inlined instructions. This way, the inlined function
    // body will be reprocessed within the caller's context without revisiting
    // any original instructions.
    nextBB = std::next(BI);

    // While iterating over this block, instructions are inserted and deleted.
    // To avoid quadratic block splitting, instructions must be processed in
    // reverse order (block splitting reassigned the parent pointer of all
    // instructions below the split point).
    for (auto II = BI->rbegin(); II != BI->rend(); ++II) {
      FullApplySite InnerAI = FullApplySite::isa(&*II);
      if (!InnerAI)
        continue;

      // *NOTE* If devirtualization succeeds, devirtInst may not be InnerAI,
      // but a casted result of InnerAI or even a block argument due to
      // abstraction changes when calling the witness or class method.
      auto *devirtInst = tryDevirtualizeApplyHelper(InnerAI, CHA);
      // Restore II to the current apply site.
      II = devirtInst->getReverseIterator();
      // If the devirtualized call result is no longer a invalid FullApplySite,
      // then it has succeeded, but the result is not immediately inlinable.
      InnerAI = FullApplySite::isa(devirtInst);
      if (!InnerAI)
        continue;

      SILValue CalleeValue = InnerAI.getCallee();
      bool IsThick;
      PartialApplyInst *PAI;
      SILFunction *CalleeFunction = getCalleeFunction(
          F, InnerAI, IsThick, CaptureArgs, FullArgs, PAI);

      if (!CalleeFunction)
        continue;

      // Then recursively process it first before trying to inline it.
      if (!runOnFunctionRecursively(FuncBuilder, CalleeFunction, InnerAI,
                                    FullyInlinedSet, SetFactory,
                                    CurrentInliningSet, CHA)) {
        // If we failed due to circular inlining, then emit some notes to
        // trace back the failure if we have more information.
        // FIXME: possibly it could be worth recovering and attempting other
        // inlines within this same recursive call rather than simply
        // propagating the failure.
        if (AI) {
          SILLocation L = AI.getLoc();
          assert(L && "Must have location for transparent inline apply");
          diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
                   diag::note_while_inlining);
        }
        return false;
      }

      // Get our list of substitutions.
      auto Subs = (PAI
                   ? PAI->getSubstitutionMap()
                   : InnerAI.getSubstitutionMap());

      SILOpenedArchetypesTracker OpenedArchetypesTracker(F);
      F->getModule().registerDeleteNotificationHandler(
          &OpenedArchetypesTracker);
      // The callee only needs to know about opened archetypes used in
      // the substitution list.
      OpenedArchetypesTracker.registerUsedOpenedArchetypes(
          InnerAI.getInstruction());
      if (PAI) {
        OpenedArchetypesTracker.registerUsedOpenedArchetypes(PAI);
      }

      SILInliner Inliner(FuncBuilder, SILInliner::InlineKind::MandatoryInline,
                         Subs, OpenedArchetypesTracker);
      if (!Inliner.canInlineApplySite(InnerAI))
        continue;

      // Inline function at I, which also changes I to refer to the first
      // instruction inlined in the case that it succeeds. We purposely
      // process the inlined body after inlining, because the inlining may
      // have exposed new inlining opportunities beyond those present in
      // the inlined function when processed independently.
      LLVM_DEBUG(llvm::errs() << "Inlining @" << CalleeFunction->getName()
                              << " into @" << InnerAI.getFunction()->getName()
                              << "\n");

      // If we intend to inline a thick function, then we need to balance the
      // reference counts for correctness.
      if (IsThick) {
        bool IsCalleeGuaranteed =
            PAI &&
            PAI->getType().castTo<SILFunctionType>()->isCalleeGuaranteed();
        fixupReferenceCounts(InnerAI.getInstruction(), CalleeValue, CaptureArgs,
                             IsCalleeGuaranteed);
      }

      // Register a callback to record potentially unused function values after
      // inlining.
      ClosureCleanup closureCleanup;
      Inliner.setDeletionCallback([&closureCleanup](SILInstruction *I) {
        closureCleanup.recordDeadFunction(I);
      });

      // Inlining deletes the apply, and can introduce multiple new basic
      // blocks. After this, CalleeValue and other instructions may be invalid.
      // nextBB will point to the last inlined block
      auto firstInlinedInstAndLastBB =
          Inliner.inlineFunction(CalleeFunction, InnerAI, FullArgs);
      nextBB = firstInlinedInstAndLastBB.second->getReverseIterator();
      ++NumMandatoryInlines;

      // The IR is now valid, and trivial dead arguments are removed. However,
      // we may be able to remove dead callee computations (e.g. dead
      // partial_apply closures).
      closureCleanup.cleanupDeadClosures(F);

      // Resume inlining within nextBB, which contains only the inlined
      // instructions and possibly instructions in the original call block that
      // have not yet been visited.
      break;
    }
  }
  // Keep track of full inlined functions so we don't waste time recursively
  // reprocessing them.
  FullyInlinedSet.insert(F);
  return true;
}
Beispiel #23
0
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
///    devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
                                       SILType ClassOrMetatypeType) {

  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();

  // First attempt to lookup the origin for our class method. The origin should
  // either be a metatype or an alloc_ref.
  DEBUG(llvm::dbgs() << "        Origin Type: " << ClassOrMetatypeType);

  auto *MI = cast<MethodInst>(AI.getCallee());

  // Find the implementation of the member which should be invoked.
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  // If we do not find any such function, we have no function to devirtualize
  // to... so bail.
  if (!F) {
    DEBUG(llvm::dbgs() << "        FAIL: Could not find matching VTable or "
                          "vtable method for this class.\n");
    return false;
  }

  if (!F->shouldOptimize()) {
    // Do not consider functions that should not be optimized.
    DEBUG(llvm::dbgs() << "        FAIL: Could not optimize function "
                       << " because it is marked no-opt: " << F->getName()
                       << "\n");
    return false;
  }

  if (AI.getFunction()->isFragile()) {
    // function_ref inside fragile function cannot reference a private or
    // hidden symbol.
    if (!F->hasValidLinkageForFragileRef())
      return false;
  }

  // Type of the actual function to be called.
  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  // Type of the actual function to be called with substitutions applied.
  CanSILFunctionType SubstCalleeType = GenCalleeType;

  // For polymorphic functions, bail if the number of substitutions is
  // not the same as the number of expected generic parameters.
  if (GenCalleeType->isPolymorphic()) {
    // First, find proper list of substitutions for the concrete
    // method to be called.
    SmallVector<Substitution, 4> Subs;
    getSubstitutionsForCallee(Mod, GenCalleeType,
                              ClassOrMetatypeType.getSwiftRValueType(),
                              AI, Subs);
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
  }

  // Check if the optimizer knows how to cast the return type.
  SILType ReturnType = SubstCalleeType->getSILResult();

  if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType()))
      return false;

  return true;
}