Beispiel #1
0
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
///    self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
FullApplySite swift::devirtualizeClassMethod(FullApplySite AI,
                                             SILValue ClassOrMetatype,
                                             OptRemark::Emitter *ORE) {
  LLVM_DEBUG(llvm::dbgs() << "    Trying to devirtualize : "
                          << *AI.getInstruction());

  SILModule &Mod = AI.getModule();
  auto *MI = cast<MethodInst>(AI.getCallee());
  auto ClassOrMetatypeType = ClassOrMetatype->getType();
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  SubstitutionMap Subs =
    getSubstitutionsForCallee(Mod, GenCalleeType,
                              ClassOrMetatypeType.getASTType(),
                              AI);
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
  SILFunctionConventions substConv(SubstCalleeType, Mod);

  SILBuilderWithScope B(AI.getInstruction());
  SILLocation Loc = AI.getLoc();
  FunctionRefInst *FRI = B.createFunctionRef(Loc, F);

  // Create the argument list for the new apply, casting when needed
  // in order to handle covariant indirect return types and
  // contravariant argument types.
  llvm::SmallVector<SILValue, 8> NewArgs;

  auto IndirectResultArgIter = AI.getIndirectSILResults().begin();
  for (auto ResultTy : substConv.getIndirectSILResultTypes()) {
    NewArgs.push_back(
        castValueToABICompatibleType(&B, Loc, *IndirectResultArgIter,
                                     IndirectResultArgIter->getType(), ResultTy));
    ++IndirectResultArgIter;
  }

  auto ParamArgIter = AI.getArgumentsWithoutIndirectResults().begin();
  // Skip the last parameter, which is `self`. Add it below.
  for (auto param : substConv.getParameters().drop_back()) {
    auto paramType = substConv.getSILType(param);
    NewArgs.push_back(
        castValueToABICompatibleType(&B, Loc, *ParamArgIter,
                                     ParamArgIter->getType(), paramType));
    ++ParamArgIter;
  }

  // Add the self argument, upcasting if required because we're
  // calling a base class's method.
  auto SelfParamTy = substConv.getSILType(SubstCalleeType->getSelfParameter());
  NewArgs.push_back(castValueToABICompatibleType(&B, Loc,
                                                 ClassOrMetatype,
                                                 ClassOrMetatypeType,
                                                 SelfParamTy));

  ApplySite NewAS = replaceApplySite(B, Loc, AI, FRI, Subs, NewArgs, substConv);
  FullApplySite NewAI = FullApplySite::isa(NewAS.getInstruction());
  assert(NewAI);

  LLVM_DEBUG(llvm::dbgs() << "        SUCCESS: " << F->getName() << "\n");
  if (ORE)
    ORE->emit([&]() {
        using namespace OptRemark;
        return RemarkPassed("ClassMethodDevirtualized", *AI.getInstruction())
               << "Devirtualized call to class method " << NV("Method", F);
      });
  NumClassDevirt++;

  return NewAI;
}
Beispiel #2
0
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
///    self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI,
                                                     SILValue ClassOrMetatype) {
  DEBUG(llvm::dbgs() << "    Trying to devirtualize : " << *AI.getInstruction());

  SILModule &Mod = AI.getModule();
  auto *MI = cast<MethodInst>(AI.getCallee());
  auto ClassOrMetatypeType = ClassOrMetatype->getType();
  auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI);

  CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();

  SmallVector<Substitution, 4> Subs;
  getSubstitutionsForCallee(Mod, GenCalleeType,
                            ClassOrMetatypeType.getSwiftRValueType(),
                            AI, Subs);
  CanSILFunctionType SubstCalleeType = GenCalleeType;
  if (GenCalleeType->isPolymorphic())
    SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Subs);
  SILFunctionConventions substConv(SubstCalleeType, Mod);

  SILBuilderWithScope B(AI.getInstruction());
  FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F);

  // Create the argument list for the new apply, casting when needed
  // in order to handle covariant indirect return types and
  // contravariant argument types.
  llvm::SmallVector<SILValue, 8> NewArgs;

  auto IndirectResultArgIter = AI.getIndirectSILResults().begin();
  for (auto ResultTy : substConv.getIndirectSILResultTypes()) {
    NewArgs.push_back(
        castValueToABICompatibleType(&B, AI.getLoc(), *IndirectResultArgIter,
                                     IndirectResultArgIter->getType(), ResultTy));
    ++IndirectResultArgIter;
  }

  auto ParamArgIter = AI.getArgumentsWithoutIndirectResults().begin();
  // Skip the last parameter, which is `self`. Add it below.
  for (auto param : substConv.getParameters().drop_back()) {
    auto paramType = substConv.getSILType(param);
    NewArgs.push_back(
        castValueToABICompatibleType(&B, AI.getLoc(), *ParamArgIter,
                                     ParamArgIter->getType(), paramType));
    ++ParamArgIter;
  }

  // Add the self argument, upcasting if required because we're
  // calling a base class's method.
  auto SelfParamTy = substConv.getSILType(SubstCalleeType->getSelfParameter());
  NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(),
                                                 ClassOrMetatype,
                                                 ClassOrMetatypeType,
                                                 SelfParamTy));

  SILType ResultTy = substConv.getSILResultType();

  SILType SubstCalleeSILType =
    SILType::getPrimitiveObjectType(SubstCalleeType);
  FullApplySite NewAI;

  SILBasicBlock *ResultBB = nullptr;
  SILBasicBlock *NormalBB = nullptr;
  SILValue ResultValue;
  bool ResultCastRequired = false;
  SmallVector<Operand *, 4> OriginalResultUses;

  if (!isa<TryApplyInst>(AI)) {
    NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy,
                          Subs, NewArgs, cast<ApplyInst>(AI)->isNonThrowing());
    ResultValue = NewAI.getInstruction();
  } else {
    auto *TAI = cast<TryApplyInst>(AI);
    // Create new normal and error BBs only if:
    // - re-using a BB would create a critical edge
    // - or, the result of the new apply would be of different
    //   type than the argument of the original normal BB.
    if (TAI->getNormalBB()->getSinglePredecessorBlock())
      ResultBB = TAI->getNormalBB();
    else {
      ResultBB = B.getFunction().createBasicBlock();
      ResultBB->createPHIArgument(ResultTy, ValueOwnershipKind::Owned);
    }

    NormalBB = TAI->getNormalBB();

    SILBasicBlock *ErrorBB = nullptr;
    if (TAI->getErrorBB()->getSinglePredecessorBlock())
      ErrorBB = TAI->getErrorBB();
    else {
      ErrorBB = B.getFunction().createBasicBlock();
      ErrorBB->createPHIArgument(TAI->getErrorBB()->getArgument(0)->getType(),
                                 ValueOwnershipKind::Owned);
    }

    NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType,
                             Subs, NewArgs,
                             ResultBB, ErrorBB);
    if (ErrorBB != TAI->getErrorBB()) {
      B.setInsertionPoint(ErrorBB);
      B.createBranch(TAI->getLoc(), TAI->getErrorBB(),
                     {ErrorBB->getArgument(0)});
    }

    // Does the result value need to be casted?
    ResultCastRequired = ResultTy != NormalBB->getArgument(0)->getType();

    if (ResultBB != NormalBB)
      B.setInsertionPoint(ResultBB);
    else if (ResultCastRequired) {
      B.setInsertionPoint(NormalBB->begin());
      // Collect all uses, before casting.
      for (auto *Use : NormalBB->getArgument(0)->getUses()) {
        OriginalResultUses.push_back(Use);
      }
      NormalBB->getArgument(0)->replaceAllUsesWith(
          SILUndef::get(AI.getType(), Mod));
      NormalBB->replacePHIArgument(0, ResultTy, ValueOwnershipKind::Owned);
    }

    // The result value is passed as a parameter to the normal block.
    ResultValue = ResultBB->getArgument(0);
  }

  // Check if any casting is required for the return value.
  ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue,
                                             ResultTy, AI.getType());

  DEBUG(llvm::dbgs() << "        SUCCESS: " << F->getName() << "\n");
  NumClassDevirt++;

  if (NormalBB) {
    if (NormalBB != ResultBB) {
      // If artificial normal BB was introduced, branch
      // to the original normal BB.
      B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue });
    } else if (ResultCastRequired) {
      // Update all original uses by the new value.
      for (auto *Use: OriginalResultUses) {
        Use->set(ResultValue);
      }
    }
    return std::make_pair(NewAI.getInstruction(), NewAI);
  }

  // We need to return a pair of values here:
  // - the first one is the actual result of the devirtualized call, possibly
  //   casted into an appropriate type. This SILValue may be a BB arg, if it
  //   was a cast between optional types.
  // - the second one is the new apply site.
  return std::make_pair(ResultValue, NewAI);
}