Beispiel #1
0
void
GlidePolarTest::Init()
{
  // Polar 1 from PolarStore (206 Hornet)
  polar.SetCoefficients(PolarCoefficients(fixed(0.0022032), fixed(-0.08784),
                                          fixed(1.47)), false);

  polar.SetReferenceMass(fixed(318), false);
  polar.SetDryMass(fixed(318), false);
  polar.SetBallastRatio(fixed(100) / polar.reference_mass);

  polar.SetWingArea(fixed(9.8));

  // No ballast and no bugs on the wings
  polar.ballast = fixed(0);
  polar.bugs = fixed(1);

  // MC zero
  polar.mc = fixed(0);

  polar.SetVMax(Units::ToSysUnit(fixed(200), Unit::KILOMETER_PER_HOUR), false);
}
Beispiel #2
0
/**
 * Loads calculated values from the persistent memory file
 * @param Calculated DERIVED_INFO the values should be loaded into
 */
void
LoadCalculationsPersist(DERIVED_INFO *Calculated,
                        ProtectedTaskManager &protected_task_manager,
                        GlideComputer &glide_computer)
{

  return; // do nothing, this is broken for CommonStats

  // Get the persistent memory filename
  if (szCalculationsPersistFileName[0] == 0) {
    if (is_altair()) {
      LocalPath(szCalculationsPersistFileName, _T("persist/xcsoar-persist.log"));
      LocalPath(szCalculationsPersistDirectory, _T("persist"));
    } else {
      LocalPath(szCalculationsPersistFileName, _T("xcsoar-persist.log"));
      _tcscpy(szCalculationsPersistDirectory, GetPrimaryDataPath());
    }
  }

  // Debug Log
  LogStartUp(_T("LoadCalculationsPersist"));

  unsigned sizein;

  // Try to open the persistent memory file
  FILE *file = _tfopen(szCalculationsPersistFileName, _T("rb"));
  if (file == NULL) {
    LogStartUp(_T("LoadCalculationsPersist file not found"));
    return;
  }

  fread(&sizein, sizeof(sizein), 1, file);
  if (sizein != sizeof(*Calculated)) {
    fclose(file);
    return;
  }

  // Read persistent memory into Calculated
  fread(Calculated, sizeof(*Calculated), 1, file);

  fread(&sizein, sizeof(sizein), 1, file);
  if (sizein != sizeof(glide_computer.GetFlightStats())) {
    glide_computer.ResetFlight();
    fclose(file);
    return;
  }

  // Read persistent memory into FlightStats
  fread(&glide_computer.GetFlightStats(), sizeof(glide_computer.GetFlightStats()), 1, file);

  /// @todo persistence for OLC data

  fread(&sizein, sizeof(sizein), 1, file);
  if (sizein != 4 * sizeof(double)) {
    fclose(file);
    return;
  }
  GlidePolar polar = glide_computer.SettingsComputer().glide_polar_task;

  double MACCREADY = polar.get_mc();
  double BUGS = polar.get_bugs();
  double BALLAST = polar.get_ballast();

  // Read persistent memory into MacCready, QNH, bugs, ballast and temperature
  fread(&MACCREADY, sizeof(double), 1, file);
  fread(&BUGS, sizeof(double), 1, file);
  fread(&BALLAST, sizeof(double), 1, file);
  fread(&CuSonde::maxGroundTemperature,
      sizeof(CuSonde::maxGroundTemperature), 1, file);

  //    ReadFile(hFile,&CRUISE_EFFICIENCY,
  //             size,&dwBytesWritten,(OVERLAPPED*)NULL);

  MACCREADY = min(10.0, max(MACCREADY, 0.0));
  BUGS = min(1.0, max(BUGS, 0.0));
  BALLAST = min(1.0, max(BALLAST, 0.0));
  //   CRUISE_EFFICIENCY = min(1.5, max(CRUISE_EFFICIENCY,0.75));

  polar.set_mc(fixed(MACCREADY));
  polar.set_bugs(fixed(BUGS));
  polar.set_ballast(fixed(BALLAST));
  protected_task_manager.set_glide_polar(polar);

  LogStartUp(_T("LoadCalculationsPersist OK"));

  fclose(file);
}
Beispiel #3
0
static void
Test(const fixed distance, const fixed altitude, const SpeedVector wind)
{
    const GeoVector vector(distance, Angle::Zero());
    const GlideState state(vector,
                           fixed(2000), fixed(2000) + altitude,
                           wind);
    const GlideResult result =
        MacCready::Solve(glide_settings, glide_polar, state);

    const fixed ld_ground = glide_polar.GetLDOverGround(vector.bearing, wind);

    const fixed mc = glide_polar.GetMC();
    const fixed v_climb_progress = mc * ld_ground - state.head_wind;

    const fixed initial_glide_distance = state.altitude_difference * ld_ground;
    if (initial_glide_distance >= distance ||
            (!positive(mc) && !positive(v_climb_progress))) {
        /* reachable by pure glide */
        ok1(result.validity == GlideResult::Validity::OK);

        const fixed best_speed =
            glide_polar.GetBestGlideRatioSpeed(state.head_wind);
        const fixed best_sink = glide_polar.SinkRate(best_speed);
        const fixed ld_ground2 = positive(mc)
                                 ? ld_ground
                                 : (best_speed - state.head_wind) / best_sink;

        const fixed height_glide = distance / ld_ground2;
        const fixed height_climb = fixed(0);
        const fixed altitude_difference = altitude - height_glide;

        ok1(equals(result.head_wind, wind.norm));
        ok1(equals(result.vector.distance, distance));
        ok1(equals(result.height_climb, height_climb));
        ok1(equals(result.height_glide, height_glide));
        ok1(equals(result.altitude_difference, altitude_difference));
        return;
    }

    if (!positive(v_climb_progress)) {
        /* excessive wind */
        ok1(result.validity == GlideResult::Validity::WIND_EXCESSIVE);
        return;
    }

    /*
    const fixed drifted_distance = (distance - initial_glide_distance)
      * state.head_wind / v_climb_progress;
      */
    const fixed drifted_height_climb = (distance - initial_glide_distance)
                                       * mc / v_climb_progress;
    const fixed drifted_height_glide =
        drifted_height_climb + state.altitude_difference;

    const fixed height_glide = drifted_height_glide;
    const fixed altitude_difference = altitude - height_glide;
    const fixed height_climb = drifted_height_climb;

    const fixed time_climb = height_climb / mc;
    const fixed time_glide = height_glide / glide_polar.GetSBestLD();
    const fixed time_elapsed = time_climb + time_glide;

    /* more tolerance with strong wind because this unit test doesn't
       optimise pure glide */
    const int accuracy = positive(altitude) && positive(wind.norm)
                         ? (wind.norm > fixed(5) ? 5 : 10)
                         : ACCURACY;

    ok1(result.validity == GlideResult::Validity::OK);
    ok1(equals(result.head_wind, wind.norm));
    ok1(equals(result.vector.distance, distance));
    ok1(equals(result.height_climb, height_climb, accuracy));
    ok1(equals(result.height_glide, height_glide, accuracy));
    ok1(equals(result.altitude_difference, altitude_difference, accuracy));
    ok1(equals(result.time_elapsed, time_elapsed, accuracy));
}
Beispiel #4
0
void
VarioBarRenderer::Draw(Canvas &canvas, const PixelRect &rc,
                            const MoreData &basic,
                            const DerivedInfo &calculated,
                            const GlidePolar &glide_polar,
                            const bool vario_bar_avg_enabled) const
{
#ifdef ENABLE_OPENGL
  const ScopeAlphaBlend alpha_blend;
#endif

  RasterPoint VarioBar[6] = {
      { 0, 0 }, { 9, -9 }, { 18, 0 }, { 18, 0 }, { 9, 0 }, { 0, 0 }
  };
  RasterPoint VarioBarAvg[4] = {
      { 0, 0 }, { 9, -9 }, { 9, 0 }, { 0, 0 }
  };
  RasterPoint clipping_arrow[6] = {
      { 0, 0 }, { 9, 9 }, { 18, 0 }, { 18, 6 }, { 9, 15 }, { 0, 6 }
  };
  RasterPoint clipping_arrow_av[4] = {
      { 0, 0 }, { 9, 9 }, { 9, 15 }, { 0, 6 }
  };
  RasterPoint mc_arrow[6] = {
      { 0, 0 }, { 9, -9 }, { 18, 0 }, { 18, -2 }, { 9, -11 }, { 0, -2 }
  };

  TCHAR Value[10];

  const int y0 = (rc.bottom + rc.top) / 2;

  /* NOTE: size_divisor replaces the fixed value 9 that was used throughout
   * the code sink which caused fixed size rendering regardless of
   * map size (except the effects of Layout::Scale()). This method
   * is not usable with variable map sizes (e.g. because of the cross-section
   * area). size_divisor is used to introduce a screen size dependent scaling.
   * That workaround is an ugly hack and needs a rework. */
  const auto size_divisor =
    std::max((fixed) Layout::Scale(70 / (rc.bottom - rc.top)), fixed(0.15));

  PixelScalar dy_variobar = 0;
  PixelScalar dy_variobar_av = 0;
  PixelScalar dy_variobar_mc = 0;

  PixelScalar clipping_arrow_offset = Layout::Scale(4);
  PixelScalar clipping_arrow_av_offset = Layout::Scale(4);
//  PixelScalar clipping_arrow_mc_offset = Layout::Scale(4);

  auto vario_gross = basic.brutto_vario;

  FormatUserVerticalSpeed(vario_gross, Value, false, true);
  canvas.Select(*look.font);
  const PixelSize text_size = canvas.CalcTextSize(Value);

  auto vario_avg = calculated.average;

  // cut vario_gross at +- 5 meters/s
  if (vario_gross > fixed(5))
    vario_gross = fixed(5);
  if (vario_gross < fixed(-5))
    vario_gross = fixed(-5);

  int Offset = (int)(vario_gross / size_divisor);

  Offset = Layout::Scale(Offset);
  if (!positive(vario_gross)) {
    VarioBar[1].y = Layout::Scale(9);
    dy_variobar = text_size.cy + 2;
  } else {
    VarioBar[1].y = -Layout::Scale(9);
    clipping_arrow[1].y = -clipping_arrow[1].y;
    clipping_arrow[3].y = -clipping_arrow[3].y;
    clipping_arrow[4].y = -clipping_arrow[4].y;
    clipping_arrow[5].y = -clipping_arrow[5].y;
    clipping_arrow_offset = -clipping_arrow_offset;
    dy_variobar = -1;
  }

  // cut vario_avg at +- 5 meters/s
  if (vario_avg > fixed(5))
    vario_avg = fixed(5);
  if (vario_avg < fixed(-5))
    vario_avg = fixed(-5);

  int OffsetAvg = int(vario_avg / size_divisor);

  OffsetAvg = Layout::Scale(OffsetAvg);
  if (!positive(vario_avg)) {
    VarioBarAvg[1].y = Layout::Scale(9);
    dy_variobar_av = text_size.cy + 2;
  } else {
    VarioBarAvg[1].y = -Layout::Scale(9);
    clipping_arrow_av[1].y = -clipping_arrow_av[1].y;
    clipping_arrow_av[2].y = -clipping_arrow_av[2].y;
    clipping_arrow_av[3].y = -clipping_arrow_av[3].y;
    clipping_arrow_av_offset = -clipping_arrow_av_offset;
    dy_variobar_av = -1;
  }


  //clip MC Value
  auto mc_val = glide_polar.GetMC();
  if (mc_val > fixed(5))
    mc_val = fixed(5);
  if (!positive(mc_val)) {
    dy_variobar_mc = text_size.cy + 2;
  }else{
    dy_variobar_mc = -1;
  }

  int OffsetMC = int(mc_val / size_divisor);
  OffsetMC = Layout::Scale(OffsetMC);

  for (unsigned i = 0; i < 6; i++) {
    VarioBar[i].y += y0 + dy_variobar;
    VarioBar[i].x = rc.right - Layout::Scale(VarioBar[i].x);
  }

  VarioBar[0].y -= Offset;
  VarioBar[1].y -= Offset;
  VarioBar[2].y -= Offset;

  for (unsigned i = 0; i < 4; i++) {
    VarioBarAvg[i].y += y0 + dy_variobar_av;
    VarioBarAvg[i].x = rc.right-Layout::Scale(VarioBarAvg[i].x);
  }

  VarioBarAvg[0].y -= OffsetAvg;
  VarioBarAvg[1].y -= OffsetAvg;

  // prepare mc arrow
  for (unsigned i = 0; i < 6; i++) {
    mc_arrow[i].y = Layout::Scale(mc_arrow[i].y) + y0
      - OffsetMC + dy_variobar_mc;
    mc_arrow[i].x = rc.right - Layout::Scale(mc_arrow[i].x);
  }

  // prepare clipping arrow
  for (unsigned i = 0; i < 6; i++) {
    clipping_arrow[i].y = Layout::Scale(clipping_arrow[i].y) + y0 - Offset
      + clipping_arrow_offset + dy_variobar;
    clipping_arrow[i].x = rc.right - Layout::Scale(clipping_arrow[i].x);
  }

  // prepare clipping avg
  for (unsigned i = 0; i < 4; i++) {
    clipping_arrow_av[i].y = Layout::Scale(clipping_arrow_av[i].y) + y0 - OffsetAvg
      + clipping_arrow_av_offset + dy_variobar_av;
    clipping_arrow_av[i].x = rc.right-Layout::Scale(clipping_arrow_av[i].x);
  }

  // draw actual vario bar
  if (!positive(vario_gross)) {
    canvas.Select(look.pen_sink);
    canvas.Select(look.brush_sink);
  } else {
    canvas.Select(look.pen_climb);
    canvas.Select(look.brush_climb);
  }

  canvas.DrawPolygon(VarioBar, 6);

  // draw clipping arrow
  if (vario_gross <= fixed(-5) || vario_gross >= fixed(5))
    canvas.DrawPolygon(clipping_arrow, 6);

  // draw avg vario bar
  if (!positive(vario_avg) && vario_bar_avg_enabled) {
      canvas.Select(look.pen_sink);
      canvas.Select(look.brush_sink_avg);
  } else {
    canvas.Select(look.pen_climb);
    canvas.Select(look.brush_climb_avg);
  }

  canvas.DrawPolygon(VarioBarAvg, 4);

  if (vario_avg <= fixed(-5.0) || vario_avg >= fixed(5.0))
      canvas.DrawPolygon(clipping_arrow_av, 4);

  //draw MC arrow
  canvas.Select(look.pen_mc);
  canvas.Select(look.brush_mc);

  canvas.DrawPolygon(mc_arrow, 6);

  //draw text
  canvas.SetTextColor(COLOR_BLACK);
  canvas.SetBackgroundColor(COLOR_WHITE);

  TextInBoxMode style;
  style.shape = LabelShape::ROUNDED_BLACK;
  style.move_in_view = true;

  if (text_size.cx < Layout::Scale(18)) {
    style.align = TextInBoxMode::Alignment::RIGHT;
    TextInBox(canvas, Value, rc.right, y0, style, rc);
  } else
    TextInBox(canvas, Value, rc.right-Layout::Scale(18), y0, style, rc);
}
Beispiel #5
0
static void
Update(void)
{
  TCHAR sTmp[1000];

  FlightStatistics &fs = glide_computer.GetFlightStats();
  GlidePolar polar = protected_task_manager.get_glide_polar();
  const CommonStats& stats = XCSoarInterface::Calculated().common_stats;

  switch (page) {
  case ANALYSIS_PAGE_BAROGRAPH:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Barograph"));
    wf->SetCaption(sTmp);
    fs.CaptionBarograph(sTmp);
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_("Settings"));
    break;

  case ANALYSIS_PAGE_CLIMB:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Climb"));
    wf->SetCaption(sTmp);
    fs.CaptionClimb(sTmp);
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_("Task calc"));
    break;

  case ANALYSIS_PAGE_WIND:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Wind at Altitude"));
    wf->SetCaption(sTmp);
    wInfo->SetCaption(_T(""));
    SetCalcCaption(_("Set wind"));
    break;

  case ANALYSIS_PAGE_POLAR:
    _stprintf(sTmp, _T("%s: %s (%s %d kg)"), _("Analysis"),
              _("Glide Polar"), _("Mass"),
              (int)polar.get_all_up_weight());
    wf->SetCaption(sTmp);
    fs.CaptionPolar(sTmp, polar);
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_("Settings"));
   break;

  case ANALYSIS_PAGE_TEMPTRACE:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Temp trace"));
    wf->SetCaption(sTmp);
    fs.CaptionTempTrace(sTmp);
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_("Settings"));
    break;

  case ANALYSIS_PAGE_TASK_SPEED:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Task speed"));
    wf->SetCaption(sTmp);
    wInfo->SetCaption(_T(""));
    SetCalcCaption(_("Task calc"));
    break;

  case ANALYSIS_PAGE_TASK:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Task"));
    wf->SetCaption(sTmp);
    fs.CaptionTask(sTmp, XCSoarInterface::Calculated());
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_("Task calc"));
    break;

  case ANALYSIS_PAGE_OLC:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("OnLine Contest"));
    wf->SetCaption(sTmp);

    TCHAR timetext1[100];
    Units::TimeToText(timetext1, (int)stats.olc.time);
    TCHAR distance[100];
    Units::FormatUserDistance(stats.olc.distance, distance, 100);
    _stprintf(sTmp,
              (Layout::landscape
              ? _T("%s:\r\n  %s\r\n%s:\r\n  %.1f %s\r\n%s: %s\r\n%s: %d %s\r\n")
              : _T("%s: %s\r\n%s: %.1f %s\r\n%s: %s\r\n%s: %d %s\r\n")),
              _("Distance"),
              distance,
              _("Score"),
              (double)stats.olc.score,
              _("pts"),
              _("Time"),
              timetext1,
              _("Speed"),
              (int)Units::ToUserUnit(stats.olc.speed, Units::TaskSpeedUnit),
              Units::GetTaskSpeedName());
    wInfo->SetCaption(sTmp);
    SetCalcCaption(_T(""));
    break;

  case ANALYSIS_PAGE_AIRSPACE:
    _stprintf(sTmp, _T("%s: %s"), _("Analysis"),
              _("Airspace"));
    wf->SetCaption(sTmp);
    wInfo->SetCaption(_T(""));
    SetCalcCaption(_("Warnings"));
    break;

  case ANALYSIS_PAGE_COUNT:
    assert(false);
    break;
  }

  wGrid->set_visible(page < ANALYSIS_PAGE_COUNT);

  if (wGrid != NULL)
    wGrid->invalidate();
}
Beispiel #6
0
void
GlidePolarTest::TestBallast()
{
  polar.SetBallast(fixed(0.25));

  ok1(equals(polar.GetBallastLitres(), 25));
  ok1(equals(polar.GetBallast(), 0.25));

  polar.SetBallastLitres(fixed(50));

  ok1(equals(polar.GetBallastLitres(), 50));
  ok1(equals(polar.GetBallast(), 0.5));
  ok1(equals(polar.GetTotalMass(), 368));
  ok1(equals(polar.GetWingLoading(), 37.551020408));
  ok1(polar.HasBallast());

  fixed loading_factor = sqrt(polar.GetTotalMass() / polar.reference_mass);
  ok1(equals(polar.polar.a, polar.ideal_polar.a / loading_factor));
  ok1(equals(polar.polar.b, polar.ideal_polar.b));
  ok1(equals(polar.polar.c, polar.ideal_polar.c * loading_factor));

  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(80), Unit::KILOMETER_PER_HOUR)),
             0.640739));
  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(120), Unit::KILOMETER_PER_HOUR)),
             0.928976));
  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(160), Unit::KILOMETER_PER_HOUR)),
             1.722908));

  ok1(equals(polar.GetVMin(), 21.44464));
  ok1(equals(polar.GetVBestLD(), 27.78703));

  polar.SetBallast(fixed(0));
  ok1(!polar.HasBallast());
}
Beispiel #7
0
void
GlidePolarTest::TestBasic()
{
  polar.Update();

  ok1(equals(polar.polar.a, polar.ideal_polar.a));
  ok1(equals(polar.polar.b, polar.ideal_polar.b));
  ok1(equals(polar.polar.c, polar.ideal_polar.c));

  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(80), Unit::KILOMETER_PER_HOUR)), 0.606));
  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(120), Unit::KILOMETER_PER_HOUR)), 0.99));
  ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(160), Unit::KILOMETER_PER_HOUR)), 1.918));

  ok1(equals(polar.GetSMax(), polar.SinkRate(polar.GetVMax())));

  ok1(equals(polar.GetVMin(), 19.934640523));
  ok1(equals(polar.GetSMin(), polar.SinkRate(polar.GetVMin())));
  ok1(equals(polar.GetVTakeoff(), polar.GetVMin() / 2));

  ok1(equals(polar.GetVBestLD(), 25.830434162));
  ok1(equals(polar.GetSBestLD(), polar.SinkRate(polar.GetVBestLD())));
  ok1(equals(polar.GetBestLD(), polar.GetVBestLD() / polar.GetSBestLD()));

  ok1(equals(polar.GetTotalMass(), 318));
  ok1(equals(polar.GetWingLoading(), 32.448979592));
  ok1(equals(polar.GetBallast(), 0));
  ok1(equals(polar.GetBallastLitres(), 0));
  ok1(polar.IsBallastable());
  ok1(!polar.HasBallast());
}
Beispiel #8
0
void
dlgBasicSettingsShowModal()
{
  const ComputerSettings &settings = CommonInterface::GetComputerSettings();

  glide_polar = settings.glide_polar_task;

  wf = LoadDialog(CallBackTable, XCSoarInterface::main_window,
                      _T("IDR_XML_BASICSETTINGS"));
  if (wf == NULL)
    return;

  changed = false;

  wf->SetTimerNotify(OnTimerNotify);
  OnTimerNotify(*wf);

  SetButtons();

  SetBallast();
  LoadFormProperty(*wf, _T("prpBugs"), (fixed_one - glide_polar.GetBugs()) * 100);
  LoadFormProperty(*wf, _T("prpQNH"), Units::ToUserPressure(settings.pressure.GetHectoPascal()));

  WndProperty* wp;
  wp = (WndProperty*)wf->FindByName(_T("prpQNH"));
  if (wp) {
    DataFieldFloat &df = *(DataFieldFloat *)wp->GetDataField();

    df.SetMin(Units::ToUserPressure(Units::ToSysUnit(fixed(850), unHectoPascal)));
    df.SetMax(Units::ToUserPressure(Units::ToSysUnit(fixed(1300), unHectoPascal)));
    df.SetStep(Units::ToUserPressure(Units::ToSysUnit(fixed_one, unHectoPascal)));
    df.SetUnits(Units::GetPressureName());
    df.SetStep(Units::PressureStep());
    df.SetFormat( Units::GetFormatUserPressure());
    wp->RefreshDisplay();
}
  wp = (WndProperty*)wf->FindByName(_T("prpTemperature"));
  if (wp) {
    DataFieldFloat &df = *(DataFieldFloat *)wp->GetDataField();
    df.SetMin(Units::ToUserTemperature(Units::ToSysUnit(fixed(-50), unGradCelcius)));
    df.SetMax(Units::ToUserTemperature(Units::ToSysUnit(fixed(60), unGradCelcius)));
    df.SetUnits(Units::GetTemperatureName());
    df.Set(Units::ToUserTemperature(settings.forecast_temperature));
    wp->RefreshDisplay();
  }

  if (wf->ShowModal() == mrOK) {
    ComputerSettings &settings = CommonInterface::SetComputerSettings();

    if (changed) {
      settings.glide_polar_task = glide_polar;

      if (protected_task_manager != NULL)
        protected_task_manager->SetGlidePolar(glide_polar);
    }

    SaveFormProperty(*wf, _T("prpTemperature"),
                     ugTemperature, settings.forecast_temperature);
  }

  delete wf;
}
Beispiel #9
0
 /**
  * Adjust cruise efficiency of internal glide polar
  *
  * @param ce Cruise efficiency
  */
 void set_cruise_efficiency(fixed ce) {
     m_glide_polar.SetCruiseEfficiency(ce);
 };
Beispiel #10
0
 /**
  * Adjust MacCready value of internal glide polar
  *
  * @param mc MacCready value (m/s)
  */
 void set_mc(fixed mc) {
     m_glide_polar.SetMC(mc);
 };
Beispiel #11
0
void
RenderMacCready(Canvas &canvas, const PixelRect rc,
                 const ChartLook &chart_look,
                 const GlidePolar &glide_polar)
{
  ChartRenderer chart(chart_look, canvas, rc);

  if (!glide_polar.IsValid()) {
    chart.DrawNoData();
    return;
  }

  chart.ScaleXFromValue(0);
  chart.ScaleXFromValue(MAX_MACCREADY);
  chart.ScaleYFromValue(0);
  chart.ScaleYFromValue(glide_polar.GetVMax());

  chart.DrawXGrid(Units::ToSysVSpeed(1), 1, ChartRenderer::UnitFormat::NUMERIC);
  chart.DrawYGrid(Units::ToSysSpeed(10), 10, ChartRenderer::UnitFormat::NUMERIC);

  GlidePolar gp = glide_polar;
  double m = 0;
  double m_last;
  gp.SetMC(m);
  double v_last = gp.GetVBestLD();
  double vav_last = 0;
  do {
    m_last = m;
    m+= MAX_MACCREADY/STEPS_MACCREADY;
    gp.SetMC(m);
    const double v = gp.GetVBestLD();
    const double vav = gp.GetAverageSpeed();
    chart.DrawLine(m_last, v_last, m, v, ChartLook::STYLE_BLACK);
    chart.DrawLine(m_last, vav_last, m, vav, ChartLook::STYLE_BLUETHINDASH);
    v_last = v;
    vav_last = vav;
  } while (m<MAX_MACCREADY);

  // draw current MC setting
  chart.DrawLine(glide_polar.GetMC(), 0, glide_polar.GetMC(), glide_polar.GetVMax(),
                 ChartLook::STYLE_REDTHICKDASH);

  // draw labels and other overlays

  gp.SetMC(0.9*MAX_MACCREADY);
  chart.DrawLabel(_T("Vopt"), 0.9*MAX_MACCREADY, gp.GetVBestLD());
  gp.SetMC(0.9*MAX_MACCREADY);
  chart.DrawLabel(_T("Vave"), 0.9*MAX_MACCREADY, gp.GetAverageSpeed());

  chart.DrawYLabel(_T("V"), Units::GetSpeedName());
  chart.DrawXLabel(_T("MC"), Units::GetVerticalSpeedName());

  RenderGlidePolarInfo(canvas, rc, chart_look, glide_polar);
}
Beispiel #12
0
bool
AbortTask::FillReachable(const AircraftState &state,
                         AlternateVector &approx_waypoints,
                         const GlidePolar &polar, bool only_airfield,
                         bool final_glide, bool safety)
{
  if (IsTaskFull() || approx_waypoints.empty())
    return false;

  const AGeoPoint p_start(state.location, state.altitude);

  bool found_final_glide = false;
  reservable_priority_queue<Alternate, AlternateVector, AbortRank> q;
  q.reserve(32);

  for (auto v = approx_waypoints.begin(); v != approx_waypoints.end();) {
    if (only_airfield && !v->waypoint.IsAirport()) {
      ++v;
      continue;
    }

    UnorderedTaskPoint t(v->waypoint, task_behaviour);
    GlideResult result =
        TaskSolution::GlideSolutionRemaining(t, state, polar);
    /* calculate time_virtual, which is needed by AbortRank */
    result.CalcVInvSpeed(polar.GetInvMC());

    if (IsReachable(result, final_glide)) {
      bool intersects = false;
      const bool is_reachable_final = IsReachable(result, true);

      if (intersection_test && final_glide && is_reachable_final)
        intersects = intersection_test->Intersects(
            AGeoPoint(v->waypoint.location, result.min_height));

      if (!intersects) {
        q.push(Alternate(v->waypoint, result));
        // remove it since it's already in the list now      
        approx_waypoints.erase(v);

        if (is_reachable_final)
          found_final_glide = true;

        continue; // skip incrementing v since we just erased it
      }
    } 

    ++v;
  }

  while (!q.empty() && !IsTaskFull()) {
    const Alternate top = q.top();
    task_points.push_back(AlternateTaskPoint(top.waypoint, task_behaviour,
                                             top.solution));

    const int i = task_points.size() - 1;
    if (task_points[i].GetWaypoint().id == active_waypoint)
      active_task_point = i;

    q.pop();
  }

  return found_final_glide;
}
void
RenderVarioHistogram(Canvas &canvas, const PixelRect rc,
                     const ChartLook &chart_look,
                     const FlightStatistics &fs,
                     const GlidePolar &glide_polar)
{
  ChartRenderer chart(chart_look, canvas, rc);

  const auto acc = std::max(fs.vario_cruise_histogram.GetAccumulator(),
                            fs.vario_circling_histogram.GetAccumulator());

  if (!acc) {
    chart.DrawNoData();
    return;
  }

  const auto scale = std::max(fs.vario_cruise_histogram.GetMaxY(),
                              fs.vario_circling_histogram.GetMaxY()) * 1.2;
  chart.ScaleXFromValue(0);
  chart.ScaleXFromValue(scale);

  const auto s = -glide_polar.GetSBestLD();
  const auto mc = glide_polar.GetMC();
  chart.ScaleYFromValue(fs.vario_cruise_histogram.GetMinX());
  chart.ScaleYFromValue(fs.vario_cruise_histogram.GetMaxX());
  chart.ScaleYFromValue(s);
  chart.ScaleYFromValue(mc);

  // draw red area at higher than cruise sink rate, blue area above mc
  {
    PixelRect rc_upper = chart.GetChartRect();
    rc_upper.bottom = chart.ScreenY(mc);

    DrawVerticalGradient(canvas, rc_upper,
                         chart_look.color_positive, COLOR_WHITE, COLOR_WHITE);
  }
  {
    PixelRect rc_lower = chart.GetChartRect();
    rc_lower.top = chart.ScreenY(s);

    DrawVerticalGradient(canvas, rc_lower,
                         COLOR_WHITE, chart_look.color_negative, COLOR_WHITE);
  }

  canvas.SelectNullPen();
  canvas.Select(chart_look.black_brush);
  chart.DrawFilledLineGraph(fs.vario_circling_histogram, true);
  canvas.Select(chart_look.blank_brush);
  chart.DrawFilledLineGraph(fs.vario_cruise_histogram, true);

  // draw these after shaded regions, so they overlay
  chart.DrawLineGraph(fs.vario_cruise_histogram, ChartLook::STYLE_GREEN, true);
  chart.DrawLineGraph(fs.vario_circling_histogram, ChartLook::STYLE_RED, true);

  // draw current MC setting
  chart.DrawLine(0, mc, scale, mc, ChartLook::STYLE_REDTHICKDASH);
  chart.DrawLine(0, s, scale, s, ChartLook::STYLE_BLUETHINDASH);

  // draw labels and other overlays
  chart.DrawYGrid(Units::ToSysVSpeed(1), 1, ChartRenderer::UnitFormat::NUMERIC);

  const double tref = chart.GetXMin()*0.1+chart.GetXMax()*0.9;
  chart.DrawLabel(_T("MC"), tref, mc);
  chart.DrawLabel(_T("S cruise"), tref, s);

  chart.DrawYLabel(_T("w"), Units::GetVerticalSpeedName());

}
Beispiel #14
0
bool 
AbortTask::UpdateSample(const AircraftState &state,
                        const GlidePolar &glide_polar,
                        bool full_update)
{
  assert(state.location.IsValid());

  Clear();

  unsigned active_waypoint_on_entry;
  if (is_active)
    active_waypoint_on_entry = active_waypoint;
  else {
    active_waypoint = 0;
    active_waypoint_on_entry = (unsigned) -1 ;
  }

  active_task_point = 0; // default to best result if can't find user-set one 

  if (!glide_polar.IsValid())
    /* can't work without a polar */
    return false;

  AlternateList approx_waypoints;
  approx_waypoints.reserve(128);

  WaypointVisitorVector wvv(approx_waypoints);
  waypoints.VisitWithinRange(state.location,
                             GetAbortRange(state, glide_polar), wvv);
  if (approx_waypoints.empty()) {
    /** @todo increase range */
    return false;
  }

  // sort by arrival time

  // first try with final glide only
  reachable_landable |=  FillReachable(state, approx_waypoints, glide_polar,
                                       true, true, true);
  reachable_landable |=  FillReachable(state, approx_waypoints, glide_polar,
                                       false, true, true);

  // inform clients that the landable reachable scan has been performed 
  ClientUpdate(state, true);

  // now try without final glide constraint and not preferring airports
  FillReachable(state, approx_waypoints, glide_polar, false, false, false);

  // inform clients that the landable unreachable scan has been performed 
  ClientUpdate(state, false);

  if (task_points.size()) {
    const TaskWaypoint &task_point = task_points[active_task_point].point;
    active_waypoint = task_point.GetWaypoint().id;
    if (is_active && (active_waypoint_on_entry != active_waypoint)) {
      stats.start.Reset();
      force_full_update = true;
      return true;
    }
  }

  return false; // nothing to do
}
Beispiel #15
0
 void SetDegradationFactor(double _degradation_factor) {
   degradation_factor = _degradation_factor;
   glide_polar_task.SetBugs(degradation_factor * bugs);
 }
Beispiel #16
0
 void SetBugs(double _bugs) {
   bugs = _bugs;
   glide_polar_task.SetBugs(degradation_factor * bugs);
 }
Beispiel #17
0
MacCready::MacCready(const GlideSettings &_settings,
                     const GlidePolar &_glide_polar)
  :settings(_settings), glide_polar(_glide_polar),
   cruise_efficiency(_glide_polar.GetCruiseEfficiency()) {}