void LoadMappingTable::exec()
{
  //Get the raw file name
  m_filename = getPropertyValue("Filename");
  // Get the input workspace
  const MatrixWorkspace_sptr localWorkspace = getProperty("Workspace");
        
  /// ISISRAW class instance which does raw file reading. Shared pointer to prevent memory leak when an exception is thrown.
  boost::scoped_ptr<ISISRAW2> iraw(new ISISRAW2);

  if (iraw->readFromFile(m_filename.c_str(),0) != 0) // ReadFrom File with no data
  {
    g_log.error("Unable to open file " + m_filename);
    throw Kernel::Exception::FileError("Unable to open File:" , m_filename);
  }
  progress(0.5);
  const int number_spectra=iraw->i_det; // Number of entries in the spectra/udet table
  if ( number_spectra == 0 )
  {
    g_log.warning("The spectra to detector mapping table is empty");
  }
  // Fill in the mapping in the workspace's ISpectrum objects
  localWorkspace->updateSpectraUsing(SpectrumDetectorMapping(iraw->spec,iraw->udet,number_spectra));
  progress(1);

  return;
}
Beispiel #2
0
void SofQWCentre::exec() {
  using namespace Geometry;

  MatrixWorkspace_const_sptr inputWorkspace = getProperty("InputWorkspace");

  // Do the full check for common binning
  if (!WorkspaceHelpers::commonBoundaries(*inputWorkspace)) {
    g_log.error(
        "The input workspace must have common binning across all spectra");
    throw std::invalid_argument(
        "The input workspace must have common binning across all spectra");
  }

  std::vector<double> verticalAxis;
  MatrixWorkspace_sptr outputWorkspace = setUpOutputWorkspace(
      inputWorkspace, getProperty("QAxisBinning"), verticalAxis);
  setProperty("OutputWorkspace", outputWorkspace);

  // Holds the spectrum-detector mapping
  std::vector<specnum_t> specNumberMapping;
  std::vector<detid_t> detIDMapping;

  m_EmodeProperties.initCachedValues(*inputWorkspace, this);
  int emode = m_EmodeProperties.m_emode;

  // Get a pointer to the instrument contained in the workspace
  Instrument_const_sptr instrument = inputWorkspace->getInstrument();

  // Get the distance between the source and the sample (assume in metres)
  IComponent_const_sptr source = instrument->getSource();
  IComponent_const_sptr sample = instrument->getSample();
  V3D beamDir = sample->getPos() - source->getPos();
  beamDir.normalize();

  try {
    double l1 = source->getDistance(*sample);
    g_log.debug() << "Source-sample distance: " << l1 << '\n';
  } catch (Exception::NotFoundError &) {
    g_log.error("Unable to calculate source-sample distance");
    throw Exception::InstrumentDefinitionError(
        "Unable to calculate source-sample distance",
        inputWorkspace->getTitle());
  }

  // Conversion constant for E->k. k(A^-1) = sqrt(energyToK*E(meV))
  const double energyToK = 8.0 * M_PI * M_PI * PhysicalConstants::NeutronMass *
                           PhysicalConstants::meV * 1e-20 /
                           (PhysicalConstants::h * PhysicalConstants::h);

  // Loop over input workspace bins, reassigning data to correct bin in output
  // qw workspace
  const size_t numHists = inputWorkspace->getNumberHistograms();
  const size_t numBins = inputWorkspace->blocksize();
  Progress prog(this, 0.0, 1.0, numHists);
  for (int64_t i = 0; i < int64_t(numHists); ++i) {
    try {
      // Now get the detector object for this histogram
      IDetector_const_sptr spectrumDet = inputWorkspace->getDetector(i);
      if (spectrumDet->isMonitor())
        continue;

      const double efixed = m_EmodeProperties.getEFixed(*spectrumDet);

      // For inelastic scattering the simple relationship q=4*pi*sinTheta/lambda
      // does not hold. In order to
      // be completely general we must calculate the momentum transfer by
      // calculating the incident and final
      // wave vectors and then use |q| = sqrt[(ki - kf)*(ki - kf)]
      DetectorGroup_const_sptr detGroup =
          boost::dynamic_pointer_cast<const DetectorGroup>(spectrumDet);
      std::vector<IDetector_const_sptr> detectors;
      if (detGroup) {
        detectors = detGroup->getDetectors();
      } else {
        detectors.push_back(spectrumDet);
      }

      const size_t numDets = detectors.size();
      // cache to reduce number of static casts
      const double numDets_d = static_cast<double>(numDets);
      const auto &Y = inputWorkspace->y(i);
      const auto &E = inputWorkspace->e(i);
      const auto &X = inputWorkspace->x(i);

      // Loop over the detectors and for each bin calculate Q
      for (size_t idet = 0; idet < numDets; ++idet) {
        IDetector_const_sptr det = detectors[idet];
        // Calculate kf vector direction and then Q for each energy bin
        V3D scatterDir = (det->getPos() - sample->getPos());
        scatterDir.normalize();
        for (size_t j = 0; j < numBins; ++j) {
          const double deltaE = 0.5 * (X[j] + X[j + 1]);
          // Compute ki and kf wave vectors and therefore q = ki - kf
          double ei(0.0), ef(0.0);
          if (emode == 1) {
            ei = efixed;
            ef = efixed - deltaE;
            if (ef < 0) {
              std::string mess =
                  "Energy transfer requested in Direct mode exceeds incident "
                  "energy.\n Found for det ID: " +
                  std::to_string(idet) + " bin No " + std::to_string(j) +
                  " with Ei=" + boost::lexical_cast<std::string>(efixed) +
                  " and energy transfer: " +
                  boost::lexical_cast<std::string>(deltaE);
              throw std::runtime_error(mess);
            }
          } else {
            ei = efixed + deltaE;
            ef = efixed;
            if (ef < 0) {
              std::string mess =
                  "Incident energy of a neutron is negative. Are you trying to "
                  "process Direct data in Indirect mode?\n Found for det ID: " +
                  std::to_string(idet) + " bin No " + std::to_string(j) +
                  " with efied=" + boost::lexical_cast<std::string>(efixed) +
                  " and energy transfer: " +
                  boost::lexical_cast<std::string>(deltaE);
              throw std::runtime_error(mess);
            }
          }

          if (ei < 0)
            throw std::runtime_error(
                "Negative incident energy. Check binning.");

          const V3D ki = beamDir * sqrt(energyToK * ei);
          const V3D kf = scatterDir * (sqrt(energyToK * (ef)));
          const double q = (ki - kf).norm();

          // Test whether it's in range of the Q axis
          if (q < verticalAxis.front() || q > verticalAxis.back())
            continue;
          // Find which q bin this point lies in
          const MantidVec::difference_type qIndex =
              std::upper_bound(verticalAxis.begin(), verticalAxis.end(), q) -
              verticalAxis.begin() - 1;

          // Add this spectra-detector pair to the mapping
          specNumberMapping.push_back(
              outputWorkspace->getSpectrum(qIndex).getSpectrumNo());
          detIDMapping.push_back(det->getID());

          // And add the data and it's error to that bin, taking into account
          // the number of detectors contributing to this bin
          outputWorkspace->mutableY(qIndex)[j] += Y[j] / numDets_d;
          // Standard error on the average
          outputWorkspace->mutableE(qIndex)[j] =
              sqrt((pow(outputWorkspace->e(qIndex)[j], 2) + pow(E[j], 2)) /
                   numDets_d);
        }
      }

    } catch (Exception::NotFoundError &) {
      // Get to here if exception thrown when calculating distance to detector
      // Presumably, if we get to here the spectrum will be all zeroes anyway
      // (from conversion to E)
      continue;
    }
    prog.report();
  }

  // If the input workspace was a distribution, need to divide by q bin width
  if (inputWorkspace->isDistribution())
    this->makeDistribution(outputWorkspace, verticalAxis);

  // Set the output spectrum-detector mapping
  SpectrumDetectorMapping outputDetectorMap(specNumberMapping, detIDMapping);
  outputWorkspace->updateSpectraUsing(outputDetectorMap);

  // Replace any NaNs in outputWorkspace with zeroes
  if (this->getProperty("ReplaceNaNs")) {
    auto replaceNans = this->createChildAlgorithm("ReplaceSpecialValues");
    replaceNans->setChild(true);
    replaceNans->initialize();
    replaceNans->setProperty("InputWorkspace", outputWorkspace);
    replaceNans->setProperty("OutputWorkspace", outputWorkspace);
    replaceNans->setProperty("NaNValue", 0.0);
    replaceNans->setProperty("InfinityValue", 0.0);
    replaceNans->setProperty("BigNumberThreshold", DBL_MAX);
    replaceNans->execute();
  }
}