/**
  @brief Similarity pairwise score

  This function return the similarity score of two spectra based on SteinScott.

  @param s1  const PeakSpectrum Spectrum 1
  @param s2  const PeakSpectrum Spectrum 2
  @see SteinScottImproveScore()
  */
  double SteinScottImproveScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
  {
    const double epsilon = (double)param_.getValue("tolerance");
    const double constant = epsilon / 10000;

    //const double c(0.0004);
    double score(0), sum(0), sum1(0), sum2(0), sum3(0), sum4(0);
    /* std::cout << s1 << std::endl;
    std::cout << std::endl;
    std::cout << s2 << std::endl;*/

    for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
    {
      double temp = it1->getIntensity();
      sum1 += temp * temp;
      sum3 += temp;
    }

    for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
    {
      double temp = it1->getIntensity();
      sum2 += temp * temp;
      sum4 += temp;
    }
    double z = constant * (sum3 * sum4);
    Size j_left(0);
    for (Size i = 0; i != s1.size(); ++i)
    {
      for (Size j = j_left; j != s2.size(); ++j)
      {
        double pos1(s1[i].getMZ()), pos2(s2[j].getMZ());
        if (std::abs(pos1 - pos2) <= 2 * epsilon)
        {
          sum += s1[i].getIntensity() * s2[j].getIntensity();
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            j_left = j;
          }
        }
      }
    }
    //std::cout<< sum << " Sum " << z << " z " << std::endl;
    score = (sum - z) / (std::sqrt((sum1 * sum2)));
    // std::cout<<score<< " score" << std::endl;
    if (score < (float)param_.getValue("threshold"))
    {
      score = 0;
    }

    return score;
  }
  double SpectrumAlignmentScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
  {
    const double tolerance = (double)param_.getValue("tolerance");
    bool is_relative_tolerance = param_.getValue("is_relative_tolerance").toBool();
    bool use_linear_factor = param_.getValue("use_linear_factor").toBool();
    bool use_gaussian_factor = param_.getValue("use_gaussian_factor").toBool();

    if (use_linear_factor && use_gaussian_factor)
    {
      cerr << "Warning: SpectrumAlignmentScore, use either 'use_linear_factor' or 'use_gaussian_factor'!" << endl;
    }

    SpectrumAlignment aligner;
    Param p;
    p.setValue("tolerance", tolerance);
    p.setValue("is_relative_tolerance", (String)param_.getValue("is_relative_tolerance"));
    aligner.setParameters(p);

    vector<pair<Size, Size> > alignment;
    aligner.getSpectrumAlignment(alignment, s1, s2);

    double score(0), sum(0), sum1(0), sum2(0);
    for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
    {
      sum1 += it1->getIntensity() * it1->getIntensity();
    }

    for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
    {
      sum2 += it1->getIntensity() * it1->getIntensity();
    }

    for (vector<pair<Size, Size> >::const_iterator it = alignment.begin(); it != alignment.end(); ++it)
    {
      //double factor(0.0);
      //factor = (epsilon - fabs(s1[it->first].getPosition()[0] - s2[it->second].getPosition()[0])) / epsilon;
      double mz_tolerance(tolerance);

      if (is_relative_tolerance)
      {
        mz_tolerance = mz_tolerance * s1[it->first].getPosition()[0] / 1e6;
      }

      double mz_difference(fabs(s1[it->first].getPosition()[0] - s2[it->second].getPosition()[0]));
      double factor = 1.0;

      if (use_linear_factor || use_gaussian_factor)
      {
        factor = getFactor_(mz_tolerance, mz_difference, use_gaussian_factor);
      }
      sum += sqrt(s1[it->first].getIntensity() * s2[it->second].getIntensity() * factor);
    }

    score = sum / (sqrt(sum1 * sum2));

    return score;
  }
Beispiel #3
0
 std::vector<PeakSpectrum> AScore::peakPickingPerWindowsInSpectrum_(PeakSpectrum &real_spectrum) const
 {
   vector<PeakSpectrum> windows_top10;
   
   double spect_lower_bound = floor(real_spectrum.front().getMZ() / 100) * 100;
   double spect_upper_bound = ceil(real_spectrum.back().getMZ() / 100) * 100;
   
   Size number_of_windows = static_cast<Size>(ceil((spect_upper_bound - spect_lower_bound) / 100));
   windows_top10.resize(number_of_windows);
   
   PeakSpectrum::Iterator it_current_peak = real_spectrum.begin();
   Size window_upper_bound(spect_lower_bound + 100);
   
   for (Size current_window = 0; current_window < number_of_windows; ++current_window)
   {
     PeakSpectrum real_window;
     while (((*it_current_peak).getMZ() <= window_upper_bound) && (it_current_peak < real_spectrum.end()))
     {
       real_window.push_back(*it_current_peak);
       ++it_current_peak;
     }
     
     real_window.sortByIntensity(true);
     for (Size i = 0; (i < 10) & (i < real_window.size()); ++i)
     {
       windows_top10[current_window].push_back(real_window[i]);
     }
     
     window_upper_bound += 100;
   }
   return windows_top10;
 }
  // s1 should be the original spectrum
  DoubleReal CompNovoIdentificationBase::compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2)
  {
    DoubleReal score(0.0);

    PeakSpectrum::ConstIterator it1 = s1.begin();
    PeakSpectrum::ConstIterator it2 = s2.begin();

    Size num_matches(0);
    while (it1 != s1.end() && it2 != s2.end())
    {
      DoubleReal pos1(it1->getPosition()[0]), pos2(it2->getPosition()[0]);
      if (fabs(pos1 - pos2) < fragment_mass_tolerance_)
      {
        score += it1->getIntensity();
        ++num_matches;
      }

      if (pos1 <= pos2)
      {
        ++it1;
      }
      else
      {
        ++it2;
      }
    }

    if (num_matches == 0)
    {
      return 0;
    }

    score /= sqrt((DoubleReal)num_matches);

    return score;
  }
 void SuffixArrayPeptideFinder::getCandidates(vector<vector<pair<SuffixArrayPeptideFinder::FASTAEntry, String> > >& candidates, const String& DTA_file)
 {
   DTAFile dta_file;
   PeakSpectrum s;
   dta_file.load(DTA_file, s);
   s.sortByPosition();
   PeakSpectrum::ConstIterator it(s.begin());
   vector<double> spec;
   for (; it != s.end(); ++it)
   {
     spec.push_back(it->getPosition()[0]);
   }
   const vector<double> specc(spec);
   getCandidates(candidates, specc);
   return;
 }
Beispiel #6
0
	SqrtMower copy(*e_ptr);
	TEST_EQUAL(*e_ptr == copy, true)
END_SECTION

START_SECTION((SqrtMower& operator=(const SqrtMower& source)))
	SqrtMower copy;
	copy = *e_ptr;
	TEST_EQUAL(*e_ptr == copy, true)
END_SECTION

START_SECTION((template<typename SpectrumType> void filterSpectrum(SpectrumType& spectrum)))
	DTAFile dta_file;
	PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);
	
	TEST_REAL_SIMILAR((spec.begin() + 40)->getIntensity(), 37.5)

	e_ptr->filterSpectrum(spec);
	TEST_REAL_SIMILAR((spec.begin() + 40)->getIntensity(), sqrt(37.5))
END_SECTION

START_SECTION((void filterPeakMap(PeakMap& exp)))
	DTAFile dta_file;
  PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);

	PeakMap pm;
	pm.addSpectrum(spec);

	TEST_REAL_SIMILAR((pm.begin()->begin() + 40)->getIntensity(), 37.5)
Beispiel #7
0
  double ZhangSimilarityScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
  {
    const double tolerance = (double)param_.getValue("tolerance");
    bool use_linear_factor = param_.getValue("use_linear_factor").toBool();
    bool use_gaussian_factor = param_.getValue("use_gaussian_factor").toBool();
    double score(0), sum(0), sum1(0), sum2(0) /*, squared_sum1(0), squared_sum2(0)*/;

    // TODO remove parameter 
    if (param_.getValue("is_relative_tolerance").toBool() )
    {
      throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION);
    }

    for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
    {
      sum1 += it1->getIntensity();
      /*
for (PeakSpectrum::ConstIterator it2 = s1.begin(); it2 != s1.end(); ++it2)
{
  if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
  {
    squared_sum1 += it1->getIntensity() * it2->getIntensity();
  }
}*/
    }

/*
        UInt i_left(0);
        for (Size i = 0; i != s1.size(); ++i)
        {
            sum1 += s1[i].getIntensity();
            for (Size j = i_left; j != s1.size(); ++j)
            {
                double pos1(s1[i].getPosition()[0]), pos2(s1[j].getPosition()[0]);
                if (abs(pos1 - pos2) <= 2 * tolerance)
                {
                    squared_sum1 += s1[i].getIntensity() * s1[j].getIntensity();
                }
                else
                {
                    if (pos2 > pos1)
                    {
                        break;
                    }
                    else
                    {
                        i_left = i;
                    }
                }
            }
        }*/

/*
    i_left = 0;
    for (Size i = 0; i != s2.size(); ++i)
    {
      sum2 += s2[i].getIntensity();
      for (Size j = i_left; j != s2.size(); ++j)
      {
        double pos1(s2[i].getPosition()[0]), pos2(s2[j].getPosition()[0]);
        if (abs(pos1 - pos2) <= 2 * tolerance)
        {
          squared_sum1 += s2[i].getIntensity() * s2[j].getIntensity();
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            i_left = i;
          }
        }
      }
    }*/

    for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
    {
      sum2 += it1->getIntensity();
      /*
for (PeakSpectrum::ConstIterator it2 = s2.begin(); it2 != s2.end(); ++it2)
{
  if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
  {
    squared_sum2 += it1->getIntensity() * it2->getIntensity();
  }
}
      */
    }

    Size j_left(0);
    for (Size i = 0; i != s1.size(); ++i)
    {
      for (Size j = j_left; j != s2.size(); ++j)
      {
        double pos1(s1[i].getMZ()), pos2(s2[j].getMZ());
        if (fabs(pos1 - pos2) < tolerance)
        {
          //double factor((tolerance - fabs(pos1 - pos2)) / tolerance);
          double factor = 1.0;

          if (use_linear_factor || use_gaussian_factor)
          {
            factor = getFactor_(tolerance, fabs(pos1 - pos2), use_gaussian_factor);
          }
          sum += sqrt(s1[i].getIntensity() * s2[j].getIntensity() * factor);
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            j_left = j;
          }
        }
      }
    }


    /*
for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
{
  for (PeakSpectrum::ConstIterator it2 = s2.begin(); it2 != s2.end(); ++it2)
  {
    if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
    {
      sum += sqrt(it1->getIntensity() * it2->getIntensity());
    }
  }
}*/

    score = sum / (sqrt(sum1 * sum2));

    return score;

  }
  void CompNovoIonScoring::scoreSpectra(Map<double, IonScore> & ion_scores, PeakSpectrum & CID_spec, PeakSpectrum & ETD_spec, double precursor_weight, Size charge)
  {

    // adds single charged variants of putative single charged ions
    //addSingleChargedIons_(ion_scores, CID_spec);

    for (PeakSpectrum::ConstIterator it = CID_spec.begin(); it != CID_spec.end(); ++it)
    {
      double it_pos(it->getPosition()[0]);
      IonScore ion_score;
      ion_scores[it_pos] = ion_score;
    }

    for (PeakSpectrum::ConstIterator it = CID_spec.begin(); it != CID_spec.end(); ++it)
    {
      ion_scores[it->getPosition()[0]].s_isotope_pattern_1 = scoreIsotopes_(CID_spec, it, ion_scores, 1);
      if (it->getPosition()[0] < precursor_weight / 2.0)
      {
        ion_scores[it->getPosition()[0]].s_isotope_pattern_2 =  scoreIsotopes_(CID_spec, it, ion_scores, 2);
      }
      else
      {
        ion_scores[it->getPosition()[0]].s_isotope_pattern_2 = -1;
      }
    }

    // find possible supporting ions from ETD spec to CID spec
    scoreETDFeatures_(charge, precursor_weight, ion_scores, CID_spec, ETD_spec);

    // combine the features and give b-ion scores
    scoreWitnessSet_(charge, precursor_weight, ion_scores, CID_spec);

    for (Map<double, IonScore>::iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
      it->second.score = it->second.s_witness;
    }


    MassDecompositionAlgorithm decomp_algo;


    // check whether a PRMNode_ can be decomposed into amino acids
    // rescore the peaks that cannot be possible y-ion candidates
    double max_decomp_weight((double)param_.getValue("max_decomp_weight"));
    for (Map<double, IonScore>::iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
      if (it->first > 19.0 && (it->first - 19.0) < max_decomp_weight)
      {
        vector<MassDecomposition> decomps;
        decomp_algo.getDecompositions(decomps, it->first - 19.0);
#ifdef ION_SCORING_DEBUG
        cerr << "Decomps: " << it->first <<  " " << it->first - 19.0 << " " << decomps.size() << " " << it->second.score << endl;
#endif
        if (decomps.empty())
        {
          it->second.score = 0;
        }
      }

      if (it->first < precursor_weight && precursor_weight - it->first < max_decomp_weight)
      {
        vector<MassDecomposition> decomps;
        decomp_algo.getDecompositions(decomps, precursor_weight - it->first);
#ifdef ION_SCORING_DEBUG
        cerr << "Decomps: " << it->first << " " << precursor_weight - it->first << " " << decomps.size() << " " << it->second.score << endl;
#endif
        if (decomps.empty())
        {
          it->second.score = 0;
        }
      }
    }

    ion_scores[CID_spec.begin()->getPosition()[0]].score = 1;
    ion_scores[(CID_spec.end() - 1)->getPosition()[0]].score = 1;
  }
  void CompNovoIonScoring::scoreETDFeatures_(Size /*charge*/, double precursor_weight, Map<double, IonScore> & ion_scores, const PeakSpectrum & CID_spec, const PeakSpectrum & ETD_spec)
  {
    //double fragment_mass_tolerance((double)param_.getValue("fragment_mass_tolerance"));
    Size max_isotope_to_score(param_.getValue("max_isotope_to_score"));

    for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
    {
      double pos1(it1->getPosition()[0]);
      double b_sum(0.0), y_sum(0.0);

      // score a-ions
      for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2)
      {
        double pos2(it2->getPosition()[0]);
        if (fabs(pos1 - pos2 - 28.0) < fragment_mass_tolerance_)
        {
          double factor((fragment_mass_tolerance_ - fabs(pos1 - pos2 - 28.0)) / fragment_mass_tolerance_);
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << "scoreETDFeatures: found a-ion " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << b_sum << " -> ";
#endif
          b_sum += it2->getIntensity() * factor;
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << endl;
#endif
        }
      }

      for (PeakSpectrum::ConstIterator it2 = ETD_spec.begin(); it2 != ETD_spec.end(); ++it2)
      {
        double pos2(it2->getPosition()[0]);

        // check if pos2 is precursor doubly charged, which has not fragmented
        double pre_diff_lower = (precursor_weight + Constants::PROTON_MASS_U) / 2.0 - fragment_mass_tolerance_;
        double pre_diff_upper = (precursor_weight + 4.0 * Constants::PROTON_MASS_U) / 2.0 + fragment_mass_tolerance_;
        if (pos2 > pre_diff_lower && pos2 < pre_diff_upper)
        {
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << "scoreETDFeatures: pre-range: " << pos2 << " is in precursor peak range: " << pre_diff_lower << " <-> " << pre_diff_upper << endl;
#endif
          continue;
        }

        //double diff(pos2 - pos1);

        // pos1 is CID ion; pos2 is ETD ion
        // pos1 b-ion, pos2 c-ion
        if (fabs(pos1 + 17.0 - pos2) < fragment_mass_tolerance_)
        {
          // now test if the ETD peak has "isotope" pattern
          double factor((fragment_mass_tolerance_ - fabs(pos1 + 17.0 - pos2)) / fragment_mass_tolerance_);
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << "scoreETDFeatures: is b-ion: " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << b_sum << " -> ";
#endif
          vector<double> iso_pattern;
          iso_pattern.push_back(it1->getIntensity());
          double actual_pos = it1->getPosition()[0];
          for (PeakSpectrum::ConstIterator it3 = it2; it3 != ETD_spec.end(); ++it3)
          {
            double it3_pos(it3->getPosition()[0]);
            if (fabs(fabs(actual_pos - it3_pos) - Constants::NEUTRON_MASS_U) < fragment_mass_tolerance_)
            {
              iso_pattern.push_back(it3->getIntensity());
              actual_pos = it3_pos;
            }
            if (iso_pattern.size() == max_isotope_to_score)
            {
              break;
            }
          }

          if (ion_scores[it1->getPosition()[0]].is_isotope_1_mono != -1)
          {
            b_sum += it2->getIntensity() * iso_pattern.size() * factor;
          }
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << b_sum << endl;
#endif
        }



        // pos1 z-ion, pos2 y-ion
        if (fabs(pos2 + 16.0 - pos1) < fragment_mass_tolerance_)
        {
          double factor((fragment_mass_tolerance_ - fabs(pos2 + 16.0 - pos1)) / fragment_mass_tolerance_);
          // now test if the ETD peak has "isotope" pattern
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << "scoreETDFeatures: is y-ion: " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << y_sum << " -> ";
#endif
          vector<double> iso_pattern;
          iso_pattern.push_back(it1->getIntensity());
          double actual_pos = it1->getPosition()[0];
          for (PeakSpectrum::ConstIterator it3 = it2; it3 != ETD_spec.end(); ++it3)
          {
            double it3_pos(it3->getPosition()[0]);
            if (fabs(fabs(actual_pos - it3_pos) - Constants::NEUTRON_MASS_U) < fragment_mass_tolerance_)
            {
              iso_pattern.push_back(it3->getIntensity());
              actual_pos = it3_pos;
            }
            if (iso_pattern.size() == max_isotope_to_score)
            {
              break;
            }
          }
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << ion_scores[it1->getPosition()[0]].is_isotope_1_mono << " ";
#endif
          if (ion_scores[it1->getPosition()[0]].is_isotope_1_mono != -1)
          {
            y_sum += it2->getIntensity() * iso_pattern.size() * factor;
          }
#ifdef SCORE_ETDFEATURES_DEBUG
          cerr << y_sum << endl;
#endif
        }
      }
      ion_scores[it1->getPosition()[0]].s_bion = b_sum;
      ion_scores[it1->getPosition()[0]].s_yion = y_sum;
    }
    return;
  }
  void CompNovoIonScoring::scoreWitnessSet_(Size charge, double precursor_weight, Map<double, IonScore> & ion_scores, const PeakSpectrum & CID_spec)
  {
    vector<double> diffs;
    //diffs.push_back(28.0);
    diffs.push_back(17.0);
    diffs.push_back(18.0);

    // witnesses of CID spec (diffs)
    for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
    {
      //Size num_wit(0);
      double wit_score(0.0);
      double pos1(it1->getPosition()[0]);
      wit_score += it1->getIntensity();
      for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2)
      {
        double pos2(it2->getPosition()[0]);

        // direct ++
        if (charge > 1)
        {
          if (fabs(pos2 * 2 - Constants::PROTON_MASS_U - pos1) < fragment_mass_tolerance_)
          {
            double factor((fragment_mass_tolerance_ - fabs(pos2 * 2 - Constants::PROTON_MASS_U - pos1)) / fragment_mass_tolerance_);
            // pos1 is ion, pos2 is ++ion
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << "scoreWitnessSet: ++ion " << pos1 << " " << pos2 << " (factor=" << factor << ") " << wit_score << " -> ";
#endif
            if (ion_scores[it2->getPosition()[0]].s_isotope_pattern_2 < 0.2)
            {
              wit_score += it2->getIntensity() * /* 0.2 */ factor;
            }
            else
            {
              wit_score += it2->getIntensity() * ion_scores[it2->getPosition()[0]].s_isotope_pattern_2 * factor;
            }
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << wit_score << endl;
#endif
          }
        }

        // diffs?
        for (vector<double>::const_iterator it = diffs.begin(); it != diffs.end(); ++it)
        {
          // pos1 is ion, pos2 loss peak
          if (fabs(pos1 - pos2 - *it) < fragment_mass_tolerance_)
          {
            double factor((fragment_mass_tolerance_ - fabs(pos1 - pos2 - *it)) / fragment_mass_tolerance_);
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << "scoreWitnessSet: diff " << pos1 << " (" << pos2 << ") " << *it << " (factor=" << factor << ") " << wit_score << " -> ";
#endif
            wit_score += it2->getIntensity() /* / 5.0*/ * factor;
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << wit_score << endl;
#endif
          }
        }

        // is there a b-ion?; pos1 is ion, pos2 complementary ion
        if (fabs(pos1 + pos2 - 1 * Constants::PROTON_MASS_U - precursor_weight) < fragment_mass_tolerance_)
        {
          double factor((fragment_mass_tolerance_ - fabs(pos1 + pos2 - Constants::PROTON_MASS_U - precursor_weight)) / fragment_mass_tolerance_);
          /*factor *= 0.2;*/
#ifdef SCORE_WITNESSSET_DEBUG
          cerr << "scoreWitnessSet: complementary " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << wit_score << " -> ";
#endif
          // found complementary ion
          if (ion_scores[it2->getPosition()[0]].s_isotope_pattern_1 < 0.5 || ion_scores[it2->getPosition()[0]].is_isotope_1_mono != 1)
          {
            wit_score += it2->getIntensity() /* * 0.5*/ * factor;
          }
          else
          {
            wit_score += it2->getIntensity() * ion_scores[it2->getPosition()[0]].s_isotope_pattern_1 * factor;
          }
#ifdef SCORE_WITNESSSET_DEBUG
          cerr << wit_score << endl;
#endif

          if (ion_scores[it2->getPosition()[0]].s_bion != 0)
          {
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << "scoreWitnessSet: complementary is b-ion " << pos1 << "(" << pos2 << ")" << wit_score << " -> ";
#endif
            wit_score += ion_scores[it2->getPosition()[0]].s_bion * factor;
#ifdef SCORE_WITNESSSET_DEBUG
            cerr << wit_score << endl;
#endif
          }

        }
      }

      // isotope pattern ok?
      if (ion_scores[it1->getPosition()[0]].s_isotope_pattern_1 > 0 && ion_scores[it1->getPosition()[0]].is_isotope_1_mono == 1)
      {
#ifdef SCORE_WITNESSSET_DEBUG
        cerr << "scoreWitnessSet: isotope pattern: " << pos1 << " " << wit_score << " -> ";
#endif
        wit_score += ion_scores[it1->getPosition()[0]].s_isotope_pattern_1 * wit_score;
#ifdef SCORE_WITNESSSET_DEBUG
        cerr << wit_score << endl;
#endif
      }

      if (ion_scores[it1->getPosition()[0]].s_yion > 0)
      {
#ifdef SCORE_WITNESSSET_DEBUG
        cerr << "scoreWitnessSet: is y-ion: " << pos1 << " " << wit_score << " -> ";
#endif
        wit_score += ion_scores[it1->getPosition()[0]].s_yion;
#ifdef SCORE_WITNESSSET_DEBUG
        cerr << wit_score << endl;
#endif
      }

      if (ion_scores[it1->getPosition()[0]].s_bion > 0)
      {
#ifdef SCORE_WITNESSSET_DEBUG
        cerr << "scoreWitnessSet: is b-ion: " << pos1 << " " << wit_score << " -> ";
#endif
        if (ion_scores[it1->getPosition()[0]].s_bion < wit_score)
        {
          wit_score -= ion_scores[it1->getPosition()[0]].s_bion;
        }
        else
        {
          wit_score = 0;
        }
      }

      ion_scores[it1->getPosition()[0]].s_witness = wit_score;
    }
    return;
  }