/**
  @brief Similarity pairwise score

  This function return the similarity score of two spectra based on SteinScott.

  @param s1  const PeakSpectrum Spectrum 1
  @param s2  const PeakSpectrum Spectrum 2
  @see SteinScottImproveScore()
  */
  double SteinScottImproveScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
  {
    const double epsilon = (double)param_.getValue("tolerance");
    const double constant = epsilon / 10000;

    //const double c(0.0004);
    double score(0), sum(0), sum1(0), sum2(0), sum3(0), sum4(0);
    /* std::cout << s1 << std::endl;
    std::cout << std::endl;
    std::cout << s2 << std::endl;*/

    for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
    {
      double temp = it1->getIntensity();
      sum1 += temp * temp;
      sum3 += temp;
    }

    for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
    {
      double temp = it1->getIntensity();
      sum2 += temp * temp;
      sum4 += temp;
    }
    double z = constant * (sum3 * sum4);
    Size j_left(0);
    for (Size i = 0; i != s1.size(); ++i)
    {
      for (Size j = j_left; j != s2.size(); ++j)
      {
        double pos1(s1[i].getMZ()), pos2(s2[j].getMZ());
        if (std::abs(pos1 - pos2) <= 2 * epsilon)
        {
          sum += s1[i].getIntensity() * s2[j].getIntensity();
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            j_left = j;
          }
        }
      }
    }
    //std::cout<< sum << " Sum " << z << " z " << std::endl;
    score = (sum - z) / (std::sqrt((sum1 * sum2)));
    // std::cout<<score<< " score" << std::endl;
    if (score < (float)param_.getValue("threshold"))
    {
      score = 0;
    }

    return score;
  }
Beispiel #2
0
  double XQuestScores::xCorrelationPrescore(const PeakSpectrum & spec1, const PeakSpectrum & spec2, double tolerance)
  {
    // return 0 = no correlation, when one of the spectra is empty
    if (spec1.size() == 0 || spec2.size() == 0) {
      return 0.0;
    }

    double maxionsize = std::max(spec1[spec1.size()-1].getMZ(), spec2[spec2.size()-1].getMZ());
    Int table_size = ceil(maxionsize / tolerance)+1;
    std::vector< double > ion_table1(table_size, 0);
    std::vector< double > ion_table2(table_size, 0);

    // Build tables of the same size, each bin has the size of the tolerance
    for (Size i = 0; i < spec1.size(); ++i)
    {
      Size pos = static_cast<Size>(ceil(spec1[i].getMZ() / tolerance));
      ion_table1[pos] = 1;
    }
    for (Size i = 0; i < spec2.size(); ++i)
    {
      Size pos =static_cast<Size>(ceil(spec2[i].getMZ() / tolerance));
      ion_table2[pos] = 1;

    }

    double dot_product = 0.0;
    for (Size i = 0; i < ion_table1.size(); ++i)
    {
      dot_product += ion_table1[i] * ion_table2[i];
    }

    // determine the smaller spectrum and normalize by the number of peaks in it
    double peaks = std::min(spec1.size(), spec2.size());
    return dot_product / peaks;
  }
  void CompNovoIdentificationBase::windowMower_(PeakSpectrum & spec, DoubleReal windowsize, Size no_peaks)
  {
    PeakSpectrum copy(spec);
    vector<Peak1D> to_be_deleted;
    for (Size i = 0; i < spec.size(); ++i)
    {
      PeakSpectrum sub_spec;
      bool end(false);
      for (Size j = i; spec[j].getPosition()[0] - spec[i].getPosition()[0] < windowsize; )
      {
        sub_spec.push_back(spec[j]);
        if (++j == spec.size())
        {
          end = true;
          break;
        }
      }

      sub_spec.sortByIntensity(true);

      for (Size k = no_peaks; k < sub_spec.size(); ++k)
      {
        Peak1D p(sub_spec[k]);
        to_be_deleted.push_back(p);
      }

      if (end)
      {
        break;
      }
    }

    spec.clear(false);
    for (PeakSpectrum::ConstIterator it = copy.begin(); it != copy.end(); ++it)
    {
      if (find(to_be_deleted.begin(), to_be_deleted.end(), *it) == to_be_deleted.end())
      {
        spec.push_back(*it);
      }
    }

    spec.sortByPosition();

  }
Beispiel #4
0
  std::vector< double > XQuestScores::xCorrelation(const PeakSpectrum & spec1, const PeakSpectrum & spec2, Int maxshift, double tolerance)
  {
    // generate vector of results, filled with zeroes
    std::vector< double > results(maxshift * 2 + 1, 0);

    // return 0 = no correlation, when one of the spectra is empty
    if (spec1.size() == 0 || spec2.size() == 0) {
      return results;
    }

    double maxionsize = std::max(spec1[spec1.size()-1].getMZ(), spec2[spec2.size()-1].getMZ());
    Int table_size = ceil(maxionsize / tolerance)+1;
    std::vector< double > ion_table1(table_size, 0);
    std::vector< double > ion_table2(table_size, 0);

    // Build tables of the same size, each bin has the size of the tolerance
    for (Size i = 0; i < spec1.size(); ++i)
    {
      Size pos = static_cast<Size>(ceil(spec1[i].getMZ() / tolerance));
      ion_table1[pos] = 10.0;
    }
    for (Size i = 0; i < spec2.size(); ++i)
    {
      Size pos =static_cast<Size>(ceil(spec2[i].getMZ() / tolerance));
      ion_table2[pos] = 10.0;
    }

    // Compute means
    double mean1 = (std::accumulate(ion_table1.begin(), ion_table1.end(), 0.0)) / table_size;
    double mean2 = (std::accumulate(ion_table2.begin(), ion_table2.end(), 0.0)) / table_size;

    // Compute denominator
    double s1 = 0;
    double s2 = 0;
    for (Int i = 0; i < table_size; ++i)
    {
      s1 += pow((ion_table1[i] - mean1), 2);
      s2 += pow((ion_table2[i] - mean2), 2);
    }
    double denom = sqrt(s1 * s2);

    // Calculate correlation for each shift
    for (Int shift = -maxshift; shift <= maxshift; ++shift)
    {
      double s = 0;
      for (Int i = 0; i < table_size; ++i)
      {
        Int j = i + shift;
        if ( (j >= 0) && (j < table_size))
        {
          s += (ion_table1[i] - mean1) * (ion_table2[j] - mean2);
        }
      }
      if (denom > 0)
      {
        results[shift + maxshift] = s / denom;
      }
    }
    return results;
  }
Beispiel #5
0
  double XQuestScores::matchOddsScore(const PeakSpectrum& theoretical_spec,  const Size matched_size, double fragment_mass_tolerance, bool fragment_mass_tolerance_unit_ppm, bool is_xlink_spectrum, Size n_charges)
  {
    using boost::math::binomial;
    Size theo_size = theoretical_spec.size();

    if (matched_size < 1 || theo_size < 1)
    {
      return 0;
    }

    double range = theoretical_spec[theo_size-1].getMZ() -  theoretical_spec[0].getMZ();

    // Compute fragment tolerance in Da for the mean of MZ values, if tolerance in ppm (rough approximation)
    double mean = 0.0;
    for (Size i = 0; i < theo_size; ++i)
    {
      mean += theoretical_spec[i].getMZ();
    }
    mean = mean / theo_size;
    double tolerance_Th = fragment_mass_tolerance_unit_ppm ? mean * 1e-6 * fragment_mass_tolerance : fragment_mass_tolerance;

    // A priori probability of a random match given info about the theoretical spectrum
    double a_priori_p = 0;

    if (is_xlink_spectrum)
    {
      a_priori_p = (1 - ( pow( (1 - 2 * tolerance_Th / (0.5 * range)),  (static_cast<double>(theo_size) / static_cast<double>(n_charges)))));
    }
    else
    {
      a_priori_p = (1 - ( pow( (1 - 2 * tolerance_Th / (0.5 * range)),  static_cast<int>(theo_size))));
    }

    double match_odds = 0;

    binomial flip(theo_size, a_priori_p);
    // min double number to avoid 0 values, causing scores with the value "inf"
    match_odds = -log(1 - cdf(flip, matched_size) + std::numeric_limits<double>::min());

    // score lower than 0 does not make sense, but can happen if cfd = 0, -log( 1 + min() ) < 0
    if (match_odds >= 0.0)
    {
      return match_odds;
    }
    else
    {
      return 0;
    }
  }
Beispiel #6
0
  double XQuestScores::logOccupancyProb(const PeakSpectrum& theoretical_spec,  const Size matched_size, double fragment_mass_tolerance, bool fragment_mass_tolerance_unit_ppm)
  {
    using boost::math::binomial;
    Size theo_size = theoretical_spec.size();

    if (matched_size < 1 || theo_size < 1)
    {
      return 0;
    }

    double range;
    double used_tolerance;

    if (fragment_mass_tolerance_unit_ppm)
    {
      range = std::log(theoretical_spec.back().getMZ()) - std::log(theoretical_spec[0].getMZ());
      used_tolerance = fragment_mass_tolerance / 1e6;
    }
    else
    {
      range = theoretical_spec.back().getMZ() - theoretical_spec[0].getMZ();
      used_tolerance = fragment_mass_tolerance;
    }

    // A priori probability of a random match given info about the theoretical spectrum
    double a_priori_p = 0;
    a_priori_p = 1 - pow(1 - 2 * used_tolerance / range,  static_cast<double>(theo_size));

    double log_occu_prob = 0;
    binomial flip(theo_size, a_priori_p);
    // min double number to avoid 0 values, causing scores with the value "inf"
    log_occu_prob = -log(1 - cdf(flip, matched_size) + std::numeric_limits<double>::min());

    // score lower than 0 does not make sense, but can happen, if cfd = 0, then -log( 1 + <double>::min() ) < 0
    if (log_occu_prob >= 0.0)
    {
      return log_occu_prob;
    }
    else // underflow warning?
    {
      return 0;
    }
  }
Beispiel #7
0
 Size AScore::numberOfMatchedIons_(const PeakSpectrum & th, const PeakSpectrum & window, Size depth, double fragment_mass_tolerance, bool fragment_mass_tolerance_ppm) const
 {
   PeakSpectrum window_reduced = window;
   if (window_reduced.size() > depth)
   {
     window_reduced.resize(depth);
   }
   
   window_reduced.sortByPosition();
   Size n = 0;
   for (Size i = 0; i < th.size(); ++i)
   {
     Size nearest_peak = -1;
     try
     {
       nearest_peak = window_reduced.findNearest(th[i].getMZ());
     }
     catch (Exception::Precondition) {}
     
     if (nearest_peak < window_reduced.size())
     {
       double window_mz = window_reduced[nearest_peak].getMZ();
       double error = abs(window_mz - th[i].getMZ());
       
       if (fragment_mass_tolerance_ppm)
       {
         error = error / window_mz * 1e6;
       }
       if (error < fragment_mass_tolerance)
       {
         ++n;
       }
     }      
   }
   return n;
 }
Beispiel #8
0
  double PeakAlignment::operator()(const PeakSpectrum& spec1, const PeakSpectrum& spec2) const
  {

    PeakSpectrum s1(spec1), s2(spec2);

    // shortcut similarity calculation by comparing PrecursorPeaks (PrecursorPeaks more than delta away from each other are supposed to be from another peptide)
    DoubleReal pre_mz1 = 0.0;
    if (!spec1.getPrecursors().empty())
      pre_mz1 = spec1.getPrecursors()[0].getMZ();
    DoubleReal pre_mz2 = 0.0;
    if (!spec1.getPrecursors().empty())
      pre_mz2 = spec2.getPrecursors()[0].getMZ();
    if (fabs(pre_mz1 - pre_mz2) > (double)param_.getValue("precursor_mass_tolerance"))
    {
      return 0;
    }

    // heuristic shortcut
    const double epsilon = (double)param_.getValue("epsilon");
    const UInt heuristic_level = (UInt)param_.getValue("heuristic_level");
    bool heuristic_filters(true);
    if (heuristic_level)
    {
      s1.sortByIntensity(true);
      s2.sortByIntensity(true);

      //heuristic filters (and shortcuts) if spec1 and spec2 have NOT at least one peak in the sets of |heuristic_level|-many highest peaks in common
      for (PeakSpectrum::ConstIterator it_s1 = s1.begin(); Size(it_s1 - s1.begin()) < heuristic_level && it_s1 != s1.end(); ++it_s1)
      {
        for (PeakSpectrum::ConstIterator it_s2 = s2.begin(); Size(it_s2 - s2.begin()) < heuristic_level && it_s2 != s2.end(); ++it_s2)
        {
          // determine if it is a match, i.e. mutual peak at certain m/z with epsilon tolerance
          if (fabs((*it_s2).getMZ() - (*it_s1).getMZ()) < epsilon)
          {
            heuristic_filters = false;
            break;
          }
        }
      }
    }
    if (heuristic_filters && heuristic_level)
    {
      return 0;
    }

    //TODO gapcost dependence on distance ?
    const double gap = (double)param_.getValue("epsilon");

    //initialize alignment matrix with 0 in (0,0) and a multiple of gapcost in the first row/col matrix(row,col,values)
    Matrix<double> matrix(spec1.size() + 1, spec2.size() + 1, 0);
    for (Size i = 1; i < matrix.rows(); i++)
    {
      matrix.setValue(i, 0, -gap * i);
    }
    for (Size i = 1; i < matrix.cols(); i++)
    {
      matrix.setValue(0, i, -gap * i);
    }

    //get sigma - the standard deviation (sqrt of variance)
    double mid(0);
    for (Size i = 0; i < spec1.size(); ++i)
    {
      for (Size j = 0; j < spec2.size(); ++j)
      {
        double pos1(spec1[i].getMZ()), pos2(spec2[j].getMZ());
        mid += fabs(pos1 - pos2);
      }
    }
    // average peak distance
    mid /= (spec1.size() * spec2.size());

    /* to manually retrace
    cout << "average peak distance " << mid << endl;
    */


    double var(0);
    for (Size i = 0; i < spec1.size(); ++i)
    {
      for (Size j = 0; j < spec2.size(); ++j)
      {
        double pos1(spec1[i].getMZ()), pos2(spec2[j].getMZ());
        var += (fabs(pos1 - pos2) - mid) * (fabs(pos1 - pos2) - mid);
      }
    }
    // peak distance variance
    var /= (spec1.size() * spec2.size());

    /* to manually retrace
    cout << "peak distance variance " << var << endl;
    */

    //only in case of only two equal peaks in the spectra sigma is 0


    const double sigma((var == 0) ? numeric_limits<double>::min() : sqrt(var));

    /* to manually retrace
    cout << "peak standard deviation " << sigma << endl;
    */

    //fill alignment matrix
    for (Size i = 1; i < spec1.size() + 1; ++i)
    {
      for (Size j = 1; j < spec2.size() + 1; ++j)
      {
        double pos1(spec1[i - 1].getMZ()), pos2(spec2[j - 1].getMZ());
        //only if peaks are in reasonable proximity alignment is considered else only gaps
        if (fabs(pos1 - pos2) <= epsilon)
        {
          // actual cell = max(upper left cell+score, left cell-gap, upper cell-gap)
          double from_left(matrix.getValue(i, j - 1) - gap);
          double from_above(matrix.getValue(i - 1, j) - gap);
          double int1(spec1[i - 1].getIntensity()), int2(spec2[j - 1].getIntensity());
          double from_diagonal(matrix.getValue(i - 1, j - 1) + peakPairScore_(pos1, int1, pos2, int2, sigma));
          matrix.setValue(i, j, max(from_left, max(from_above, from_diagonal)));
        }
        else
        {
          // actual cell = max(left cell-gap, upper cell-gap)
          double from_left(matrix.getValue(i, j - 1) - gap);
          double from_above(matrix.getValue(i - 1, j) - gap);
          matrix.setValue(i, j, max(from_left, from_above));
        }
      }
    }

    /* to manually retrace
    cout << endl << matrix << endl;
    */

    //get best overall score and return
    double best_score(numeric_limits<double>::min());
    for (Size i = 0; i < matrix.cols(); i++)
    {
      best_score = max(best_score, matrix.getValue(matrix.rows() - 1, i));
    }
    for (Size i = 0; i < matrix.rows(); i++)
    {
      best_score = max(best_score, matrix.getValue(i, matrix.cols() - 1));
    }

    //calculate selfalignment-scores for both input spectra
    double score_spec1(0), score_spec2(0);
    for (Size i = 0; i < spec1.size(); ++i)
    {
      double int_i(spec1[i].getIntensity());
      double pos_i(spec1[i].getMZ());
      score_spec1 += peakPairScore_(pos_i, int_i, pos_i, int_i, sigma);
    }
    for (Size i = 0; i < spec2.size(); ++i)
    {
      double int_i(spec2[i].getIntensity());
      double pos_i(spec2[i].getMZ());
      score_spec2 += peakPairScore_(pos_i, int_i, pos_i, int_i, sigma);
    }


    /* to manually retrace
    cout << "score_spec1: " << score_spec1 << "score_spec2: " << score_spec2 << endl;
    */

    //normalize score to interval [0,1] with geometric mean
    double best_score_normalized(best_score / sqrt(score_spec1 * score_spec2));

    /*
    cout << "score_spec1: " << score_spec1 << " score_spec2: " << score_spec2 <<  " best_score: " << best_score << endl;

    //normalize score to interval [0,1] with arithmeic mean
    double best_score_normalized( (best_score*2) / (score_spec1 + score_spec2) );
    */

    return best_score_normalized;
  }
Beispiel #9
0
  vector<pair<Size, Size> > PeakAlignment::getAlignmentTraceback(const PeakSpectrum& spec1, const PeakSpectrum& spec2) const
  {
    const double epsilon = (double)param_.getValue("epsilon");

    //TODO gapcost dependence on distance ?
    const double gap = (double)param_.getValue("epsilon");

    //initialize alignment matrix with 0 in (0,0) and a multiple of gapcost in the first row/col matrix(row,col,values)
    Matrix<double> matrix(spec1.size() + 1, spec2.size() + 1, 0);
    for (Size i = 1; i < matrix.rows(); i++)
    {
      matrix.setValue(i, 0, -gap * i);
    }
    for (Size i = 1; i < matrix.cols(); i++)
    {
      matrix.setValue(0, i, -gap * i);
    }

    // gives the direction of the matrix cell that originated the respective cell
    // e.g. matrix(i+1,j+1) could have originated from matrix(i,j), matrix(i+1,j) or matrix(i,j+1)
    // so traceback(i,j) represents matrix(i+1,j+1) and contains a "1"-from diagonal, a "0"-from left or a "2"-from above
    Matrix<Size> traceback(spec1.size(), spec2.size());

    //get sigma - the standard deviation (sqrt of variance)
    double mid(0);
    for (Size i = 0; i < spec1.size(); ++i)
    {
      for (Size j = 0; j < spec2.size(); ++j)
      {
        double pos1(spec1[i].getMZ()), pos2(spec2[j].getMZ());
        mid += fabs(pos1 - pos2);
      }
    }
    mid /= (spec1.size() * spec2.size());

    /* to manually retrace
        cout << mid << endl;
    */

    double var(0);
    for (Size i = 0; i < spec1.size(); ++i)
    {
      for (Size j = 0; j < spec2.size(); ++j)
      {
        double pos1(spec1[i].getMZ()), pos2(spec2[j].getMZ());
        var += (fabs(pos1 - pos2) - mid) * (fabs(pos1 - pos2) - mid);
      }
    }
    var /= (spec1.size() * spec2.size());

    /* to manually retrace
        cout << var << endl;
    */

    const double sigma(sqrt(var));

    /* to manually retrace
        cout << sigma << endl;
    */


    //fill alignment matrix
    for (Size i = 1; i < spec1.size() + 1; ++i)
    {
      for (Size j = 1; j < spec2.size() + 1; ++j)
      {
        double pos1(spec1[i - 1].getMZ()), pos2(spec2[j - 1].getMZ());
        //only if peaks are in reasonable proximity alignment is considered else only gaps
        if (fabs(pos1 - pos2) <= epsilon)
        {
          // actual cell = max(upper left cell+score, left cell-gap, upper cell-gap)
          double from_left(matrix.getValue(i, j - 1) - gap);
          double from_above(matrix.getValue(i - 1, j) - gap);
          double int1(spec1[i - 1].getIntensity()), int2(spec2[j - 1].getIntensity());
          double from_diagonal(matrix.getValue(i - 1, j - 1) + peakPairScore_(pos1, int1, pos2, int2, sigma));
          matrix.setValue(i, j, max(from_left, max(from_above, from_diagonal)));

          // TODO the cases where all or two values are equal
          if (from_diagonal > from_left && from_diagonal > from_above)
          {
            traceback.setValue(i - 1, j - 1, 1);
          }
          else
          {
            if (from_left > from_diagonal && from_left > from_above)
            {
              traceback.setValue(i - 1, j - 1, 0);
            }
            else
            {
              if (from_above > from_diagonal && from_above > from_left)
              {
                traceback.setValue(i - 1, j - 1, 2);
              }
            }
          }
        }
        else
        {
          // actual cell = max(left cell-gap, upper cell-gap)
          double from_left(matrix.getValue(i, j - 1) - gap);
          double from_above(matrix.getValue(i - 1, j) - gap);
          matrix.setValue(i, j, max(from_left, from_above));
          if (from_left > from_above)
          {
            traceback.setValue(i - 1, j - 1, 0);
          }
          else           //from_left <= from_above
          {
            traceback.setValue(i - 1, j - 1, 2);
          }
        }
      }
    }
    //return track from best alloverscore to 0,0
    vector<pair<Size, Size> > ret_val;

    //get matrix coordinates from best alloverscore
    Size row_index(0), col_index(0);
    double best_score(numeric_limits<double>::min());
    for (Size i = 0; i < matrix.cols(); i++)
    {
      if (best_score < matrix.getValue(matrix.rows() - 1, i))
      {
        best_score = matrix.getValue(matrix.rows() - 1, i);
        row_index = matrix.rows() - 1;
        col_index = i;
      }
    }
    for (Size i = 0; i < matrix.rows(); i++)
    {
      if (best_score < matrix.getValue(i, matrix.cols() - 1))
      {
        best_score = matrix.getValue(i, matrix.cols() - 1);
        row_index = i;
        col_index = matrix.cols() - 1;
      }
    }

    // TODO check the invariant!
    while (row_index > 0 && col_index > 0)
    {
      //from diagonal - peaks aligned
      if (traceback.getValue(row_index - 1, col_index - 1) == 1)
      {
        //register aligned peaks only
        ret_val.insert(ret_val.begin(), pair<Size, Size>(row_index - 1, col_index - 1));
        row_index = row_index - 1;
        col_index = col_index - 1;
      }
      // gap alignment
      else if (traceback.getValue(row_index - 1, col_index - 1) == 0)
      {
        col_index = col_index - 1;
      }
      else
      {
        row_index = row_index - 1;
      }
    }

    /* to manually retrace
    cout << endl << matrix << endl << traceback << endl;
    */

    return ret_val;
  }
Beispiel #10
0
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((WindowMower& operator = (const WindowMower& source)))
	WindowMower copy;
	copy = *e_ptr;
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((template<typename SpectrumType> void filterPeakSpectrumForTopNInSlidingWindow(SpectrumType& spectrum)))
	DTAFile dta_file;
	PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);
	TEST_EQUAL(spec.size(), 121)

	Param p(e_ptr->getParameters());
	p.setValue("windowsize", 50.0); // default
	p.setValue("peakcount", 2);  // default
	p.setValue("movetype", "slide"); // default and not needed as we directly call sliding window function
	e_ptr->setParameters(p);
	
	e_ptr->filterPeakSpectrumForTopNInSlidingWindow(spec);
	
	TEST_EQUAL(spec.size(), 56)
	
END_SECTION

START_SECTION((template<typename SpectrumType> void filterPeakSpectrumForTopNInJumpingWindow(SpectrumType& spectrum)))
	DTAFile dta_file;
  String XQuestResultXMLFile::getxQuestBase64EncodedSpectrum_(const PeakSpectrum& spec, String header)
  {
    std::vector<String> in_strings;
    StringList sl;

    double precursor_mz = 0;
    double precursor_z = 0;
    if (spec.getPrecursors().size() > 0)
    {
      precursor_mz = Math::roundDecimal(spec.getPrecursors()[0].getMZ(), -9);
      precursor_z = spec.getPrecursors()[0].getCharge();
    }

    // header lines
    if (!header.empty()) // common or xlinker spectrum will be reported
    {
      sl.push_back(header + "\n"); // e.g. GUA1372-S14-A-LRRK2_DSS_1A3.03873.03873.3.dta,GUA1372-S14-A-LRRK2_DSS_1A3.03863.03863.3.dta
      sl.push_back(String(precursor_mz) + "\n");
      sl.push_back(String(precursor_z) + "\n");
    }
    else // light or heavy spectrum will be reported
    {
      sl.push_back(String(precursor_mz) + "\t" + String(precursor_z) + "\n");
    }

    PeakSpectrum::IntegerDataArray charges;
    if (spec.getIntegerDataArrays().size() > 0)
    {
      charges = spec.getIntegerDataArrays()[0];
    }

    // write peaks
    for (Size i = 0; i != spec.size(); ++i)
    {
      String s;
      s += String(Math::roundDecimal(spec[i].getMZ(), -9)) + "\t";
      s += String(spec[i].getIntensity()) + "\t";

      if (charges.size() > 0)
      {
        s += String(charges[i]);
      }
      else
      {
        s += "0";
      }

      s += "\n";

      sl.push_back(s);
    }

    String out;
    out.concatenate(sl.begin(), sl.end(), "");
    in_strings.push_back(out);

    String out_encoded;
    Base64().encodeStrings(in_strings, out_encoded, false, false);
    String out_wrapped;
    wrap_(out_encoded, 76, out_wrapped);
    return out_wrapped;
  }
  ExitCodes main_(int, const char**)
  {
    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------

    StringList in_spec = getStringList_("in");
    StringList out = getStringList_("out");
    String in_lib = getStringOption_("lib");
    String compare_function = getStringOption_("compare_function");
    Int precursor_mass_multiplier = getIntOption_("round_precursor_to_integer");
    float precursor_mass_tolerance = getDoubleOption_("precursor_mass_tolerance");
    //Int min_precursor_charge = getIntOption_("min_precursor_charge");
    //Int max_precursor_charge = getIntOption_("max_precursor_charge");
    float remove_peaks_below_threshold = getDoubleOption_("filter:remove_peaks_below_threshold");
    UInt min_peaks = getIntOption_("filter:min_peaks");
    UInt max_peaks = getIntOption_("filter:max_peaks");
    Int cut_peaks_below = getIntOption_("filter:cut_peaks_below");
    StringList fixed_modifications = getStringList_("fixed_modifications");
    StringList variable_modifications = getStringList_("variable_modifications");
    Int top_hits  = getIntOption_("top_hits");
    if (top_hits < -1)
    {
      writeLog_("top_hits (should be  >= -1 )");
      return ILLEGAL_PARAMETERS;
    }
    //-------------------------------------------------------------
    // loading input
    //-------------------------------------------------------------
    if (out.size() != in_spec.size())
    {
      writeLog_("out (should be as many as input files)");
      return ILLEGAL_PARAMETERS;
    }

    time_t prog_time = time(NULL);
    MSPFile spectral_library;
    RichPeakMap query, library;
    //spectrum which will be identified
    MzMLFile spectra;
    spectra.setLogType(log_type_);

    time_t start_build_time = time(NULL);
    //-------------------------------------------------------------
    //building map for faster search
    //-------------------------------------------------------------

    //library containing already identified peptide spectra
    vector<PeptideIdentification> ids;
    spectral_library.load(in_lib, ids, library);

    map<Size, vector<PeakSpectrum> > MSLibrary;
    {
      RichPeakMap::iterator s;
      vector<PeptideIdentification>::iterator i;
      ModificationsDB* mdb = ModificationsDB::getInstance();
      for (s = library.begin(), i = ids.begin(); s < library.end(); ++s, ++i)
      {
        double precursor_MZ = (*s).getPrecursors()[0].getMZ();
        Size MZ_multi = (Size)precursor_MZ * precursor_mass_multiplier;
        map<Size, vector<PeakSpectrum> >::iterator found;
        found = MSLibrary.find(MZ_multi);

        PeakSpectrum librar;
        bool variable_modifications_ok = true;
        bool fixed_modifications_ok = true;
        const AASequence& aaseq = i->getHits()[0].getSequence();
        //variable fixed modifications
        if (!fixed_modifications.empty())
        {
          for (Size i = 0; i < aaseq.size(); ++i)
          {
            const   Residue& mod  = aaseq.getResidue(i);
            for (Size s = 0; s < fixed_modifications.size(); ++s)
            {
              if (mod.getOneLetterCode() == mdb->getModification(fixed_modifications[s]).getOrigin() && fixed_modifications[s] != mod.getModification())
              {
                fixed_modifications_ok = false;
                break;
              }
            }
          }
        }
        //variable modifications
        if (aaseq.isModified() && (!variable_modifications.empty()))
        {
          for (Size i = 0; i < aaseq.size(); ++i)
          {
            if (aaseq.isModified(i))
            {
              const   Residue& mod  = aaseq.getResidue(i);
              for (Size s = 0; s < variable_modifications.size(); ++s)
              {
                if (mod.getOneLetterCode() == mdb->getModification(variable_modifications[s]).getOrigin() && variable_modifications[s] != mod.getModification())
                {
                  variable_modifications_ok = false;
                  break;
                }
              }
            }
          }
        }
        if (variable_modifications_ok && fixed_modifications_ok)
        {
          PeptideIdentification& translocate_pid = *i;
          librar.getPeptideIdentifications().push_back(translocate_pid);
          librar.setPrecursors(s->getPrecursors());
          //library entry transformation
          for (UInt l = 0; l < s->size(); ++l)
          {
            Peak1D peak;
            if ((*s)[l].getIntensity() >  remove_peaks_below_threshold)
            {
              const String& info = (*s)[l].getMetaValue("MSPPeakInfo");
              if (info[0] == '?')
              {
                peak.setIntensity(sqrt(0.2 * (*s)[l].getIntensity()));
              }
              else
              {
                peak.setIntensity(sqrt((*s)[l].getIntensity()));
              }

              peak.setMZ((*s)[l].getMZ());
              peak.setPosition((*s)[l].getPosition());
              librar.push_back(peak);
            }
          }
          if (found != MSLibrary.end())
          {
            found->second.push_back(librar);
          }
          else
          {
            vector<PeakSpectrum> tmp;
            tmp.push_back(librar);
            MSLibrary.insert(make_pair(MZ_multi, tmp));
          }
        }
      }
    }
    time_t end_build_time = time(NULL);
    cout << "Time needed for preprocessing data: " << (end_build_time - start_build_time) << "\n";
    //compare function
    PeakSpectrumCompareFunctor* comparor = Factory<PeakSpectrumCompareFunctor>::create(compare_function);
    //-------------------------------------------------------------
    // calculations
    //-------------------------------------------------------------
    double score;
    StringList::iterator in, out_file;
    for (in  = in_spec.begin(), out_file  = out.begin(); in < in_spec.end(); ++in, ++out_file)
    {
      time_t start_time = time(NULL);
      spectra.load(*in, query);
      //Will hold valuable hits
      vector<PeptideIdentification> peptide_ids;
      vector<ProteinIdentification> protein_ids;
      // Write parameters to ProteinIdentifcation
      ProteinIdentification prot_id;
      //Parameters of identificaion
      prot_id.setIdentifier("test");
      prot_id.setSearchEngineVersion("SpecLibSearcher");
      prot_id.setDateTime(DateTime::now());
      prot_id.setScoreType(compare_function);
      ProteinIdentification::SearchParameters searchparam;
      searchparam.precursor_tolerance = precursor_mass_tolerance;
      prot_id.setSearchParameters(searchparam);
      /***********SEARCH**********/
      for (UInt j = 0; j < query.size(); ++j)
      {
        //Set identifier for each identifications
        PeptideIdentification pid;
        pid.setIdentifier("test");
        pid.setScoreType(compare_function);
        ProteinHit pr_hit;
        pr_hit.setAccession(j);
        prot_id.insertHit(pr_hit);
        //RichPeak1D to Peak1D transformation for the compare function query
        PeakSpectrum quer;
        bool peak_ok = true;
        query[j].sortByIntensity(true);
        double min_high_intensity = 0;

        if (query[j].empty() || query[j].getMSLevel() != 2)
        {
          continue;
        }
        if (query[j].getPrecursors().empty())
        {
          writeLog_("Warning MS2 spectrum without precursor information");
          continue;
        }

        min_high_intensity = (1 / cut_peaks_below) * query[j][0].getIntensity();

        query[j].sortByPosition();
        for (UInt k = 0; k < query[j].size() && k < max_peaks; ++k)
        {
          if (query[j][k].getIntensity() >  remove_peaks_below_threshold && query[j][k].getIntensity() >= min_high_intensity)
          {
            Peak1D peak;
            peak.setIntensity(sqrt(query[j][k].getIntensity()));
            peak.setMZ(query[j][k].getMZ());
            peak.setPosition(query[j][k].getPosition());
            quer.push_back(peak);
          }
        }
        if (quer.size() >= min_peaks)
        {
          peak_ok = true;
        }
        else
        {
          peak_ok = false;
        }
        double query_MZ = query[j].getPrecursors()[0].getMZ();
        if (peak_ok)
        {
          bool charge_one = false;
          Int percent = (Int) Math::round((query[j].size() / 100.0) * 3.0);
          Int margin  = (Int) Math::round((query[j].size() / 100.0) * 1.0);
          for (vector<RichPeak1D>::iterator peak = query[j].end() - 1; percent >= 0; --peak, --percent)
          {
            if (peak->getMZ() < query_MZ)
            {
              break;
            }
          }
          if (percent > margin)
          {
            charge_one = true;
          }
          float min_MZ = (query_MZ - precursor_mass_tolerance) * precursor_mass_multiplier;
          float max_MZ = (query_MZ + precursor_mass_tolerance) * precursor_mass_multiplier;
          for (Size mz = (Size)min_MZ; mz <= ((Size)max_MZ) + 1; ++mz)
          {
            map<Size, vector<PeakSpectrum> >::iterator found;
            found = MSLibrary.find(mz);
            if (found != MSLibrary.end())
            {
              vector<PeakSpectrum>& library = found->second;
              for (Size i = 0; i < library.size(); ++i)
              {
                float this_MZ  = library[i].getPrecursors()[0].getMZ() * precursor_mass_multiplier;
                if (this_MZ >= min_MZ && max_MZ >= this_MZ && ((charge_one == true && library[i].getPeptideIdentifications()[0].getHits()[0].getCharge() == 1) || charge_one == false))
                {
                  PeptideHit hit = library[i].getPeptideIdentifications()[0].getHits()[0];
                  PeakSpectrum& librar = library[i];
                  //Special treatment for SpectraST score as it computes a score based on the whole library
                  if (compare_function == "SpectraSTSimilarityScore")
                  {
                    SpectraSTSimilarityScore* sp = static_cast<SpectraSTSimilarityScore*>(comparor);
                    BinnedSpectrum quer_bin = sp->transform(quer);
                    BinnedSpectrum librar_bin = sp->transform(librar);
                    score = (*sp)(quer, librar); //(*sp)(quer_bin,librar_bin);
                    double dot_bias = sp->dot_bias(quer_bin, librar_bin, score);
                    hit.setMetaValue("DOTBIAS", dot_bias);
                  }
                  else
                  {
                    score = (*comparor)(quer, librar);
                  }

                  DataValue RT(library[i].getRT());
                  DataValue MZ(library[i].getPrecursors()[0].getMZ());
                  hit.setMetaValue("RT", RT);
                  hit.setMetaValue("MZ", MZ);
                  hit.setScore(score);
                  PeptideEvidence pe;
                  pe.setProteinAccession(pr_hit.getAccession());
                  hit.addPeptideEvidence(pe);
                  pid.insertHit(hit);
                }
              }
            }
          }
        }
        pid.setHigherScoreBetter(true);
        pid.sort();
        if (compare_function == "SpectraSTSimilarityScore")
        {
          if (!pid.empty() && !pid.getHits().empty())
          {
            vector<PeptideHit> final_hits;
            final_hits.resize(pid.getHits().size());
            SpectraSTSimilarityScore* sp = static_cast<SpectraSTSimilarityScore*>(comparor);
            Size runner_up = 1;
            for (; runner_up < pid.getHits().size(); ++runner_up)
            {
              if (pid.getHits()[0].getSequence().toUnmodifiedString() != pid.getHits()[runner_up].getSequence().toUnmodifiedString() || runner_up > 5)
              {
                break;
              }
            }
            double delta_D = sp->delta_D(pid.getHits()[0].getScore(), pid.getHits()[runner_up].getScore());
            for (Size s = 0; s < pid.getHits().size(); ++s)
            {
              final_hits[s] = pid.getHits()[s];
              final_hits[s].setMetaValue("delta D", delta_D);
              final_hits[s].setMetaValue("dot product", pid.getHits()[s].getScore());
              final_hits[s].setScore(sp->compute_F(pid.getHits()[s].getScore(), delta_D, pid.getHits()[s].getMetaValue("DOTBIAS")));

              //final_hits[s].removeMetaValue("DOTBIAS");
            }
            pid.setHits(final_hits);
            pid.sort();
            pid.setMZ(query[j].getPrecursors()[0].getMZ());
            pid.setRT(query_MZ);
          }
        }
        if (top_hits != -1 && (UInt)top_hits < pid.getHits().size())
        {
          vector<PeptideHit> hits;
          hits.resize(top_hits);
          for (Size i = 0; i < (UInt)top_hits; ++i)
          {
            hits[i] = pid.getHits()[i];
          }
          pid.setHits(hits);
        }
        peptide_ids.push_back(pid);
      }
      protein_ids.push_back(prot_id);
      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------
      IdXMLFile id_xml_file;
      id_xml_file.store(*out_file, protein_ids, peptide_ids);
      time_t end_time = time(NULL);
      cout << "Search time: " << difftime(end_time, start_time) << " seconds for " << *in << "\n";
    }
    time_t end_time = time(NULL);
    cout << "Total time: " << difftime(end_time, prog_time) << " secconds\n";
    return EXECUTION_OK;
  }
  delete ptr;
END_SECTION

ptr = new TheoreticalSpectrumGenerator();
AASequence peptide = AASequence::fromString("IFSQVGK");

START_SECTION(TheoreticalSpectrumGenerator& operator = (const TheoreticalSpectrumGenerator& tsg))
  TheoreticalSpectrumGenerator copy;
  copy = *ptr;
  TEST_EQUAL(copy.getParameters(), ptr->getParameters())
END_SECTION

START_SECTION(void getSpectrum(PeakSpectrum& spec, const AASequence& peptide, Int min_charge = 1, Int max_charge = 1))
  PeakSpectrum spec;
  ptr->getSpectrum(spec, peptide, 1, 1);
  TEST_EQUAL(spec.size(), 11)

  TOLERANCE_ABSOLUTE(0.001)

  double result[] = {/*114.091,*/ 147.113, 204.135, 261.16, 303.203, 348.192, 431.262, 476.251, 518.294, 575.319, 632.341, 665.362};
  for (Size i = 0; i != spec.size(); ++i)
  {
    TEST_REAL_SIMILAR(spec[i].getPosition()[0], result[i])
  }

  spec.clear(true);
  ptr->getSpectrum(spec, peptide, 1, 2);
  TEST_EQUAL(spec.size(), 22)

  spec.clear(true);
  Param param(ptr->getParameters());
  PeakSpectrum spec;

  Param p = ptr->getDefaults();
  p.setValue ("hide_losses", "true");
  p.setValue ("add_metainfo", "true");
  ptr->setParameters (p);

  ptr->load();
  ptr->simulate(spec, peptide, rnd_gen, 1);

  PeakMap exp;
  MzMLFile mz_file;

#if OPENMS_BOOST_VERSION_MINOR < 56
  mz_file.load(OPENMS_GET_TEST_DATA_PATH("SvmTheoreticalSpectrumGenerator_test.mzML"),exp);
  TEST_EQUAL(spec.size(), 7);
#else
  mz_file.load(OPENMS_GET_TEST_DATA_PATH("SvmTheoreticalSpectrumGenerator_test_boost58.mzML"),exp);
  TEST_EQUAL(spec.size(), 8);
  // the extra peak:
  TEST_EQUAL(spec.getStringDataArrays()[0][2], "YIon  0++") // TODO: ion_nr is always zero, its actually y4++
  TEST_EQUAL(spec.getIntegerDataArrays()[0][2], 2)
#endif

  TEST_EQUAL(exp.size(), 1);
  if(exp.size())
  {
    TEST_EQUAL(spec.size(), exp[0].size());
    Size min_size = min(spec.size(), exp[0].size());

    for(Size i = 0; i<min_size; ++i)
PeakSpectrum theo_spec_1, theo_spec_2, exp_spec_1, exp_spec_2;
specGen.getCommonIonSpectrum(exp_spec_1, AASequence::fromString("PEPTIDE"), 2, true, 3);
specGen.getCommonIonSpectrum(exp_spec_2, AASequence::fromString("PEPTEDI"), 3, true, 3);

param.setValue("add_metainfo", "true");
specGen.setParameters(param);

specGen.getCommonIonSpectrum(theo_spec_1, AASequence::fromString("PEPTIDE"), 3, true, 3);
specGen.getCommonIonSpectrum(theo_spec_2, AASequence::fromString("PEPTEDI"), 4, true, 3);

START_SECTION(static PeakSpectrum mergeAnnotatedSpectra(PeakSpectrum & first_spectrum, PeakSpectrum & second_spectrum))

  PeakSpectrum merged_spec = OPXLSpectrumProcessingAlgorithms::mergeAnnotatedSpectra(theo_spec_1, theo_spec_2);

  TEST_EQUAL(merged_spec.size(), 36)
  TEST_EQUAL(merged_spec.getIntegerDataArrays().size(), 1)
  TEST_EQUAL(merged_spec.getIntegerDataArrays()[0].size(), 36)
  TEST_EQUAL(merged_spec.getStringDataArrays()[0].size(), 36)
  TEST_EQUAL(merged_spec.getIntegerDataArrays()[0][10], 3)
  TEST_EQUAL(merged_spec.getStringDataArrays()[0][10], "[alpha|ci$y2]")
  TEST_EQUAL(merged_spec.getIntegerDataArrays()[0][20], 2)
  TEST_EQUAL(merged_spec.getStringDataArrays()[0][20], "[alpha|ci$y2]")
  TEST_REAL_SIMILAR(merged_spec[10].getMZ(), 83.04780)
  TEST_REAL_SIMILAR(merged_spec[20].getMZ(), 132.04732)

  for (Size i = 0; i < merged_spec.size()-1; ++i)
  {
    TEST_EQUAL(merged_spec[i].getMZ() <= merged_spec[i+1].getMZ(), true)
  }
Beispiel #16
0
  double ZhangSimilarityScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
  {
    const double tolerance = (double)param_.getValue("tolerance");
    bool use_linear_factor = param_.getValue("use_linear_factor").toBool();
    bool use_gaussian_factor = param_.getValue("use_gaussian_factor").toBool();
    double score(0), sum(0), sum1(0), sum2(0) /*, squared_sum1(0), squared_sum2(0)*/;

    // TODO remove parameter 
    if (param_.getValue("is_relative_tolerance").toBool() )
    {
      throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION);
    }

    for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
    {
      sum1 += it1->getIntensity();
      /*
for (PeakSpectrum::ConstIterator it2 = s1.begin(); it2 != s1.end(); ++it2)
{
  if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
  {
    squared_sum1 += it1->getIntensity() * it2->getIntensity();
  }
}*/
    }

/*
        UInt i_left(0);
        for (Size i = 0; i != s1.size(); ++i)
        {
            sum1 += s1[i].getIntensity();
            for (Size j = i_left; j != s1.size(); ++j)
            {
                double pos1(s1[i].getPosition()[0]), pos2(s1[j].getPosition()[0]);
                if (abs(pos1 - pos2) <= 2 * tolerance)
                {
                    squared_sum1 += s1[i].getIntensity() * s1[j].getIntensity();
                }
                else
                {
                    if (pos2 > pos1)
                    {
                        break;
                    }
                    else
                    {
                        i_left = i;
                    }
                }
            }
        }*/

/*
    i_left = 0;
    for (Size i = 0; i != s2.size(); ++i)
    {
      sum2 += s2[i].getIntensity();
      for (Size j = i_left; j != s2.size(); ++j)
      {
        double pos1(s2[i].getPosition()[0]), pos2(s2[j].getPosition()[0]);
        if (abs(pos1 - pos2) <= 2 * tolerance)
        {
          squared_sum1 += s2[i].getIntensity() * s2[j].getIntensity();
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            i_left = i;
          }
        }
      }
    }*/

    for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
    {
      sum2 += it1->getIntensity();
      /*
for (PeakSpectrum::ConstIterator it2 = s2.begin(); it2 != s2.end(); ++it2)
{
  if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
  {
    squared_sum2 += it1->getIntensity() * it2->getIntensity();
  }
}
      */
    }

    Size j_left(0);
    for (Size i = 0; i != s1.size(); ++i)
    {
      for (Size j = j_left; j != s2.size(); ++j)
      {
        double pos1(s1[i].getMZ()), pos2(s2[j].getMZ());
        if (fabs(pos1 - pos2) < tolerance)
        {
          //double factor((tolerance - fabs(pos1 - pos2)) / tolerance);
          double factor = 1.0;

          if (use_linear_factor || use_gaussian_factor)
          {
            factor = getFactor_(tolerance, fabs(pos1 - pos2), use_gaussian_factor);
          }
          sum += sqrt(s1[i].getIntensity() * s2[j].getIntensity() * factor);
        }
        else
        {
          if (pos2 > pos1)
          {
            break;
          }
          else
          {
            j_left = j;
          }
        }
      }
    }


    /*
for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
{
  for (PeakSpectrum::ConstIterator it2 = s2.begin(); it2 != s2.end(); ++it2)
  {
    if (abs(it1->getPosition()[0] - it2->getPosition()[0]) <= 2 * tolerance)
    {
      sum += sqrt(it1->getIntensity() * it2->getIntensity());
    }
  }
}*/

    score = sum / (sqrt(sum1 * sum2));

    return score;

  }
Beispiel #17
0
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((ThresholdMower& operator=(const ThresholdMower& source)))
	ThresholdMower copy;
	copy = *e_ptr;
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName());
END_SECTION

START_SECTION((template<typename SpectrumType> void filterSpectrum(SpectrumType& spectrum)))
	DTAFile dta_file;
	PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);
	
	TEST_EQUAL(spec.size(), 121)

	Param p(e_ptr->getParameters());
	p.setValue("threshold", 1.0);
	e_ptr->setParameters(p);

	e_ptr->filterSpectrum(spec);
	TEST_EQUAL(spec.size(), 121)

	p.setValue("threshold", 10.0);
	e_ptr->setParameters(p);

	e_ptr->filterSpectrum(spec);
	TEST_EQUAL(spec.size(), 14)
END_SECTION
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((BernNorm& operator=(const BernNorm& source)))
	BernNorm copy;
	copy = *e_ptr;
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((template<typename SpectrumType> void filterSpectrum(SpectrumType& spectrum)))
	DTAFile dta_file;
	PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);

	TEST_EQUAL(spec.size(), 121)

	e_ptr->filterSpectrum(spec);
	
	TEST_EQUAL(spec.size(), 121)

	Param p(e_ptr->getParameters());
	p.setValue("C2", 2000.0);
	e_ptr->setParameters(p);
	e_ptr->filterSpectrum(spec);

	TEST_EQUAL(spec.size(), 28)

END_SECTION

START_SECTION((void filterPeakMap(PeakMap& exp)))