void Raa3S_Workspace(const char* name_pbpb="chad_ws_fits/centFits/ws_PbPbData_262548_263757_0cent10_0.0pt50.0_0.0y2.4.root", const char* name_pp="chad_ws_fits/centFits/ws_PPData_262157_262328_-1cent1_0.0pt50.0_0.0y2.4.root", const char* name_out="fitresult_combo.root"){

   //TFile File(filename);

   //RooWorkspace * ws = test_combine(name_pbpb, name_pp);

   TFile *f = new TFile("fitresult_combo_333.root") ;
   RooWorkspace * ws1 = (RooWorkspace*) f->Get("wcombo");

   //File.GetObject("wcombo", ws);
   ws1->Print();
   RooAbsData * data = ws1->data("data"); //dataOS, dataSS

   // RooDataSet * US_data = (RooDataSet*) data->reduce( "QQsign == QQsign::PlusMinus");
   // US_data->SetName("US_data");
   // ws->import(* US_data);
   // RooDataSet * hi_data = (RooDataSet*) US_data->reduce("dataCat == dataCat::hi");
   // hi_data->SetName("hi_data");
   // ws->import(* hi_data);
   // hi_data->Print();

   RooRealVar* raa3 = new RooRealVar("raa3","R_{AA}(#Upsilon (3S))",0.5,-1,1);
   RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",0);
   RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",1);
   RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*raa3, *leftEdge, *rightEdge));
   ws1->import(step);
   ws1->factory( "Uniform::flat(raa3)" );

   //pp Luminosities, Taa and efficiency ratios Systematics

   ws1->factory( "Taa_hi[5.662e-9]" );
   ws1->factory( "Taa_kappa[1.062]" ); // was 1.057
   ws1->factory( "expr::alpha_Taa('pow(Taa_kappa,beta_Taa)',Taa_kappa,beta_Taa[0,-5,5])" );
   ws1->factory( "prod::Taa_nom(Taa_hi,alpha_Taa)" );
   ws1->factory( "Gaussian::constr_Taa(beta_Taa,glob_Taa[0,-5,5],1)" );

   ws1->factory( "lumipp_hi[5.4]" );
   ws1->factory( "lumipp_kappa[1.037]" ); // was 1.06
   ws1->factory( "expr::alpha_lumipp('pow(lumipp_kappa,beta_lumipp)',lumipp_kappa,beta_lumipp[0,-5,5])" );
   ws1->factory( "prod::lumipp_nom(lumipp_hi,alpha_lumipp)" );
   ws1->factory( "Gaussian::constr_lumipp(beta_lumipp,glob_lumipp[0,-5,5],1)" );

   // ws->factory( "effRat1[1]" );
   // ws->factory( "effRat2[1]" );
   ws1->factory( "effRat3_hi[0.95]" );
   ws1->factory( "effRat_kappa[1.054]" );
   ws1->factory( "expr::alpha_effRat('pow(effRat_kappa,beta_effRat)',effRat_kappa,beta_effRat[0,-5,5])" );
   // ws->factory( "prod::effRat1_nom(effRat1_hi,alpha_effRat)" );
   ws1->factory( "Gaussian::constr_effRat(beta_effRat,glob_effRat[0,-5,5],1)" );
   // ws->factory( "prod::effRat2_nom(effRat2_hi,alpha_effRat)" );
   ws1->factory( "prod::effRat3_nom(effRat3_hi,alpha_effRat)" );
   //  
   ws1->factory("Nmb_hi[1.161e9]");
   ws1->factory("prod::denominator(Taa_nom,Nmb_hi)");
   ws1->factory( "expr::lumiOverTaaNmbmodified('lumipp_nom/denominator',lumipp_nom,denominator)");
   RooAbsReal *lumiOverTaaNmbmodified = ws1->function("lumiOverTaaNmbmodified"); //RooFormulaVar *lumiOverTaaNmbmodified = ws->function("lumiOverTaaNmbmodified");
   //  
   //  RooRealVar *raa1 = ws->var("raa1");
   //  RooRealVar* nsig1_pp = ws->var("nsig1_pp");
   //  RooRealVar* effRat1 = ws->function("effRat1_nom");
   //  RooRealVar *raa2 = ws->var("raa2");
   //  RooRealVar* nsig2_pp = ws->var("nsig2_pp");
   //  RooRealVar* effRat2 = ws->function("effRat2_nom");
   RooRealVar* nsig3_pp = ws1->var("R_{#frac{3S}{1S}}_pp"); //RooRealVar* nsig3_pp = ws->var("N_{#Upsilon(3S)}_pp");
   cout << nsig3_pp << endl;
   RooAbsReal* effRat3 = ws1->function("effRat3_nom"); //RooRealVar* effRat3 = ws->function("effRat3_nom");
   //  
   //  RooFormulaVar nsig1_hi_modified("nsig1_hi_modified", "@0*@1*@3/@2", RooArgList(*raa1, *nsig1_pp, *lumiOverTaaNmbmodified, *effRat1));
   //  ws->import(nsig1_hi_modified);
   //  RooFormulaVar nsig2_hi_modified("nsig2_hi_modified", "@0*@1*@3/@2", RooArgList(*raa2, *nsig2_pp, *lumiOverTaaNmbmodified, *effRat2));
   //  ws->import(nsig2_hi_modified);
   RooFormulaVar nsig3_hi_modified("nsig3_hi_modified", "@0*@1*@3/@2", RooArgList(*raa3, *nsig3_pp, *lumiOverTaaNmbmodified, *effRat3));
   ws1->import(nsig3_hi_modified);

   //  // background yield with systematics
   ws1->factory( "nbkg_hi_kappa[1.10]" );
   ws1->factory( "expr::alpha_nbkg_hi('pow(nbkg_hi_kappa,beta_nbkg_hi)',nbkg_hi_kappa,beta_nbkg_hi[0,-5,5])" );
   ws1->factory( "SUM::nbkg_hi_nom(alpha_nbkg_hi*bkgPdf_hi)" );
   ws1->factory( "Gaussian::constr_nbkg_hi(beta_nbkg_hi,glob_nbkg_hi[0,-5,5],1)" );
   RooAbsPdf* sig1S_hi = ws1->pdf("sig1S_hi"); //RooAbsPdf* sig1S_hi = ws->pdf("cbcb_hi");
   RooAbsPdf* sig2S_hi = ws1->pdf("sig2S_hi");
   RooAbsPdf* sig3S_hi = ws1->pdf("sig3S_hi");
   RooAbsPdf* LSBackground_hi = ws1->pdf("nbkg_hi_nom");
   RooRealVar* nsig1_hi = ws1->var("N_{#Upsilon(1S)}_hi");
   RooRealVar* nsig2_hi = ws1->var("R_{#frac{2S}{1S}}_hi");
   RooAbsReal* nsig3_hi = ws1->function("nsig3_hi_modified"); //RooFormulaVar* nsig3_hi = ws->function("nsig3_hi_modified");
   cout << nsig1_hi << " " << nsig2_hi << " " << nsig3_pp << endl;
   RooRealVar* norm_nbkg_hi = ws1->var("n_{Bkgd}_hi");

   RooArgList pdfs_hi( *sig1S_hi,*sig2S_hi,*sig3S_hi, *LSBackground_hi);
   RooArgList norms_hi(*nsig1_hi,*nsig2_hi,*nsig3_hi, *norm_nbkg_hi);

   ////////////////////////////////////////////////////////////////////////////////

   ws1->factory( "nbkg_pp_kappa[1.03]" );
   ws1->factory( "expr::alpha_nbkg_pp('pow(nbkg_pp_kappa,beta_nbkg_pp)',nbkg_pp_kappa,beta_nbkg_pp[0,-5,5])" );
   ws1->factory( "SUM::nbkg_pp_nom(alpha_nbkg_pp*bkgPdf_pp)" );
   ws1->factory( "Gaussian::constr_nbkg_pp(beta_nbkg_pp,glob_nbkg_pp[0,-5,5],1)" );
   RooAbsPdf* sig1S_pp = ws1->pdf("sig1S_pp"); //RooAbsPdf* sig1S_pp = ws1->pdf("cbcb_pp");
   RooAbsPdf* sig2S_pp = ws1->pdf("sig2S_pp");
   RooAbsPdf* sig3S_pp = ws1->pdf("sig3S_pp");
   RooAbsPdf* LSBackground_pp = ws1->pdf("nbkg_pp_nom");
   RooRealVar* nsig1_pp = ws1->var("N_{#Upsilon(1S)}_pp");
   RooRealVar* nsig2_pp = ws1->var("R_{#frac{2S}{1S}}_pp"); //RooRealVar* nsig2_pp = ws1->var("N_{#Upsilon(2S)}_pp");
   // RooRealVar* nsig3_pp = ws1->var("N_{#Upsilon(3S)}_pp");
   RooRealVar* norm_nbkg_pp = ws1->var("n_{Bkgd}_pp");

   RooArgList pdfs_pp( *sig1S_pp,*sig2S_pp,*sig3S_pp, *LSBackground_pp);
   RooArgList norms_pp( *nsig1_pp,*nsig2_pp,*nsig3_pp,*norm_nbkg_pp);

   RooAddPdf model_num("model_num", "model_num", pdfs_hi,norms_hi); 
   ws1->import(model_num);
   ws1->factory("PROD::model_hi(model_num, constr_nbkg_hi,constr_lumipp,constr_Taa,constr_effRat)");

   RooAddPdf model_den("model_den", "model_den", pdfs_pp,norms_pp); 
   ws1->import(model_den);
   ws1->factory("PROD::model_pp(model_den, constr_nbkg_pp)");

   ws1->factory("SIMUL::joint(dataCat,hi=model_hi,pp=model_pp)");



   /////////////////////////////////////////////////////////////////////
   RooRealVar * pObs = ws1->var("invariantMass"); // get the pointer to the observable
   RooArgSet obs("observables");
   obs.add(*pObs);
   obs.add( *ws1->cat("dataCat"));    
   //  /////////////////////////////////////////////////////////////////////
   ws1->var("glob_lumipp")->setConstant(true);
   ws1->var("glob_Taa")->setConstant(true);
   ws1->var("glob_effRat")->setConstant(true);
   ws1->var("glob_nbkg_pp")->setConstant(true);
   ws1->var("glob_nbkg_hi")->setConstant(true);
   RooArgSet globalObs("global_obs");
   globalObs.add( *ws1->var("glob_lumipp") );
   globalObs.add( *ws1->var("glob_Taa") );
   globalObs.add( *ws1->var("glob_effRat") );
   globalObs.add( *ws1->var("glob_nbkg_hi") );
   globalObs.add( *ws1->var("glob_nbkg_pp") );
   cout << "66666" << endl;

   // ws1->Print();

   RooArgSet poi("poi");
   poi.add( *ws1->var("raa3") );



   cout << "77777" << endl;
   // create set of nuisance parameters
   RooArgSet nuis("nuis");
   nuis.add( *ws1->var("beta_lumipp") );
   nuis.add( *ws1->var("beta_nbkg_hi") );
   nuis.add( *ws1->var("beta_nbkg_pp") );
   nuis.add( *ws1->var("beta_Taa") );
   nuis.add( *ws1->var("beta_effRat") );

   cout << "88888" << endl;
   ws1->var("#alpha_{CB}_hi")->setConstant(true);
   ws1->var("#alpha_{CB}_pp")->setConstant(true);
   ws1->var("#sigma_{CB1}_hi")->setConstant(true);
   ws1->var("#sigma_{CB1}_pp")->setConstant(true);
   ws1->var("#sigma_{CB2}/#sigma_{CB1}_hi")->setConstant(true);
   ws1->var("#sigma_{CB2}/#sigma_{CB1}_pp")->setConstant(true);
   //ws1->var("Centrality")->setConstant(true); //delete
   ws1->var("N_{#varUpsilon(1S)}_hi")->setConstant(true);
   ws1->var("N_{#varUpsilon(1S)}_pp")->setConstant(true);
   //ws1->var("N_{#Upsilon(2S)}_hi")->setConstant(true);
   //ws1->var("N_{#Upsilon(2S)}_pp")->setConstant(true);
   //ws1->var("N_{#Upsilon(3S)}_pp")->setConstant(true);

   ws1->var("R_{#frac{2S}{1S}}_hi")->setConstant(true); //new
   ws1->var("R_{#frac{2S}{1S}}_pp")->setConstant(true); //new
   ws1->var("R_{#frac{3S}{1S}}_hi")->setConstant(true); //new
   ws1->var("R_{#frac{3S}{1S}}_pp")->setConstant(true); //new

   ws1->var("Nmb_hi")->setConstant(true);
   // ws1->var("QQsign")->setConstant(true);
   ws1->var("Taa_hi")->setConstant(true);
   ws1->var("Taa_kappa")->setConstant(true);
   // ws1->var("beta_Taa")->setConstant(true);
   // ws1->var("beta_effRat")->setConstant(true);
   // ws1->var("beta_lumipp")->setConstant(true);
   // ws1->var("beta_nbkg_hi")->setConstant(true);
   // ws1->var("beta_nbkg_pp")->setConstant(true);
   // ws1->var("dataCat")->setConstant(true);
   ws1->var("decay_hi")->setConstant(true);
   ws1->var("decay_pp")->setConstant(true);
   ws1->var("effRat3_hi")->setConstant(true);
   ws1->var("effRat_kappa")->setConstant(true);
   // ws1->var("glob_Taa")->setConstant(true);
   // ws1->var("glob_effRat")->setConstant(true);
   // ws1->var("glob_lumipp")->setConstant(true);
   // ws1->var("glob_nbkg_hi")->setConstant(true);
   // ws1->var("glob_nbkg_pp")->setConstant(true);
   // ws1->var("invariantMass")->setConstant(true);
   ws1->var("leftEdge")->setConstant(true);
   ws1->var("lumipp_hi")->setConstant(true);
   ws1->var("lumipp_kappa")->setConstant(true);
   ws1->var("m_{ #varUpsilon(1S)}_hi")->setConstant(true); //ws1->var("mass1S_hi")->setConstant(true);
   ws1->var("m_{ #varUpsilon(1S)}_pp")->setConstant(true); //ws1->var("mass1S_pp")->setConstant(true);
   ws1->var("muMinusPt")->setConstant(true);
   ws1->var("muPlusPt")->setConstant(true);
   ws1->var("n_{Bkgd}_hi")->setConstant(true);
   ws1->var("n_{Bkgd}_pp")->setConstant(true);
   ws1->var("nbkg_hi_kappa")->setConstant(true);
   ws1->var("nbkg_pp_kappa")->setConstant(true);
   //ws1->var("n_{CB}")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   ws1->var("n_{CB}_hi")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   ws1->var("n_{CB}_pp")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   // ws1->var("raa3")->setConstant(true);
   ws1->var("rightEdge")->setConstant(true);
   ws1->var("sigmaFraction_hi")->setConstant(true);
   ws1->var("sigmaFraction_pp")->setConstant(true);
   ws1->var("turnOn_hi")->setConstant(true);
   ws1->var("turnOn_pp")->setConstant(true);
   ws1->var("dimuPt")->setConstant(true); //ws1->var("upsPt")->setConstant(true);
   ws1->var("dimuRapidity")->setConstant(true); //ws1->var("upsRapidity")->setConstant(true);
   ws1->var("vProb")->setConstant(true);
   ws1->var("width_hi")->setConstant(true);
   ws1->var("width_pp")->setConstant(true);
   // ws1->var("x3raw")->setConstant(true);
   //  RooArgSet fixed_again("fixed_again");
   //  fixed_again.add( *ws1->var("leftEdge") );
   //  fixed_again.add( *ws1->var("rightEdge") );
   //  fixed_again.add( *ws1->var("Taa_hi") );
   //  fixed_again.add( *ws1->var("Nmb_hi") );
   //  fixed_again.add( *ws1->var("lumipp_hi") );
   //  fixed_again.add( *ws1->var("effRat1_hi") );
   //  fixed_again.add( *ws1->var("effRat2_hi") );
   //  fixed_again.add( *ws1->var("effRat3_hi") );
   //  fixed_again.add( *ws1->var("nsig3_pp") );
   //  fixed_again.add( *ws1->var("nsig1_pp") );
   //  fixed_again.add( *ws1->var("nbkg_hi") );
   //  fixed_again.add( *ws1->var("alpha") );
   //  fixed_again.add( *ws1->var("nbkg_kappa") );
   //  fixed_again.add( *ws1->var("Taa_kappa") );
   //  fixed_again.add( *ws1->var("lumipp_kappa") );
   // fixed_again.add( *ws1->var("mean_hi") );
   // fixed_again.add( *ws1->var("mean_pp") );
   // fixed_again.add( *ws1->var("width_hi") );
   // fixed_again.add( *ws1->var("turnOn_hi") );
   // fixed_again.add( *ws1->var("bkg_a1_pp") );
   // fixed_again.add( *ws1->var("bkg_a2_pp") );
   // fixed_again.add( *ws1->var("decay_hi") );
   // fixed_again.add( *ws1->var("raa1") );
   // fixed_again.add( *ws1->var("raa2") );
   //  fixed_again.add( *ws1->var("nsig2_pp") );
   // fixed_again.add( *ws1->var("sigma1") );
   //  fixed_again.add( *ws1->var("nbkg_pp") );
   // fixed_again.add( *ws1->var("npow") );
   // fixed_again.add( *ws1->var("muPlusPt") );
   // fixed_again.add( *ws1->var("muMinusPt") );
   // fixed_again.add( *ws1->var("mscale_hi") );
   // fixed_again.add( *ws1->var("mscale_pp") );
   //  
   // ws1->Print();
   cout << "99999" << endl;

   // create signal+background Model Config
   RooStats::ModelConfig sbHypo("SbHypo");
   sbHypo.SetWorkspace( *ws1 );
   sbHypo.SetPdf( *ws1->pdf("joint") );
   sbHypo.SetObservables( obs );
   sbHypo.SetGlobalObservables( globalObs );
   sbHypo.SetParametersOfInterest( poi );
   sbHypo.SetNuisanceParameters( nuis );
   sbHypo.SetPriorPdf( *ws1->pdf("step") ); // this is optional

   // ws1->Print();
   /////////////////////////////////////////////////////////////////////
   RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(10) );
   cout << "111111" << endl;
   RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
   cout << "444444" << endl;
   RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,0.2),Title("LL and profileLL in raa3"));
   cout << "222222" << endl;
   pNll->plotOn(framepoi,ShiftToZero());
   cout << "333333" << endl;
   
   RooAbsReal * pProfile = pNll->createProfile( globalObs ); // do not profile global observables
   pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
   pProfile->plotOn(framepoi,LineColor(kRed));
   framepoi->SetMinimum(0);
   framepoi->SetMaximum(3);
   TCanvas *cpoi = new TCanvas();
   cpoi->cd(); framepoi->Draw();
   cpoi->SaveAs("cpoi.pdf");

   ((RooRealVar *)poi.first())->setMin(0.);
   RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance");
   // pPoiAndNuisance->add(*sbHypo.GetNuisanceParameters());
   // pPoiAndNuisance->add(*sbHypo.GetParametersOfInterest());
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   sbHypo.SetSnapshot(*pPoiAndNuisance);

   RooPlot* xframeSB = pObs->frame(Title("SBhypo"));
   data->plotOn(xframeSB,Cut("dataCat==dataCat::hi"));
   RooAbsPdf *pdfSB = sbHypo.GetPdf();
   RooCategory *dataCat = ws1->cat("dataCat");
   pdfSB->plotOn(xframeSB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data));
   TCanvas *c1 = new TCanvas();
   c1->cd(); xframeSB->Draw();
   c1->SaveAs("c1.pdf");

   delete pProfile;
   delete pNll;
   delete pPoiAndNuisance;
   ws1->import( sbHypo );
   /////////////////////////////////////////////////////////////////////
   RooStats::ModelConfig bHypo = sbHypo;
   bHypo.SetName("BHypo");
   bHypo.SetWorkspace(*ws1);
   pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(2) );
   RooArgSet poiAndGlobalObs("poiAndGlobalObs");
   poiAndGlobalObs.add( poi );
   poiAndGlobalObs.add( globalObs );
   pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables
   ((RooRealVar *)poi.first())->setVal( 0 );  // set raa3=0 here
   pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
   pPoiAndNuisance = new RooArgSet( "poiAndNuisance" );
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   bHypo.SetSnapshot(*pPoiAndNuisance);

   RooPlot* xframeB = pObs->frame(Title("Bhypo"));
   data->plotOn(xframeB,Cut("dataCat==dataCat::hi"));
   RooAbsPdf *pdfB = bHypo.GetPdf();
   pdfB->plotOn(xframeB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data));
   TCanvas *c2 = new TCanvas();
   c2->cd(); xframeB->Draw();
   c2->SaveAs("c2.pdf");

   delete pProfile;
   delete pNll;
   delete pPoiAndNuisance;

   // import model config into workspace
   bHypo.SetWorkspace(*ws1);
   ws1->import( bHypo );
   /////////////////////////////////////////////////////////////////////
   ws1->Print();
   bHypo.Print();
   sbHypo.Print();

   // save workspace to file
   ws1 -> SaveAs(name_out);

   return;
}
Beispiel #2
0
void LL(){

  //y0 = 0.000135096401209 sigma_y0 = 0.000103896581837 x0 = 0.000446013873443 sigma_x0 =1.81384394011e-06
  //0.014108652249 0.0168368471049 0.0219755396247 0.000120423865262 1.5575931164 1.55759310722 3.41637854038
  //0.072569437325 0.084063541977 0.0376693978906 0.000284216132439 0.51908074913 0.519080758095 1.12037749267
 // double d = 0.014108652249;
 //  double sd = 0.0168368471049;
 //  double mc = 0.0219755396247;
 //  double smc = 0.000120423865262;
 //  double r0 = d/mc;

  double d = 0.072569437325;
  double sd =  0.084063541977;
  double mc =  0.0376693978906;
  double smc =  0.00028421613243;
  double r0 = d/mc;

  RooRealVar x("x","x",mc*0.9,mc*1.1);
  RooRealVar x0("x0","x0",mc);
  RooRealVar sx("sx","sx",smc);

  RooRealVar r("r","r",r0,0.,5.);
  RooRealVar y0("y0","y0",d); 
  RooRealVar sy("sy","sy",sd); 
  
  RooProduct rx("rx","rx",RooArgList(r,x));

  RooGaussian g1("g1","g1",x,x0,sx);
  RooGaussian g2("g2","g2",rx,y0,sy);

  RooProdPdf LL("LL","LL",g1,g2);

  RooArgSet obs(x0,y0); //observables
  RooArgSet poi(r); //parameters of interest
  RooDataSet data("data", "data", obs);
  data.add(obs); //actually add the data


  RooFitResult* res = LL.fitTo(data,RooFit::Minos(poi),RooFit::Save(),RooFit::Hesse(false));
  if(res->status()==0) {
    r.Print();
    x.Print();
    cout << r.getErrorLo() << " " << r.getErrorHi() << endl;
  } else {
    cout << "Likelihood maximization failed" << endl;
  }
  
  RooAbsReal* nll = LL.createNLL(data); 
  RooPlot* frame = r.frame();
  RooAbsReal* pll = nll->createProfile(poi);
  pll->plotOn(frame);//,RooFit::LineColor(ROOT::kRed));
  frame->Draw();

  r.setVal(0.);
  cout << pll->getVal() << endl; 

  return;
    
    


}
/*
 * Prepares the workspace to be used by the hypothesis test calculator
 */
void workspace_preparer(char *signal_file_name, char *signal_hist_name_in_file, char *background_file_name, char *background_hist_name_in_file, char *data_file_name, char *data_hist_name_in_file, char *config_file) {

    // Include the config_reader class.
    TString path = gSystem->GetIncludePath();
    path.Append(" -I/home/max/cern/cls/mario");
    gSystem->SetIncludePath(path);
    gROOT->LoadMacro("config_reader.cxx");

    // RooWorkspace used to store values.
    RooWorkspace * pWs = new RooWorkspace("ws");

    // Create a config_reader (see source for details) to read the config
    // file.
    config_reader reader(config_file, pWs);

    // Read MR and RR bounds from the config file.
    double MR_lower = reader.find_double("MR_lower");
    double MR_upper = reader.find_double("MR_upper");
    double RR_lower = reader.find_double("RR_lower");
    double RR_upper = reader.find_double("RR_upper");
    double MR_initial = (MR_lower + MR_upper)/2;
    double RR_initial = (RR_lower + RR_upper)/2;

    // Define the Razor Variables
    RooRealVar MR = RooRealVar("MR", "MR", MR_initial, MR_lower, MR_upper);
    RooRealVar RR = RooRealVar("RSQ", "RSQ", RR_initial, RR_lower, RR_upper);

    // Argument lists
    RooArgList pdf_arg_list(MR, RR, "input_args_list");
    RooArgSet pdf_arg_set(MR, RR, "input_pdf_args_set");



    /***********************************************************************/
    /* PART 1: IMPORTING SIGNAL AND BACKGROUND HISTOGRAMS                  */
    /***********************************************************************/

    /*
     * Get the signal's unextended pdf by converting the TH2D in the file
     * into a RooHistPdf
     */
    TFile *signal_file = new TFile(signal_file_name);
    TH2D *signal_hist = (TH2D *)signal_file->Get(signal_hist_name_in_file);
    RooDataHist *signal_RooDataHist = new RooDataHist("signal_roodatahist",
            "signal_roodatahist",
            pdf_arg_list,
            signal_hist);

    RooHistPdf *unextended_sig_pdf = new RooHistPdf("unextended_sig_pdf",
            "unextended_sig_pdf",
            pdf_arg_set,
            *signal_RooDataHist);

    /*
     * Repeat this process for the background.
     */
    TFile *background_file = new TFile(background_file_name);
    TH2D *background_hist =
        (TH2D *)background_file->Get(background_hist_name_in_file);
    RooDataHist *background_RooDataHist =
        new RooDataHist("background_roodatahist", "background_roodatahist",
                        pdf_arg_list, background_hist);
    RooHistPdf *unextended_bkg_pdf = new RooHistPdf("unextended_bkg_pdf",
            "unextended_bkg_pdf",
            pdf_arg_set,
            *background_RooDataHist);

    /*
     * Now, we want to create the bprime variable, which represents the
     * integral over the background-only sample.  We will perform the
     * integral automatically (that's why this is the only nuisance
     * parameter declared in this file - its value can be determined from
     * the input histograms).
     */
    ostringstream bprime_string;
    ostringstream bprime_pdf_string;
    bprime_string << "bprime[" << background_hist->Integral() << ", 0, 999999999]";
    bprime_pdf_string << "Poisson::bprime_pdf(bprime, " << background_hist->Integral() << ")";
    pWs->factory(bprime_string.str().c_str());
    pWs->factory(bprime_pdf_string.str().c_str());


    /*
     * This simple command will create all values from the config file
     * with 'make:' at the beginning and a delimiter at the end (see config
     * _reader if you don't know what a delimiter is).  In other
     * words, the luminosity, efficiency, transfer factors, and their pdfs
     * are created from this command.  The declarations are contained in the
     * config file to be changed easily without having to modify this code.
     */
    reader.factory_all();


    /*
     * Now, we want to create the extended pdfs from the unextended pdfs, as
     * well as from the S and B values we manufactured in the config file.
     * S and B are the values by which the signal and background pdfs,
     * respectively, are extended.  Recall that they were put in the
     * workspace in the reader.facotry_all() command.
     */
    RooAbsReal *S = pWs->function("S");
    RooAbsReal *B = pWs->function("B");

    RooExtendPdf *signalpart = new RooExtendPdf("signalpart", "signalpart",
            *unextended_sig_pdf, *S);
    RooExtendPdf *backgroundpart =
        new RooExtendPdf("backgroundpart", "backgroundpart",
                         *unextended_bkg_pdf, *B);

    RooArgList *pdf_list = new RooArgList(*signalpart, *backgroundpart,
                                          "list");
    // Add the signal and background pdfs to make a TotalPdf
    RooAddPdf *TotalPdf = new RooAddPdf("TotalPdf", "TotalPdf", *pdf_list);

    RooArgList *pdf_prod_list = new RooArgList(*TotalPdf,
            *pWs->pdf("lumi_pdf"),
            *pWs->pdf("eff_pdf"),
            *pWs->pdf("rho_pdf"),
            *pWs->pdf("bprime_pdf"));
    // This creates the final model pdf.
    RooProdPdf *model = new RooProdPdf("model", "model", *pdf_prod_list);

    /*
     * Up until now, we have been using the workspace pWs to contain all of
     * our values.  Now, all of our values that we require are in use in the
     * RooProdPdf called "model".  So, we need to import "model" into a
     * RooWorkspace.  To avoid recopying values into the rooworkspace, when
     * the values may already be present (which can cause problems), we will
     * simply create a new RooWorkspace to avoid confusion and problems.  The
     * new RooWorkspace is created here.
     */
    RooWorkspace *newworkspace = new RooWorkspace("newws");
    newworkspace->import(*model);

    // Immediately delete pWs, so we don't accidentally use it again.
    delete pWs;

    // Show off the newworkspace
    newworkspace->Print();

    // observables
    RooArgSet obs(*newworkspace->var("MR"), *newworkspace->var("RSQ"), "obs");

    // global observables
    RooArgSet globalObs(*newworkspace->var("nom_lumi"), *newworkspace->var("nom_eff"), *newworkspace->var("nom_rho"));

    //fix global observables to their nominal values
    newworkspace->var("nom_lumi")->setConstant();
    newworkspace->var("nom_eff")->setConstant();
    newworkspace->var("nom_rho")->setConstant();

    //Set Parameters of interest
    RooArgSet poi(*newworkspace->var("sigma"), "poi");


    //Set Nuisnaces

    RooArgSet nuis(*newworkspace->var("prime_lumi"), *newworkspace->var("prime_eff"), *newworkspace->var("prime_rho"), *newworkspace->var("bprime"));

    // priors (for Bayesian calculation)
    newworkspace->factory("Uniform::prior_signal(sigma)"); // for parameter of interest
    newworkspace->factory("Uniform::prior_bg_b(bprime)"); // for data driven nuisance parameter
    newworkspace->factory("PROD::prior(prior_signal,prior_bg_b)"); // total prior


    //Observed data is pulled from histogram.
    //TFile *data_file = new TFile(data_file_name);
    TFile *data_file = new TFile(data_file_name);
    TH2D *data_hist = (TH2D *)data_file->Get(data_hist_name_in_file);
    RooDataHist *pData = new RooDataHist("data", "data", obs, data_hist);
    newworkspace->import(*pData);

    // Now, we will draw our data from a RooDataHist.
    /*TFile *data_file = new TFile(data_file_name);
    TTree *data_tree = (TTree *) data_file->Get(data_hist_name_in_file);
    RooDataSet *pData = new RooDataSet("data", "data", data_tree, obs);
    newworkspace->import(*pData);*/


    // Craft the signal+background model
    ModelConfig * pSbModel = new ModelConfig("SbModel");
    pSbModel->SetWorkspace(*newworkspace);
    pSbModel->SetPdf(*newworkspace->pdf("model"));
    pSbModel->SetPriorPdf(*newworkspace->pdf("prior"));
    pSbModel->SetParametersOfInterest(poi);
    pSbModel->SetNuisanceParameters(nuis);
    pSbModel->SetObservables(obs);
    pSbModel->SetGlobalObservables(globalObs);

    // set all but obs, poi and nuisance to const
    SetConstants(newworkspace, pSbModel);
    newworkspace->import(*pSbModel);


    // background-only model
    // use the same PDF as s+b, with sig=0
    // POI value under the background hypothesis
    // (We will set the value to 0 later)

    Double_t poiValueForBModel = 0.0;
    ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)newworkspace->obj("SbModel"));
    pBModel->SetName("BModel");
    pBModel->SetWorkspace(*newworkspace);
    newworkspace->import(*pBModel);

    // find global maximum with the signal+background model
    // with conditional MLEs for nuisance parameters
    // and save the parameter point snapshot in the Workspace
    //  - safer to keep a default name because some RooStats calculators
    //    will anticipate it
    RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*pData);
    RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
    pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
    RooArgSet * pPoiAndNuisance = new RooArgSet();
    if(pSbModel->GetNuisanceParameters())
        pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters());
    pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest());
    cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
    pPoiAndNuisance->Print("v");
    pSbModel->SetSnapshot(*pPoiAndNuisance);
    delete pProfile;
    delete pNll;
    delete pPoiAndNuisance;


    // Find a parameter point for generating pseudo-data
    // with the background-only data.
    // Save the parameter point snapshot in the Workspace
    pNll = pBModel->GetPdf()->createNLL(*pData);
    pProfile = pNll->createProfile(poi);
    ((RooRealVar *)poi.first())->setVal(poiValueForBModel);
    pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
    pPoiAndNuisance = new RooArgSet();
    if(pBModel->GetNuisanceParameters())
        pPoiAndNuisance->add(*pBModel->GetNuisanceParameters());
    pPoiAndNuisance->add(*pBModel->GetParametersOfInterest());
    cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl;
    pPoiAndNuisance->Print("v");
    pBModel->SetSnapshot(*pPoiAndNuisance);
    delete pProfile;
    delete pNll;
    delete pPoiAndNuisance;

    // save workspace to file
    newworkspace->writeToFile("ws_twobin.root");

    // clean up
    delete newworkspace;
    delete pData;
    delete pSbModel;
    delete pBModel;


} // ----- end of tutorial ----------------------------------------
// implementation
void TwoBinInstructional( void ){
  
  // let's time this example
  TStopwatch t;
  t.Start();

  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(4357);

  // make model
  RooWorkspace * pWs = new RooWorkspace("ws");

  // derived from data
  pWs->factory("xsec[0.2,0,2]"); // POI
  pWs->factory("bg_b[10,0,50]");    // data driven nuisance

  // predefined nuisances
  pWs->factory("lumi[100,0,1000]");
  pWs->factory("eff_a[0.2,0,1]");
  pWs->factory("eff_b[0.05,0,1]");
  pWs->factory("tau[0,1]");
  pWs->factory("xsec_bg_a[0.05]"); // constant
  pWs->var("xsec_bg_a")->setConstant(1);

  // channel a (signal): lumi*xsec*eff_a + lumi*bg_a + tau*bg_b
  pWs->factory("prod::sig_a(lumi,xsec,eff_a)");
  pWs->factory("prod::bg_a(lumi,xsec_bg_a)");
  pWs->factory("prod::tau_bg_b(tau, bg_b)");
  pWs->factory("Poisson::pdf_a(na[14,0,100],sum::mu_a(sig_a,bg_a,tau_bg_b))");

  // channel b (control): lumi*xsec*eff_b + bg_b
  pWs->factory("prod::sig_b(lumi,xsec,eff_b)");
  pWs->factory("Poisson::pdf_b(nb[11,0,100],sum::mu_b(sig_b,bg_b))");

  // nuisance constraint terms (systematics)
  pWs->factory("Lognormal::l_lumi(lumi,nom_lumi[100,0,1000],sum::kappa_lumi(1,d_lumi[0.1]))");
  pWs->factory("Lognormal::l_eff_a(eff_a,nom_eff_a[0.20,0,1],sum::kappa_eff_a(1,d_eff_a[0.05]))");
  pWs->factory("Lognormal::l_eff_b(eff_b,nom_eff_b[0.05,0,1],sum::kappa_eff_b(1,d_eff_b[0.05]))");
  pWs->factory("Lognormal::l_tau(tau,nom_tau[0.50,0,1],sum::kappa_tau(1,d_tau[0.05]))");
  //pWs->factory("Lognormal::l_bg_a(bg_a,nom_bg_a[0.05,0,1],sum::kappa_bg_a(1,d_bg_a[0.10]))");

  // complete model PDF
  pWs->factory("PROD::model(pdf_a,pdf_b,l_lumi,l_eff_a,l_eff_b,l_tau)");

  // Now create sets of variables. Note that we could use the factory to
  // create sets but in that case many of the sets would be duplicated
  // when the ModelConfig objects are imported into the workspace. So,
  // we create the sets outside the workspace, and only the needed ones
  // will be automatically imported by ModelConfigs

  // observables
  RooArgSet obs(*pWs->var("na"), *pWs->var("nb"), "obs");

  // global observables
  RooArgSet globalObs(*pWs->var("nom_lumi"), *pWs->var("nom_eff_a"), *pWs->var("nom_eff_b"), 
		      *pWs->var("nom_tau"),
		      "global_obs");

  // parameters of interest
  RooArgSet poi(*pWs->var("xsec"), "poi");

  // nuisance parameters
  RooArgSet nuis(*pWs->var("lumi"), *pWs->var("eff_a"), *pWs->var("eff_b"), *pWs->var("tau"), "nuis");

  // priors (for Bayesian calculation)
  pWs->factory("Uniform::prior_xsec(xsec)"); // for parameter of interest
  pWs->factory("Uniform::prior_bg_b(bg_b)"); // for data driven nuisance parameter
  pWs->factory("PROD::prior(prior_xsec,prior_bg_b)"); // total prior

  // create data
  pWs->var("na")->setVal(14);
  pWs->var("nb")->setVal(11);
  RooDataSet * pData = new RooDataSet("data","",obs);
  pData->add(obs);
  pWs->import(*pData);
  //pData->Print();

  // signal+background model
  ModelConfig * pSbModel = new ModelConfig("SbModel");
  pSbModel->SetWorkspace(*pWs);
  pSbModel->SetPdf(*pWs->pdf("model"));
  pSbModel->SetPriorPdf(*pWs->pdf("prior"));
  pSbModel->SetParametersOfInterest(poi);
  pSbModel->SetNuisanceParameters(nuis);
  pSbModel->SetObservables(obs);
  pSbModel->SetGlobalObservables(globalObs);

  // set all but obs, poi and nuisance to const
  SetConstants(pWs, pSbModel);
  pWs->import(*pSbModel);


  // background-only model
  // use the same PDF as s+b, with xsec=0
  // POI value under the background hypothesis
  Double_t poiValueForBModel = 0.0;
  ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)pWs->obj("SbModel"));
  pBModel->SetName("BModel");
  pBModel->SetWorkspace(*pWs);
  pWs->import(*pBModel);


  // find global maximum with the signal+background model
  // with conditional MLEs for nuisance parameters
  // and save the parameter point snapshot in the Workspace
  //  - safer to keep a default name because some RooStats calculators
  //    will anticipate it
  RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*pData);
  RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
  pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
  RooArgSet * pPoiAndNuisance = new RooArgSet();
  if(pSbModel->GetNuisanceParameters())
    pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest());
  cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
  pPoiAndNuisance->Print("v");
  pSbModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;

  // Find a parameter point for generating pseudo-data
  // with the background-only data.
  // Save the parameter point snapshot in the Workspace
  pNll = pBModel->GetPdf()->createNLL(*pData);
  pProfile = pNll->createProfile(poi);
  ((RooRealVar *)poi.first())->setVal(poiValueForBModel);
  pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
  pPoiAndNuisance = new RooArgSet();
  if(pBModel->GetNuisanceParameters())
    pPoiAndNuisance->add(*pBModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pBModel->GetParametersOfInterest());
  cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl;
  pPoiAndNuisance->Print("v");
  pBModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;

  // inspect workspace
  pWs->Print();

  // save workspace to file
  pWs->writeToFile("ws_twobin.root");

  // clean up
  delete pWs;
  delete pData;
  delete pSbModel;
  delete pBModel;

} // ----- end of tutorial ----------------------------------------
RooWorkspace* makeInvertedANFit(TTree* tree, float forceSigma=-1, bool constrainMu=false, float forceMu=-1) {
  RooWorkspace *ws = new RooWorkspace("ws","");

  std::vector< TString (*)(TString, RooRealVar&, RooWorkspace&) > bkgPdfList;
  bkgPdfList.push_back(makeSingleExp);
  bkgPdfList.push_back(makeDoubleExp);
#if DEBUG==0
  //bkgPdfList.push_back(makeTripleExp);
  bkgPdfList.push_back(makeModExp);
  bkgPdfList.push_back(makeSinglePow);
  bkgPdfList.push_back(makeDoublePow);
  bkgPdfList.push_back(makePoly2);
  bkgPdfList.push_back(makePoly3);
#endif



  RooRealVar mgg("mgg","m_{#gamma#gamma}",103,160,"GeV");
  mgg.setBins(38);

  mgg.setRange("sideband_low", 103,120);
  mgg.setRange("sideband_high",131,160);
  mgg.setRange("signal",120,131);

  RooRealVar MR("MR","",0,3000,"GeV");
  MR.setBins(60);
  
  RooRealVar Rsq("t1Rsq","",0,1,"GeV");
  Rsq.setBins(20);

  RooRealVar hem1_M("hem1_M","",-1,2000,"GeV");
  hem1_M.setBins(40);

  RooRealVar hem2_M("hem2_M","",-1,2000,"GeV");
  hem2_M.setBins(40);

  RooRealVar ptgg("ptgg","p_{T}^{#gamma#gamma}",0,500,"GeV");
  ptgg.setBins(50);

  RooDataSet data("data","",tree,RooArgSet(mgg,MR,Rsq,hem1_M,hem2_M,ptgg));

  RooDataSet* blind_data = (RooDataSet*)data.reduce("mgg<121 || mgg>130");

  std::vector<TString> tags;
  //fit many different background models
  for(auto func = bkgPdfList.begin(); func != bkgPdfList.end(); func++) {
    TString tag = (*func)("bonly",mgg,*ws);
    tags.push_back(tag);
    ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    RooFitResult* bres = ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    bres->SetName(tag+"_bonly_fitres");
    ws->import(*bres);

    //make blinded fit
    RooPlot *fmgg_b = mgg.frame();
    blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
    TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
    blindBox.SetFillColor(kGray);
    fmgg_b->addObject(&blindBox);
    ws->pdf("bonly_"+tag+"_ext")->plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
    fmgg_b->SetName(tag+"_blinded_frame");
    ws->import(*fmgg_b);
    delete fmgg_b;
    

    //set all the parameters constant
    RooArgSet* vars = ws->pdf("bonly_"+tag)->getVariables();
    RooFIter iter = vars->fwdIterator();
    RooAbsArg* a;
    while( (a = iter.next()) ){
      if(string(a->GetName()).compare("mgg")==0) continue;
      static_cast<RooRealVar*>(a)->setConstant(kTRUE);
    }

    //make the background portion of the s+b fit
    (*func)("b",mgg,*ws);

    RooRealVar sigma(tag+"_s_sigma","",5,0,100);
    if(forceSigma!=-1) {
      sigma.setVal(forceSigma);
      sigma.setConstant(true);
    }
    RooRealVar mu(tag+"_s_mu","",126,120,132);
    if(forceMu!=-1) {
      mu.setVal(forceMu);
      mu.setConstant(true);
    }
    RooGaussian sig(tag+"_sig_model","",mgg,mu,sigma);
    RooRealVar Nsig(tag+"_sb_Ns","",5,0,100);
    RooRealVar Nbkg(tag+"_sb_Nb","",100,0,100000);
    

    RooRealVar HiggsMass("HiggsMass","",125.1);
    RooRealVar HiggsMassError("HiggsMassError","",0.24);
    RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);


    RooAddPdf fitModel(tag+"_sb_model","",RooArgList( *ws->pdf("b_"+tag), sig ),RooArgList(Nbkg,Nsig));

    RooFitResult* sbres;
    RooAbsReal* nll;
    if(constrainMu) {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    } else {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
    }
    sbres->SetName(tag+"_sb_fitres");
    ws->import(*sbres);
    ws->import(fitModel);

    RooPlot *fmgg = mgg.frame();
    data.plotOn(fmgg);
    fitModel.plotOn(fmgg);
    ws->pdf("b_"+tag+"_ext")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
    fmgg->SetName(tag+"_frame");
    ws->import(*fmgg);
    delete fmgg;


    RooMinuit(*nll).migrad();

    RooPlot *fNs = Nsig.frame(0,25);
    fNs->SetName(tag+"_Nsig_pll");
    RooAbsReal *pll = nll->createProfile(Nsig);
    //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
    pll->plotOn(fNs);
    ws->import(*fNs);

    delete fNs;

    RooPlot *fmu = mu.frame(125,132);
    fmu->SetName(tag+"_mu_pll");
    RooAbsReal *pll_mu = nll->createProfile(mu);
    pll_mu->plotOn(fmu);
    ws->import(*fmu);

    delete fmu;

  }

  RooArgSet weights("weights");
  RooArgSet pdfs_bonly("pdfs_bonly");
  RooArgSet pdfs_b("pdfs_b");

  RooRealVar minAIC("minAIC","",1E10);
  //compute AIC stuff
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooAbsPdf *p_bonly = ws->pdf("bonly_"+*t);
    RooAbsPdf *p_b = ws->pdf("b_"+*t);
    RooFitResult *sb = (RooFitResult*)ws->obj(*t+"_bonly_fitres");
    RooRealVar k(*t+"_b_k","",p_bonly->getParameters(RooArgSet(mgg))->getSize());
    RooRealVar nll(*t+"_b_minNll","",sb->minNll());
    RooRealVar Npts(*t+"_b_N","",blind_data->sumEntries());
    RooFormulaVar AIC(*t+"_b_AIC","2*@0+2*@1+2*@1*(@1+1)/(@2-@1-1)",RooArgSet(nll,k,Npts));
    ws->import(AIC);
    if(AIC.getVal() < minAIC.getVal()) {
      minAIC.setVal(AIC.getVal());
    }
    //aicExpSum+=TMath::Exp(-0.5*AIC.getVal()); //we will need this precomputed  for the next step
    pdfs_bonly.add(*p_bonly);
    pdfs_b.add(*p_b);
  }
  ws->import(minAIC);
  //compute the AIC weight
  float aicExpSum=0;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    aicExpSum+=TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal())); //we will need this precomputed  for the next step    
  }
  std::cout << "aicExpSum: " << aicExpSum << std::endl;

  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = new RooRealVar(*t+"_b_AICWeight","",TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal()))/aicExpSum);
    if( TMath::IsNaN(AICw->getVal()) ) {AICw->setVal(0);}
    ws->import(*AICw);
    std::cout << *t << ":  " << AIC->getVal()-minAIC.getVal() << "    " << AICw->getVal() << std::endl;
    weights.add(*AICw);
  }
  RooAddPdf bonly_AIC("bonly_AIC","",pdfs_bonly,weights);
  RooAddPdf b_AIC("b_AIC","",pdfs_b,weights);

  //b_AIC.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //RooFitResult* bres = b_AIC.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //bres->SetName("AIC_b_fitres");
  //ws->import(*bres);

  //make blinded fit
  RooPlot *fmgg_b = mgg.frame(RooFit::Range("sideband_low,sideband_high"));
  blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
  TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
  blindBox.SetFillColor(kGray);
  fmgg_b->addObject(&blindBox);
  bonly_AIC.plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
  fmgg_b->SetName("AIC_blinded_frame");
  ws->import(*fmgg_b);
  delete fmgg_b;
    
#if 1

  RooRealVar sigma("AIC_s_sigma","",5,0,100);
  if(forceSigma!=-1) {
    sigma.setVal(forceSigma);
    sigma.setConstant(true);
  }
  RooRealVar mu("AIC_s_mu","",126,120,132);
  if(forceMu!=-1) {
    mu.setVal(forceMu);
    mu.setConstant(true);
  }
  RooGaussian sig("AIC_sig_model","",mgg,mu,sigma);
  RooRealVar Nsig("AIC_sb_Ns","",5,0,100);
  RooRealVar Nbkg("AIC_sb_Nb","",100,0,100000);
  
  
  RooRealVar HiggsMass("HiggsMass","",125.1);
  RooRealVar HiggsMassError("HiggsMassError","",0.24);
  RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);
  
  
  RooAddPdf fitModel("AIC_sb_model","",RooArgList( b_AIC, sig ),RooArgList(Nbkg,Nsig));

  RooFitResult* sbres;
  RooAbsReal *nll;

  if(constrainMu) {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
  } else {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
  }

  assert(nll!=0);
  
  sbres->SetName("AIC_sb_fitres");
  ws->import(*sbres);
  ws->import(fitModel);
  
  RooPlot *fmgg = mgg.frame();
  data.plotOn(fmgg);
  fitModel.plotOn(fmgg);
  ws->pdf("b_AIC")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
  fmgg->SetName("AIC_frame");
  ws->import(*fmgg);
  delete fmgg;

  RooMinuit(*nll).migrad();
  
  RooPlot *fNs = Nsig.frame(0,25);
  fNs->SetName("AIC_Nsig_pll");
  RooAbsReal *pll = nll->createProfile(Nsig);
  //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
  pll->plotOn(fNs);
  ws->import(*fNs);
  delete fNs;


  RooPlot *fmu = mu.frame(125,132);
  fmu->SetName("AIC_mu_pll");
  RooAbsReal *pll_mu = nll->createProfile(mu);
  pll_mu->plotOn(fmu);
  ws->import(*fmu);

  delete fmu;

  std::cout << "min AIC: " << minAIC.getVal() << std::endl;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = ws->var(*t+"_b_AICWeight");
    RooRealVar* k = ws->var(*t+"_b_k");
    printf("%s & %0.0f & %0.2f & %0.2f \\\\\n",t->Data(),k->getVal(),AIC->getVal()-minAIC.getVal(),AICw->getVal());
    //std::cout << k->getVal() << " " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl;
  }
#endif
  return ws;
}
void OneSidedFrequentistUpperLimitWithBands(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData") {



   double confidenceLevel=0.95;
   int nPointsToScan = 20;
   int nToyMC = 200;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


   // -------------------------------------------------------
   // Now get the data and workspace

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // Now get the POI for convenience
   // you may want to adjust the range of your POI

   RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
   /*  firstPOI->setMin(0);*/
   /*  firstPOI->setMax(10);*/

   // --------------------------------------------
   // Create and use the FeldmanCousins tool
   // to find and plot the 95% confidence interval
   // on the parameter of interest as specified
   // in the model config
   // REMEMBER, we will change the test statistic
   // so this is NOT a Feldman-Cousins interval
   FeldmanCousins fc(*data,*mc);
   fc.SetConfidenceLevel(confidenceLevel);
   /*  fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/
   /*  fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/
   fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
   fc.CreateConfBelt(true); // save the information in the belt for plotting

   // -------------------------------------------------------
   // Feldman-Cousins is a unified limit by definition
   // but the tool takes care of a few things for us like which values
   // of the nuisance parameters should be used to generate toys.
   // so let's just change the test statistic and realize this is
   // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
   /*  ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/
   /*  fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/
   /* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */
   ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
   testStat->SetOneSided(true);

   // Since this tool needs to throw toy MC the PDF needs to be
   // extended or the tool needs to know how many entries in a dataset
   // per pseudo experiment.
   // In the 'number counting form' where the entries in the dataset
   // are counts, and not values of discriminating variables, the
   // datasets typically only have one entry and the PDF is not
   // extended.
   if(!mc->GetPdf()->canBeExtended()){
      if(data->numEntries()==1)
         fc.FluctuateNumDataEntries(false);
      else
         cout <<"Not sure what to do about this model" <<endl;
   }

   // We can use PROOF to speed things along in parallel
   // However, the test statistic has to be installed on the workers
   // so either turn off PROOF or include the modified test statistic
   // in your `$ROOTSYS/roofit/roostats/inc` directory,
   // add the additional line to the LinkDef.h file,
   // and recompile root.
   if (useProof) {
      ProofConfig pc(*w, nworkers, "", false);
      toymcsampler->SetProofConfig(&pc); // enable proof
   }

   if(mc->GetGlobalObservables()){
      cout << "will use global observables for unconditional ensemble"<<endl;
      mc->GetGlobalObservables()->Print();
      toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
   }


   // Now get the interval
   PointSetInterval* interval = fc.GetInterval();
   ConfidenceBelt* belt = fc.GetConfidenceBelt();

   // print out the interval on the first Parameter of Interest
   cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
      interval->LowerLimit(*firstPOI) << ", "<<
      interval->UpperLimit(*firstPOI) <<"] "<<endl;

   // get observed UL and value of test statistic evaluated there
   RooArgSet tmpPOI(*firstPOI);
   double observedUL = interval->UpperLimit(*firstPOI);
   firstPOI->setVal(observedUL);
   double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


   // Ask the calculator which points were scanned
   RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
   RooArgSet* tmpPoint;

   // make a histogram of parameter vs. threshold
   TH1F* histOfThresholds = new TH1F("histOfThresholds","",
                                       parameterScan->numEntries(),
                                       firstPOI->getMin(),
                                       firstPOI->getMax());
   histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
   histOfThresholds->GetYaxis()->SetTitle("Threshold");

   // loop through the points that were tested and ask confidence belt
   // what the upper/lower thresholds were.
   // For FeldmanCousins, the lower cut off is always 0
   for(Int_t i=0; i<parameterScan->numEntries(); ++i){
      tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
      //cout <<"get threshold"<<endl;
      double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
      double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
      histOfThresholds->Fill(poiVal,arMax);
   }
   TCanvas* c1 = new TCanvas();
   c1->Divide(2);
   c1->cd(1);
   histOfThresholds->SetMinimum(0);
   histOfThresholds->Draw();
   c1->cd(2);

   // -------------------------------------------------------
   // Now we generate the expected bands and power-constraint

   // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
   RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
   RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
   firstPOI->setVal(0.);
   profile->getVal(); // this will do fit and set nuisance parameters to profiled values
   RooArgSet* poiAndNuisance = new RooArgSet();
   if(mc->GetNuisanceParameters())
      poiAndNuisance->add(*mc->GetNuisanceParameters());
   poiAndNuisance->add(*mc->GetParametersOfInterest());
   w->saveSnapshot("paramsToGenerateData",*poiAndNuisance);
   RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot();
   cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl;
   paramsToGenerateData->Print("v");


   RooArgSet unconditionalObs;
   unconditionalObs.add(*mc->GetObservables());
   unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble

   double CLb=0;
   double CLbinclusive=0;

   // Now we generate background only and find distribution of upper limits
   TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax());
   histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)");
   histOfUL->GetYaxis()->SetTitle("Entries");
   for(int imc=0; imc<nToyMC; ++imc){

      // set parameters back to values for generating pseudo data
      //    cout << "\n get current nuis, set vals, print again" << endl;
      w->loadSnapshot("paramsToGenerateData");
      //    poiAndNuisance->Print("v");

      RooDataSet* toyData = 0;
      // now generate a toy dataset
      if(!mc->GetPdf()->canBeExtended()){
         if(data->numEntries()==1)
            toyData = mc->GetPdf()->generate(*mc->GetObservables(),1);
         else
            cout <<"Not sure what to do about this model" <<endl;
      } else{
         //      cout << "generating extended dataset"<<endl;
         toyData = mc->GetPdf()->generate(*mc->GetObservables(),Extended());
      }

      // generate global observables
      // need to be careful for simpdf
      //    RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1);

      RooSimultaneous* simPdf = dynamic_cast<RooSimultaneous*>(mc->GetPdf());
      if(!simPdf){
         RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1);
         const RooArgSet *values = one->get();
         RooArgSet *allVars = mc->GetPdf()->getVariables();
         *allVars = *values;
         delete allVars;
         delete values;
         delete one;
      } else {

         //try fix for sim pdf
         TIterator* iter = simPdf->indexCat().typeIterator() ;
         RooCatType* tt = NULL;
         while((tt=(RooCatType*) iter->Next())) {

            // Get pdf associated with state from simpdf
            RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;

            // Generate only global variables defined by the pdf associated with this state
            RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ;
            RooDataSet* tmp = pdftmp->generate(*globtmp,1) ;

            // Transfer values to output placeholder
            *globtmp = *tmp->get(0) ;

            // Cleanup
            delete globtmp ;
            delete tmp ;
         }
      }

      //    globalData->Print("v");
      //    unconditionalObs = *globalData->get();
      //    mc->GetGlobalObservables()->Print("v");
      //    delete globalData;
      //    cout << "toy data = " << endl;
      //    toyData->get()->Print("v");

      // get test stat at observed UL in observed data
      firstPOI->setVal(observedUL);
      double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
      //    toyData->get()->Print("v");
      //    cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl;
      if(obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet
         CLb+= (1.)/nToyMC;
      if(obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet
         CLbinclusive+= (1.)/nToyMC;


      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<parameterScan->numEntries(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
         firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;
         if(thisTS<=arMax){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }



      /*
      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<histOfThresholds->GetNbinsX(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         cout <<"----------------  "<<i<<endl;
         tmpPoint->Print("v");
         cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <<endl;
         double arMax = histOfThresholds->GetBinContent(i+1);
         // cout << " threhold from Hist = aMax " << arMax<<endl;
         // double arMax2 = belt->GetAcceptanceRegionMax(*tmpPoint);
         // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D
         // cout << "scan - hist" << arMax2-arMax << endl;
         firstPOI->setVal( histOfThresholds->GetBinCenter(i+1));
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;

         // NOTE: need to add a small epsilon term for single precision vs. double precision
         if(thisTS<=arMax + 1e-7){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }
      */

      histOfUL->Fill(thisUL);

      // for few events, data is often the same, and UL is often the same
      //    cout << "thisUL = " << thisUL<<endl;

      delete toyData;
   }
   histOfUL->Draw();
   c1->SaveAs("one-sided_upper_limit_output.pdf");

   // if you want to see a plot of the sampling distribution for a particular scan point:
   /*
   SamplingDistPlot sampPlot;
   int indexInScan = 0;
   tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp");
   firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
   toymcsampler->SetParametersForTestStat(tmpPOI);
   SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint);
   sampPlot.AddSamplingDistribution(samp);
   sampPlot.Draw();
      */

   // Now find bands and power constraint
   Double_t* bins = histOfUL->GetIntegral();
   TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative");
   cumulative->SetContent(bins);
   double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp;
   for(int i=1; i<=cumulative->GetNbinsX(); ++i){
      if(bins[i]<RooStats::SignificanceToPValue(2))
         band2sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(1))
         band1sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<0.5)
         bandMedian=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-1))
         band1sigUp=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-2))
         band2sigUp=cumulative->GetBinCenter(i);
   }
   cout << "-2 sigma  band " << band2sigDown << endl;
   cout << "-1 sigma  band " << band1sigDown << " [Power Constraint)]" << endl;
   cout << "median of band " << bandMedian << endl;
   cout << "+1 sigma  band " << band1sigUp << endl;
   cout << "+2 sigma  band " << band2sigUp << endl;

   // print out the interval on the first Parameter of Interest
   cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl;
   cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl;
   cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl;

   delete profile;
   delete nll;

}
int DiagnosisMacro(int Nbins = 10, int Nsigma = 10, int CPUused = 1, TString Filename = "FIT_DATA_Psi2SJpsi_PPPrompt_Bkg_SecondOrderChebychev_pt65300_rap016_cent0200_262620_263757.root", TString Outputdir = "./")
//Nbins: Number of points for which to calculate profile likelihood. Time required is about (1/CPU) minutes per point per parameter. 0 means do plain likelihood only
//Nsigma: The range in which the scan is performed (value-Nsigma*sigma, value+Nsigma*sigma)
//CPUused: anything larger than 1 causes weird fit results on my laptop, runs fine on lxplus with more (16)

{
    // R e a d   w o r k s p a c e   f r o m   f i l e
    // -----------------------------------------------
    // Open input file with workspace

    //Filename = "FIT_DATA_Psi2SJpsi_PP_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev2_pt6590_rap016_cent0200.root";
    //Filename = "FIT_DATA_Psi2SJpsi_PbPb_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev1_pt6590_rap016_cent0200.root";

    TFile *f = new TFile(Filename);
    // Retrieve workspace from file
    RooWorkspace* w = (RooWorkspace*)f->Get("workspace");

    // Retrieve x,model and data from workspace
    RooRealVar* x = w->var("invMass");
    RooAbsPdf* model = w->pdf("simPdf_syst");
    if (model == 0) {
        model = w->pdf("simPdf");
    }
    if (model == 0) {
        model = w->pdf("pdfMASS_Tot_PP");
    }
    if (model == 0) {
        model = w->pdf("pdfMASS_Tot_PbPb");
    }
    if (model == 0) {
        cout << "[ERROR] pdf failed to load from the workspace" << endl;
        return false;
    }

    RooAbsData* data = w->data("dOS_DATA");
    if (data == 0) {
        data = w->data("dOS_DATA_PP");
    }
    if (data == 0) {
        data = w->data("dOS_DATA_PbPb");
    }
    if (data == 0) {
        cout << "[ERROR] data failed to load from the workspace" << endl;
        return false;
    }

    // Print structure of composite p.d.f.
    model->Print("t");

    /*
    // P l o t   m o d e l
    // ---------------------------------------------------------
    // Plot data and PDF overlaid
    RooPlot* xframe = x->frame(Title("J/psi Model and Data"));
    data->plotOn(xframe);
    model->plotOn(xframe);

    // Draw the frame on the canvas
    TCanvas* c2 = new TCanvas("PlotModel", "PlotModel", 1000, 1000);
    gPad->SetLeftMargin(0.15);
    xframe->GetYaxis()->SetTitleOffset(2.0);
    xframe->Draw();//*/

    ///// Check parameters

    RooArgSet* paramSet1 = model->getDependents(data);
    paramSet1->Print("v");  // Just check
    RooArgSet* paramSet2 = model->getParameters(data);
    paramSet2->Print("v");
    int Nparams = paramSet2->getSize();
    cout << "Number of parameters: " << Nparams<<endl<<endl;


    // C o n s t r u c t   p l a i n   l i k e l i h o o d
    // ---------------------------------------------------
    // Construct unbinned likelihood
    RooAbsReal* nll = model->createNLL(*data, NumCPU(CPUused));
    // Minimize likelihood w.r.t all parameters before making plots
    RooMinuit(*nll).migrad();


    //////////////////////////////////////////////////////

    ///////////////////   L O O P   O V E R   P A R A M E T E R S

    /////////////////////////////////////////////////////

    /// Set up loop over parameters
    TString ParamName;
    double ParamValue;
    double ParamError;
    double ParamLimitLow;
    double ParamLimitHigh;
    double FitRangeLow;
    double FitRangeHigh;
    RooRealVar* vParam;
    int counter = 0;

    // Loop start
    TIterator* iter = paramSet2->createIterator();
    TObject* var = iter->Next();
    while (var != 0) {
        counter++;
        ParamName = var->GetName();
        vParam = w->var(ParamName);
        ParamValue = vParam->getVal();
        ParamError = vParam->getError();
        ParamLimitLow = vParam->getMin();
        ParamLimitHigh = vParam->getMax();
        cout << ParamName << " has value " << ParamValue << " with error: " << ParamError << " and limits: " << ParamLimitLow << " to " << ParamLimitHigh << endl << endl;

        if (ParamError == 0) {  //Skipping fixed parameters
            cout << "Parameter was fixed, skipping its fitting" << endl;
            cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl;
            var = iter->Next();
            continue;
        }

        // determining fit range: Nsigma sigma on each side unless it would be outside of parameter limits
        if ((ParamValue - Nsigma * ParamError) > ParamLimitLow) {
            FitRangeLow = (ParamValue - Nsigma * ParamError);
        }
        else {
            FitRangeLow = ParamLimitLow;
        }

        if ((ParamValue + Nsigma * ParamError) < ParamLimitHigh) {
            FitRangeHigh = (ParamValue + Nsigma * ParamError);
        }
        else {
            FitRangeHigh = ParamLimitHigh;
        }


        // P l o t    p l a i n   l i k e l i h o o d   a n d   C o n s t r u c t   p r o f i l e   l i k e l i h o o d
        // ---------------------------------------------------
        RooPlot* frame1;
        RooAbsReal* pll=NULL;

        if (Nbins != 0) {
            frame1 = vParam->frame(Bins(Nbins), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data())));
            nll->plotOn(frame1, ShiftToZero());

            pll = nll->createProfile(*vParam);
            // Plot the profile likelihood
            pll->plotOn(frame1, LineColor(kRed), RooFit::Precision(-1));
        }
        else { //Skip profile likelihood
            frame1 = vParam->frame(Bins(10), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data())));
            nll->plotOn(frame1, ShiftToZero());
        }

        // D r a w   a n d   s a v e   p l o t s
        // -----------------------------------------------------------------------

        // Adjust frame maximum for visual clarity
        frame1->SetMinimum(0);
        frame1->SetMaximum(20);

        TCanvas* c = new TCanvas("CLikelihoodResult", "CLikelihoodResult", 800, 600);
        c->cd(1);
        gPad->SetLeftMargin(0.15);
        frame1->GetYaxis()->SetTitleOffset(1.4);
        frame1->Draw();
        TLegend* leg = new TLegend(0.70, 0.70, 0.95, 0.88, "");
        leg->SetFillColor(kWhite);
        leg->SetBorderSize(0);
        leg->SetTextSize(0.035);
        TLegendEntry *le1 = leg->AddEntry(nll, "Plain likelihood", "l");
        le1->SetLineColor(kBlue);
        le1->SetLineWidth(3);
        TLegendEntry *le2 = leg->AddEntry(pll, "Profile likelihood", "l");
        le2->SetLineColor(kRed);
        le2->SetLineWidth(3);
        leg->Draw("same");

        //Save plot
        TString StrippedName = TString(Filename(Filename.Last('/')+1,Filename.Length()));
        StrippedName = StrippedName.ReplaceAll(".root","");
        cout << StrippedName << endl;
        gSystem->mkdir(Form("%s/root/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/root/%s/Likelihood_scan_%s.root", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));
        gSystem->mkdir(Form("%s/pdf/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/pdf/%s/Likelihood_scan_%s.pdf", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));
        gSystem->mkdir(Form("%s/png/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/png/%s/Likelihood_scan_%s.png", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));


        delete c;
        delete frame1;
        if (pll) delete pll;

        cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl;
        //if (counter == 2){ break; } //Exit - for testing
        var = iter->Next();
    }  // End of the loop

    return true;
}
Beispiel #8
0
void new_RA4(){
  
  // let's time this challenging example
  TStopwatch t;
  t.Start();

  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(4357);

  // make model
  RooWorkspace* wspace = new RooWorkspace("wspace");

  wspace->factory("Gaussian::sigCons(prime_SigEff[0,-5,5], nom_SigEff[0,-5,5], 1)");
  wspace->factory("expr::SigEff('1.0*pow(1.20,@0)',prime_SigEff)"); // // 1+-20%, 1.20=exp(20%)

  wspace->factory("Poisson::on(non[0,50], sum::splusb(prod::SigUnc(s[0,0,50],SigEff),mainb[8.8,0,50],dilep[0.9,0,20],tau[2.3,0,20],QCD[0.,0,10],MC[0.1,0,4]))");

  wspace->factory("Gaussian::mcCons(prime_rho[0,-5,5], nom_rho[0,-5,5], 1)");
  wspace->factory("expr::rho('1.0*pow(1.39,@0)',prime_rho)"); // // 1+-39%
  wspace->factory("Poisson::off(noff[0,200], prod::rhob(mainb,rho,mu_plus_e[0.74,0.01,10],1.08))");
  wspace->factory("Gaussian::mcCons2(mu_plus_enom[0.74,0.01,4], mu_plus_e, sigmatwo[.05])");

  wspace->factory("Gaussian::dilep_pred(dilep_nom[0.9,0,20], dilep, sigma3[2.2])");
  wspace->factory("Gaussian::tau_pred(tau_nom[2.3,0,20], tau, sigma4[0.5])");
  wspace->factory("Gaussian::QCD_pred(QCD_nom[0.0,0,10], QCD, sigma5[1.0])");
  wspace->factory("Gaussian::MC_pred(MC_nom[0.1,0.01,4], MC, sigma7[0.14])");

  wspace->factory("PROD::model(on,off,mcCons,mcCons2,sigCons,dilep_pred,tau_pred,QCD_pred,MC_pred)");

  RooArgSet obs(*wspace->var("non"), *wspace->var("noff"), *wspace->var("mu_plus_enom"), *wspace->var("dilep_nom"), *wspace->var("tau_nom"), "obs");
  obs.add(*wspace->var("QCD_nom"));  obs.add(*wspace->var("MC_nom"));
  RooArgSet globalObs(*wspace->var("nom_SigEff"), *wspace->var("nom_rho"), "global_obs");
  // fix global observables to their nominal values
  wspace->var("nom_SigEff")->setConstant();
  wspace->var("nom_rho")->setConstant();

  RooArgSet poi(*wspace->var("s"), "poi");
  RooArgSet nuis(*wspace->var("mainb"), *wspace->var("prime_rho"), *wspace->var("prime_SigEff"), *wspace->var("mu_plus_e"), *wspace->var("dilep"), *wspace->var("tau"), "nuis");
  nuis.add(*wspace->var("QCD"));  nuis.add(*wspace->var("MC"));


  wspace->factory("Uniform::prior_poi({s})");
  wspace->factory("Uniform::prior_nuis({mainb,mu_plus_e,dilep,tau,QCD,MC})");
  wspace->factory("PROD::prior(prior_poi,prior_nuis)");

  wspace->var("non")->setVal(8); //observed
  //wspace->var("non")->setVal(12); //expected observation
  wspace->var("noff")->setVal(7); //observed events in control region
  wspace->var("mu_plus_enom")->setVal(0.74);
  wspace->var("dilep_nom")->setVal(0.9);
  wspace->var("tau_nom")->setVal(2.3);
  wspace->var("QCD")->setVal(0.0);
  wspace->var("MC")->setVal(0.1);


  RooDataSet * data = new RooDataSet("data","",obs);
  data->add(obs);
  wspace->import(*data);


  /////////////////////////////////////////////////////
  // Now the statistical tests
  // model config
  ModelConfig* pSbModel = new ModelConfig("SbModel");
  pSbModel->SetWorkspace(*wspace);
  pSbModel->SetPdf(*wspace->pdf("model"));
  pSbModel->SetPriorPdf(*wspace->pdf("prior"));
  pSbModel->SetParametersOfInterest(poi);
  pSbModel->SetNuisanceParameters(nuis);
  pSbModel->SetObservables(obs);
  pSbModel->SetGlobalObservables(globalObs);
  wspace->import(*pSbModel);

  // set all but obs, poi and nuisance to const
  SetConstants(wspace, pSbModel);
  wspace->import(*pSbModel);


  Double_t poiValueForBModel = 0.0;
  ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)wspace->obj("SbModel"));
  pBModel->SetName("BModel");
  pBModel->SetWorkspace(*wspace);
  wspace->import(*pBModel);


  RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*data);
  RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
  pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
  RooArgSet * pPoiAndNuisance = new RooArgSet();
  //if(pSbModel->GetNuisanceParameters())
  //  pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest());
  cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
  pPoiAndNuisance->Print("v");
  pSbModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;


  pNll = pBModel->GetPdf()->createNLL(*data);
  pProfile = pNll->createProfile(poi);
  ((RooRealVar *)poi.first())->setVal(poiValueForBModel);
  pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
  pPoiAndNuisance = new RooArgSet();
  //if(pBModel->GetNuisanceParameters())
  //  pPoiAndNuisance->add(*pBModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pBModel->GetParametersOfInterest());
  cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl;
  pPoiAndNuisance->Print("v");
  pBModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;


  // inspect workspace
  wspace->Print();

  // save workspace to file
  wspace->writeToFile("tight.root");
  //wspace->writeToFile("tight_median.root");


  // clean up
  delete wspace;
  delete data;
  delete pSbModel;
  delete pBModel;

}
Beispiel #9
0
void MakeWorkspace( void ){
  //
  // this function implements a RooFit model for a counting experiment
  //

  // create workspace
  RooWorkspace * pWs = new RooWorkspace("myWS");
  
  // observable: number of events
  pWs->factory( "n[0.0]" );

  // integrated luminosity with systematics
  pWs->factory( "lumi_nom[5000.0, 4000.0, 6000.0]" );
  pWs->factory( "lumi_kappa[1.045]" );
  pWs->factory( "cexpr::alpha_lumi('pow(lumi_kappa,beta_lumi)',lumi_kappa,beta_lumi[0,-5,5])" );
  pWs->factory( "prod::lumi(lumi_nom,alpha_lumi)" );
  pWs->factory( "Gaussian::constr_lumi(beta_lumi,glob_lumi[0,-5,5],1)" );

  // cross section - parameter of interest
  pWs->factory( "xsec[0.001,0.0,0.1]" );

  // selection efficiency * acceptance with systematics
  pWs->factory( "efficiency_nom[0.1, 0.05, 0.15]" );
  pWs->factory( "efficiency_kappa[1.10]" );
  pWs->factory( "cexpr::alpha_efficiency('pow(efficiency_kappa,beta_efficiency)',efficiency_kappa,beta_efficiency[0,-5,5])" );
  pWs->factory( "prod::efficiency(efficiency_nom,alpha_efficiency)" );
  pWs->factory( "Gaussian::constr_efficiency(beta_efficiency,glob_efficiency[0,-5,5],1)" );

  // signal yield
  pWs->factory( "prod::nsig(lumi,xsec,efficiency)" );

  // background yield with systematics
  pWs->factory( "nbkg_nom[10.0, 5.0, 15.0]" );
  pWs->factory( "nbkg_kappa[1.10]" );
  pWs->factory( "cexpr::alpha_nbkg('pow(nbkg_kappa,beta_nbkg)',nbkg_kappa,beta_nbkg[0,-5,5])" );
  pWs->factory( "prod::nbkg(nbkg_nom,alpha_lumi,alpha_nbkg)" );
  pWs->factory( "Gaussian::constr_nbkg(beta_nbkg,glob_nbkg[0,-5,5],1)" );

  // full event yield
  pWs->factory("sum::yield(nsig,nbkg)");

  // Core model: Poisson probability with mean signal+bkg
  pWs->factory( "Poisson::model_core(n,yield)" );

  // define Bayesian prior PDF for POI
  pWs->factory( "Uniform::prior(xsec)" );

  // model with systematics
  pWs->factory( "PROD::model(model_core,constr_lumi,constr_efficiency,constr_nbkg)" );

  // create set of observables (will need it for datasets and ModelConfig later)
  RooRealVar * pObs = pWs->var("n"); // get the pointer to the observable
  RooArgSet obs("observables");
  obs.add(*pObs);

  // create the dataset
  pObs->setVal(11); // this is your observed data: we counted ten events
  RooDataSet * data = new RooDataSet("data", "data", obs);
  data->add( *pObs );

  // import dataset into workspace
  pWs->import(*data);

  // create set of global observables (need to be defined as constants)
  pWs->var("glob_lumi")->setConstant(true);
  pWs->var("glob_efficiency")->setConstant(true);
  pWs->var("glob_nbkg")->setConstant(true);
  RooArgSet globalObs("global_obs");
  globalObs.add( *pWs->var("glob_lumi") );
  globalObs.add( *pWs->var("glob_efficiency") );
  globalObs.add( *pWs->var("glob_nbkg") );

  // create set of parameters of interest (POI)
  RooArgSet poi("poi");
  poi.add( *pWs->var("xsec") );
  
  // create set of nuisance parameters
  RooArgSet nuis("nuis");
  nuis.add( *pWs->var("beta_lumi") );
  nuis.add( *pWs->var("beta_efficiency") );
  nuis.add( *pWs->var("beta_nbkg") );

  // create signal+background Model Config
  RooStats::ModelConfig sbHypo("SbHypo");
  sbHypo.SetWorkspace( *pWs );
  sbHypo.SetPdf( *pWs->pdf("model") );
  sbHypo.SetObservables( obs );
  sbHypo.SetGlobalObservables( globalObs );
  sbHypo.SetParametersOfInterest( poi );
  sbHypo.SetNuisanceParameters( nuis );
  sbHypo.SetPriorPdf( *pWs->pdf("prior") ); // this is optional

  // fix all other variables in model:
  // everything except observables, POI, and nuisance parameters
  // must be constant
  pWs->var("lumi_nom")->setConstant(true);
  pWs->var("efficiency_nom")->setConstant(true);
  pWs->var("nbkg_nom")->setConstant(true);
  pWs->var("lumi_kappa")->setConstant(true);
  pWs->var("efficiency_kappa")->setConstant(true);
  pWs->var("nbkg_kappa")->setConstant(true);
  RooArgSet fixed("fixed");
  fixed.add( *pWs->var("lumi_nom") );
  fixed.add( *pWs->var("efficiency_nom") );
  fixed.add( *pWs->var("nbkg_nom") );
  fixed.add( *pWs->var("lumi_kappa") );
  fixed.add( *pWs->var("efficiency_kappa") );
  fixed.add( *pWs->var("nbkg_kappa") );
  
  // set parameter snapshot that corresponds to the best fit to data
  RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data );
  RooAbsReal * pProfile = pNll->createProfile( globalObs ); // do not profile global observables
  pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
  RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance");
  pPoiAndNuisance->add(*sbHypo.GetNuisanceParameters());
  pPoiAndNuisance->add(*sbHypo.GetParametersOfInterest());
  sbHypo.SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;

  // import S+B ModelConfig into workspace
  pWs->import( sbHypo );

  // create background-only Model Config from the S+B one
  RooStats::ModelConfig bHypo = sbHypo;
  bHypo.SetName("BHypo");
  bHypo.SetWorkspace(*pWs);

  // set parameter snapshot for bHypo, setting xsec=0
  // it is useful to understand how this block of code works
  // but you can also use it as a recipe to make a parameter snapshot
  pNll = bHypo.GetPdf()->createNLL( *data );
  RooArgSet poiAndGlobalObs("poiAndGlobalObs");
  poiAndGlobalObs.add( poi );
  poiAndGlobalObs.add( globalObs );
  pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables
  ((RooRealVar *)poi.first())->setVal( 0 );  // set xsec=0 here
  pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
  pPoiAndNuisance = new RooArgSet( "poiAndNuisance" );
  pPoiAndNuisance->add( nuis );
  pPoiAndNuisance->add( poi );
  bHypo.SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;

  // import model config into workspace
  pWs->import( bHypo );

  // print out the workspace contents
  pWs->Print();

  // save workspace to file
  pWs -> SaveAs("workspace.root");

  return;
}
   void build_hbb_workspace1( const char* infile = "outputfiles/input-file.txt", const char* outfile = "outputfiles/ws.root" ) {


    //-------------------------------------------------------------------------

     //-- Create workspace and other RooStats things.

      printf("\n\n Creating workspace.\n\n") ;

      RooWorkspace workspace("ws") ;
      workspace.autoImportClassCode(true) ;

      globalObservables      = new RooArgSet("globalObservables");
      allNuisances           = new RooArgSet("allNuisances");
      allNuisancePdfs        = new RooArgSet("allNuisancePdfs");
      RooArgSet* observedParametersList = new RooArgSet("observables") ;




    //-------------------------------------------------------------------------

      printf("\n\n Reading input file: %s\n\n", infile ) ;

      float fileVal ;
      char pname[1000] ;
      char formula[1000] ;


      sprintf( pname, "bins_of_met" ) ;
      if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
      int bins_of_met = TMath::Nint( fileVal ) ;

      //-- save bins_of_met in the workspace for convenience.
      RooRealVar bom( "bins_of_met", "bins_of_met", bins_of_met, 0., 1000. ) ;
      bom.setConstant(kTRUE) ;
      workspace.import(bom) ;


      //-- save bins_of_nb in the workspace for convenience.
      RooRealVar bonb( "bins_of_nb", "bins_of_nb", bins_of_nb, 0., 1000. ) ;
      bonb.setConstant(kTRUE) ;
      workspace.import(bonb) ;


      RooRealVar* rv_N_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin.
      RooRealVar* rv_N_msb[bins_of_nb][max_bins_of_met]  ; // first index is number of btags, second is met bin.

      RooRealVar* rv_smc_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin.
      RooRealVar* rv_smc_msb[bins_of_nb][max_bins_of_met]  ; // first index is number of btags, second is met bin.

      RooAbsReal* rv_Rsigsb_corr[bins_of_nb][max_bins_of_met]  ;

      for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {

         for ( int mbi=0; mbi<bins_of_met; mbi++ ) {

            sprintf( pname, "N_%db_msig_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
            rv_N_msig[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ;
            rv_N_msig[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ;
            rv_N_msig[nbi][mbi] -> setConstant( kTRUE ) ;
            observedParametersList -> add( *rv_N_msig[nbi][mbi] ) ;

            sprintf( pname, "N_%db_msb_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
            rv_N_msb[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ;
            rv_N_msb[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ;
            rv_N_msb[nbi][mbi] -> setConstant( kTRUE ) ;
            observedParametersList -> add( *rv_N_msb[nbi][mbi] ) ;

            sprintf( pname, "smc_%db_msig_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
            rv_smc_msig[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ;
            rv_smc_msig[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ;
            rv_smc_msig[nbi][mbi] -> setConstant( kTRUE ) ;

            sprintf( pname, "smc_%db_msb_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
            rv_smc_msb[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ;
            rv_smc_msb[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ;
            rv_smc_msb[nbi][mbi] -> setConstant( kTRUE ) ;

            float corrVal, corrSyst ;
            sprintf( pname, "Rsigsb_syst_%db_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, corrSyst ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }
            sprintf( pname, "Rsigsb_corr_%db_met%d", nbi+2, mbi+1 ) ;
            if ( !getFileValue( infile, pname, corrVal  ) ) { printf("\n\n *** Error.  Can't find %s\n\n", pname ) ; return ; }

            rv_Rsigsb_corr[nbi][mbi] = makeLognormalConstraint( pname, corrVal, corrSyst ) ;


         } // mbi.

      } // nbi.

     //-- Finished reading input from file.

    //-------------------------------------------------------------------------

      printf("\n\n Creating and importing dataset into workspace.\n\n") ;

      RooDataSet* dsObserved = new RooDataSet("hbb_observed_rds", "hbb observed data values", *observedParametersList ) ;
      dsObserved -> add( *observedParametersList ) ;
      workspace.import( *dsObserved ) ;

    //-------------------------------------------------------------------------

     //-- Define all floats.

      printf("\n\n Defining all unconstrained floats (Ratios, signal strength).\n\n") ;

      double R_msigmsb_initialval(0.15) ;

      RooRealVar* rv_R_msigmsb[50] ;

      for ( int mbi=0; mbi<bins_of_met; mbi++ ) {

         sprintf( pname, "R_msigmsb_met%d", mbi+1 ) ;
         printf( "  %s\n", pname ) ;
         rv_R_msigmsb[mbi] = new RooRealVar( pname, pname, R_msigmsb_initialval, 0., 3. ) ;
         rv_R_msigmsb[mbi] -> setConstant( kFALSE ) ;
         rv_R_msigmsb[mbi] -> Print() ;

      } // mbi.

      printf("\n") ;

      sprintf( pname, "sig_strength" ) ;
      RooRealVar* rv_sig_strength = new RooRealVar( pname, pname, 1.0, 0., 10. ) ;
      rv_sig_strength -> setConstant(kFALSE) ;
      rv_sig_strength -> Print() ;
      printf("  %s\n\n", pname ) ;

    //-------------------------------------------------------------------------

     //-- Define all mu parameters.

      printf("\n\n Defining mu parameters.\n\n") ;

      RooAbsReal* rv_mu_bg_msig[bins_of_nb][max_bins_of_met] ;  // first index is number of btags, second is met bin.
      RooAbsReal* rv_mu_bg_msb[bins_of_nb][max_bins_of_met]  ;  // first index is number of btags, second is met bin.

      RooAbsReal* rv_mu_sig_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin.
      RooAbsReal* rv_mu_sig_msb[bins_of_nb][max_bins_of_met]  ; // first index is number of btags, second is met bin.

      for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {

         for ( int mbi=0; mbi<bins_of_met; mbi++ ) {

            sprintf( pname, "mu_bg_%db_msb_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_mu_bg_msb[nbi][mbi] = new RooRealVar( pname, pname, rv_N_msb[nbi][mbi] -> getVal(), 0., 1.e6 ) ;
            rv_mu_bg_msb[nbi][mbi] -> Print() ;



            sprintf( formula, "@0 * @1 * @2" ) ;
            sprintf( pname, "mu_bg_%db_msig_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_mu_bg_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_Rsigsb_corr[nbi][mbi], *rv_R_msigmsb[mbi], *rv_mu_bg_msb[nbi][mbi] ) ) ;
            rv_mu_bg_msig[nbi][mbi] -> Print() ;

            sprintf( formula, "@0 * @1" ) ;
            sprintf( pname, "mu_sig_%db_msig_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_mu_sig_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_sig_strength, *rv_smc_msig[nbi][mbi] ) ) ;
            rv_mu_sig_msig[nbi][mbi] -> Print() ;

            sprintf( formula, "@0 * @1" ) ;
            sprintf( pname, "mu_sig_%db_msb_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_mu_sig_msb[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_sig_strength, *rv_smc_msb[nbi][mbi] ) ) ;
            rv_mu_sig_msb[nbi][mbi] -> Print() ;


         } // mbi.

      } // nbi.

     //-- Finished defining mu parameters.

    //-------------------------------------------------------------------------

     //-- Defining small n's

     printf("\n\n Defining small n's.\n\n") ;

     RooAbsReal* rv_n_msig[bins_of_nb][max_bins_of_met] ;  // first index is number of btags, second is met bin.
     RooAbsReal* rv_n_msb[bins_of_nb][max_bins_of_met]  ;  // first index is number of btags, second is met bin.

      for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {

         for ( int mbi=0; mbi<bins_of_met; mbi++ ) {

            sprintf( formula, "@0 + @1" ) ;

            sprintf( pname, "n_%db_msig_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_n_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_mu_sig_msig[nbi][mbi], *rv_mu_bg_msig[nbi][mbi] ) ) ;
            rv_n_msig[nbi][mbi] -> Print() ;
            workspace.import( *rv_n_msig[nbi][mbi] ) ;

            sprintf( pname, "n_%db_msb_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_n_msb[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_mu_sig_msb[nbi][mbi], *rv_mu_bg_msb[nbi][mbi] ) ) ;
            rv_n_msb[nbi][mbi] -> Print() ;
            workspace.import( *rv_n_msb[nbi][mbi] ) ;

         } // mbi.

      } // nbi.

    //-------------------------------------------------------------------------

     //-- Define the Poisson pdfs for the observables.

      printf("\n\n Defining Poisson pdfs for the observables.\n\n") ;

      RooAbsReal* rv_pdf_msig[bins_of_nb][max_bins_of_met] ;  // first index is number of btags, second is met bin.
      RooAbsReal* rv_pdf_msb[bins_of_nb][max_bins_of_met]  ;  // first index is number of btags, second is met bin.

      RooArgSet pdflist ;

      for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {

         for ( int mbi=0; mbi<bins_of_met; mbi++ ) {

            sprintf( pname, "pdf_%db_msig_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_pdf_msig[nbi][mbi] = new RooPoisson( pname, pname, *rv_N_msig[nbi][mbi], *rv_n_msig[nbi][mbi] ) ;
            rv_pdf_msig[nbi][mbi] -> Print() ;

            pdflist.add( *rv_pdf_msig[nbi][mbi] ) ;

            sprintf( pname, "pdf_%db_msb_met%d", nbi+2, mbi+1 ) ;
            printf( "  %s\n", pname ) ;
            rv_pdf_msb[nbi][mbi] = new RooPoisson( pname, pname, *rv_N_msb[nbi][mbi], *rv_n_msb[nbi][mbi] ) ;
            rv_pdf_msb[nbi][mbi] -> Print() ;

            pdflist.add( *rv_pdf_msb[nbi][mbi] ) ;

         } // mbi.

      } // nbi.

    //-------------------------------------------------------------------------

     //-- Build the likelihood.

      printf("\n\n Building the likelihood.\n\n") ;

      pdflist.add( *allNuisancePdfs ) ;

      pdflist.Print() ;
      printf("\n") ;

      RooProdPdf* likelihood = new RooProdPdf( "likelihood", "hbb likelihood", pdflist ) ;
      likelihood->Print() ;


    //-------------------------------------------------------------------------


  //  printf("\n\n Running a test fit.\n\n") ;


  //  dsObserved -> Print() ;
  //  dsObserved -> printMultiline(cout, 1, kTRUE, "") ;


  //  printf("\n\n =============================================\n\n") ;
  //  likelihood -> fitTo( *dsObserved, PrintLevel(3), Hesse(0), Minos(0) ) ;
  //  printf("\n\n =============================================\n\n") ;







     //-- Set up RooStats models.

      printf("\n\n Setting up S+B model.\n\n") ;

      RooArgSet poi( *rv_sig_strength, "poi" ) ;
      RooUniform signal_prior( "signal_prior", "signal_prior", *rv_sig_strength ) ;

      ModelConfig sbModel ("SbModel");
      sbModel.SetWorkspace( workspace ) ;
      sbModel.SetPdf( *likelihood ) ;
      sbModel.SetParametersOfInterest( poi );
      sbModel.SetPriorPdf(signal_prior);
      sbModel.SetObservables( *observedParametersList );
      sbModel.SetNuisanceParameters( *allNuisances );
      sbModel.SetGlobalObservables( *globalObservables );

      workspace.Print() ;

      printf("\n\n Doing fit for S+B model.\n" ) ; fflush(stdout) ;

      RooAbsReal* pNll = sbModel.GetPdf()->createNLL(*dsObserved);
      RooAbsReal* pProfile = pNll->createProfile(RooArgSet());
      pProfile->getVal();
      RooArgSet* pPoiAndNuisance = new RooArgSet();
      pPoiAndNuisance->add(*sbModel.GetParametersOfInterest());
      if(sbModel.GetNuisanceParameters()) pPoiAndNuisance->add(*sbModel.GetNuisanceParameters());
      printf("\n\n Will save these parameter points that correspond to the fit to data.\n\n") ; fflush(stdout) ;
      pPoiAndNuisance->Print("v");
      sbModel.SetSnapshot(*pPoiAndNuisance);
      workspace.import (sbModel);

      delete pProfile ;
      delete pNll ;
      delete pPoiAndNuisance ;

      printf("\n\n Setting up BG-only model.\n\n") ;

      ModelConfig bModel (*(RooStats::ModelConfig *)workspace.obj("SbModel"));
      bModel.SetName("BModel");
      bModel.SetWorkspace(workspace);

      printf("\n\n Doing fit for BG-only model.\n" ) ; fflush(stdout) ;
      pNll = bModel.GetPdf()->createNLL(*dsObserved);
      pProfile = pNll->createProfile(*bModel.GetParametersOfInterest());
      ((RooRealVar *)(bModel.GetParametersOfInterest()->first()))->setVal(0.);
      pProfile->getVal();
      pPoiAndNuisance = new RooArgSet();
      pPoiAndNuisance->add(*bModel.GetParametersOfInterest());
      if(bModel.GetNuisanceParameters()) pPoiAndNuisance->add(*bModel.GetNuisanceParameters());
      printf("\n\n Should use these parameter points to generate pseudo data for bkg only.\n\n") ; fflush(stdout) ;
      pPoiAndNuisance->Print("v");
      bModel.SetSnapshot(*pPoiAndNuisance);
      workspace.import (bModel);

      delete pProfile ;
      delete pNll ;
      delete pPoiAndNuisance ;

      workspace.Print() ;

      printf("\n\n Saving workspace in : %s\n\n", outfile ) ;

      gSystem->Exec(" mkdir -p outputfiles " ) ;

      workspace.writeToFile( outfile ) ;




   } // build_hbb_workspace1.
void OneSidedFrequentistUpperLimitWithBands_intermediate(const char* infile = "",
					    const char* workspaceName = "combined",
					    const char* modelConfigName = "ModelConfig",
					    const char* dataName = "obsData"){


  double confidenceLevel=0.95;
  // degrade/improve number of pseudo-experiments used to define the confidence belt.  
  // value of 1 corresponds to default number of toys in the tail, which is 50/(1-confidenceLevel)
  double additionalToysFac = 1.;  
  int nPointsToScan = 30; // number of steps in the parameter of interest 
  int nToyMC = 100; // number of toys used to define the expected limit and band

  TStopwatch t;
  t.Start();
  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file 
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
  const char* filename = "";
  if (!strcmp(infile,""))
    filename = "results/example_combined_GaussExample_model.root";
  else
    filename = infile;
  // Check if example input file exists
  TFile *file = TFile::Open(filename);

  // if input file was specified byt not found, quit
  if(!file && strcmp(infile,"")){
    cout <<"file not found" << endl;
    return;
  } 

  // if default file not found, try to create it
  if(!file ){
    // Normally this would be run on the command line
    cout <<"will run standard hist2workspace example"<<endl;
    gROOT->ProcessLine(".! prepareHistFactory .");
    gROOT->ProcessLine(".! hist2workspace config/example.xml");
    cout <<"\n\n---------------------"<<endl;
    cout <<"Done creating example input"<<endl;
    cout <<"---------------------\n\n"<<endl;
  }

  // now try to access the file again
  file = TFile::Open(filename);
  if(!file){
    // if it is still not there, then we can't continue
    cout << "Not able to run hist2workspace to create example input" <<endl;
    return;
  }

  
  /////////////////////////////////////////////////////////////
  // Now get the data and workspace
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }

  // get the modelConfig out of the file
  ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !mc){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }

  cout << "Found data and ModelConfig:" <<endl;
  mc->Print();

  /////////////////////////////////////////////////////////////
  // Now get the POI for convenience
  // you may want to adjust the range of your POI
  ////////////////////////////////////////////////////////////
  RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
  //  firstPOI->setMin(0);
  //  firstPOI->setMax(10);

  /////////////////////////////////////////////
  // create and use the FeldmanCousins tool
  // to find and plot the 95% confidence interval
  // on the parameter of interest as specified
  // in the model config
  // REMEMBER, we will change the test statistic
  // so this is NOT a Feldman-Cousins interval
  FeldmanCousins fc(*data,*mc);
  fc.SetConfidenceLevel(confidenceLevel); 
  fc.AdditionalNToysFactor(additionalToysFac); // improve sampling that defines confidence belt
  //  fc.UseAdaptiveSampling(true); // speed it up a bit, but don't use for expectd limits
  fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
  fc.CreateConfBelt(true); // save the information in the belt for plotting

  /////////////////////////////////////////////
  // Feldman-Cousins is a unified limit by definition
  // but the tool takes care of a few things for us like which values
  // of the nuisance parameters should be used to generate toys.
  // so let's just change the test statistic and realize this is 
  // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
  //  ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());
  //  fc.GetTestStatSampler()->SetTestStatistic(&onesided);
  // ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true);
  ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); 
  ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
  testStat->SetOneSided(true);


  // test speedups:
  testStat->SetReuseNLL(true);
  //  toymcsampler->setUseMultiGen(true); // not fully validated

  // Since this tool needs to throw toy MC the PDF needs to be
  // extended or the tool needs to know how many entries in a dataset
  // per pseudo experiment.  
  // In the 'number counting form' where the entries in the dataset
  // are counts, and not values of discriminating variables, the
  // datasets typically only have one entry and the PDF is not
  // extended.  
  if(!mc->GetPdf()->canBeExtended()){
    if(data->numEntries()==1)     
      fc.FluctuateNumDataEntries(false);
    else
      cout <<"Not sure what to do about this model" <<endl;
  }

  // We can use PROOF to speed things along in parallel
  ProofConfig pc(*w, 4, "",false); 
  if(mc->GetGlobalObservables()){
    cout << "will use global observables for unconditional ensemble"<<endl;
    mc->GetGlobalObservables()->Print();
    toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
  }
  toymcsampler->SetProofConfig(&pc);	// enable proof


  // Now get the interval
  PointSetInterval* interval = fc.GetInterval();
  ConfidenceBelt* belt = fc.GetConfidenceBelt();
 
  // print out the iterval on the first Parameter of Interest
  cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
    interval->LowerLimit(*firstPOI) << ", "<<
    interval->UpperLimit(*firstPOI) <<"] "<<endl;

  // get observed UL and value of test statistic evaluated there
  RooArgSet tmpPOI(*firstPOI);
  double observedUL = interval->UpperLimit(*firstPOI);
  firstPOI->setVal(observedUL);
  double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


  // Ask the calculator which points were scanned
  RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
  RooArgSet* tmpPoint;

  // make a histogram of parameter vs. threshold
  TH1F* histOfThresholds = new TH1F("histOfThresholds","",
				    parameterScan->numEntries(),
				    firstPOI->getMin(),
				    firstPOI->getMax());
  histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
  histOfThresholds->GetYaxis()->SetTitle("Threshold");

  // loop through the points that were tested and ask confidence belt
  // what the upper/lower thresholds were.
  // For FeldmanCousins, the lower cut off is always 0
  for(Int_t i=0; i<parameterScan->numEntries(); ++i){
    tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
    double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
    double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
    histOfThresholds->Fill(poiVal,arMax);
  }
  TCanvas* c1 = new TCanvas();
  c1->Divide(2);
  c1->cd(1);
  histOfThresholds->SetMinimum(0);
  histOfThresholds->Draw();
  c1->cd(2);

  /////////////////////////////////////////////////////////////
  // Now we generate the expected bands and power-constriant
  ////////////////////////////////////////////////////////////

  // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
  RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
  RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
  firstPOI->setVal(0.);
  profile->getVal(); // this will do fit and set nuisance parameters to profiled values
  RooArgSet* poiAndNuisance = new RooArgSet();
  if(mc->GetNuisanceParameters())
    poiAndNuisance->add(*mc->GetNuisanceParameters());
  poiAndNuisance->add(*mc->GetParametersOfInterest());
  w->saveSnapshot("paramsToGenerateData",*poiAndNuisance);
  RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot();
  cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl;
  paramsToGenerateData->Print("v");


  double CLb=0;
  double CLbinclusive=0;

  // Now we generate background only and find distribution of upper limits
  TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax());
  histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)");
  histOfUL->GetYaxis()->SetTitle("Entries");
  for(int imc=0; imc<nToyMC; ++imc){

    // set parameters back to values for generating pseudo data
    w->loadSnapshot("paramsToGenerateData");

    // in 5.30 there is a nicer way to generate toy data  & randomize global obs
    RooAbsData* toyData = toymcsampler->GenerateToyData(*paramsToGenerateData);

    // get test stat at observed UL in observed data
    firstPOI->setVal(observedUL);
    double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
    //    toyData->get()->Print("v");
    //    cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl;
    if(obsTSatObsUL < toyTSatObsUL) // (should be checked)
      CLb+= (1.)/nToyMC;
    if(obsTSatObsUL <= toyTSatObsUL) // (should be checked)
      CLbinclusive+= (1.)/nToyMC;


    // loop over points in belt to find upper limit for this toy data
    double thisUL = 0;
    for(Int_t i=0; i<parameterScan->numEntries(); ++i){
      tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
      double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
      firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
      double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

      if(thisTS<=arMax){
	thisUL = firstPOI->getVal();
      } else{
	break;
      }
    }
    

    histOfUL->Fill(thisUL);

    
    delete toyData;
  }
  histOfUL->Draw();
  c1->SaveAs("one-sided_upper_limit_output.pdf");

  // if you want to see a plot of the sampling distribution for a particular scan point:

  // Now find bands and power constraint
  Double_t* bins = histOfUL->GetIntegral();
  TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative");
  cumulative->SetContent(bins);
  double band2sigDown=0, band1sigDown=0, bandMedian=0, band1sigUp=0,band2sigUp=0;
  for(int i=1; i<=cumulative->GetNbinsX(); ++i){
    if(bins[i]<RooStats::SignificanceToPValue(2))
      band2sigDown=cumulative->GetBinCenter(i);
    if(bins[i]<RooStats::SignificanceToPValue(1))
      band1sigDown=cumulative->GetBinCenter(i);
    if(bins[i]<0.5)
      bandMedian=cumulative->GetBinCenter(i);
    if(bins[i]<RooStats::SignificanceToPValue(-1))
      band1sigUp=cumulative->GetBinCenter(i);
    if(bins[i]<RooStats::SignificanceToPValue(-2))
      band2sigUp=cumulative->GetBinCenter(i);
  }

  t.Stop();
  t.Print();

  cout << "-2 sigma  band " << band2sigDown << endl;
  cout << "-1 sigma  band " << band1sigDown  << endl;
  cout << "median of band " << bandMedian << " [Power Constriant)]" << endl;
  cout << "+1 sigma  band " << band1sigUp << endl;
  cout << "+2 sigma  band " << band2sigUp << endl;

  // print out the iterval on the first Parameter of Interest
  cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl;
  cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl;
  cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl;

  delete profile;
  delete nll;

}
Beispiel #12
0
void combinedWorkspace_4WS(const char* name_pbpb_pass="******", const char* name_pbpb_fail="fitresult_pbpb_fail.root", const char* name_pp_pass="******", const char* name_pp_fail="fitresult_pp_fail.root", const char* name_out="fitresult_combo.root", const float systval = 0., const char* subDirName ="wsTest", int nCPU=2){
   // subdir: Directory to save workspaces under currentPATH/CombinedWorkspaces/subDir/

   // set things silent
   gErrorIgnoreLevel=kError;
   RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR);
  
   bool dosyst = (systval > 0.);

   TString nameOut(name_out);
  
   RooWorkspace * ws = test_combine_4WS(name_pbpb_pass, name_pp_pass, name_pbpb_fail, name_pp_fail, false, nCPU);
   RooAbsData * data = ws->data("dOS_DATA");

   RooRealVar* RFrac2Svs1S_PbPbvsPP_P = ws->var("RFrac2Svs1S_PbPbvsPP_P");
   RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",-10);
   RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",10);
   RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*RFrac2Svs1S_PbPbvsPP_P, *leftEdge, *rightEdge));
   ws->import(step);
   ws->factory( "Uniform::flat(RFrac2Svs1S_PbPbvsPP_P)" );

   // systematics
   if (dosyst) {
     ws->factory( Form("kappa_syst[%f]",systval) );
     ws->factory( "expr::alpha_syst('kappa_syst*beta_syst',kappa_syst,beta_syst[0,-5,5])" );
     ws->factory( "Gaussian::constr_syst(beta_syst,glob_syst[0,-5,5],1)" );
     
     // add systematics into the double ratio
     ws->factory( "expr::RFrac2Svs1S_PbPbvsPP_P_syst('@0+@1',RFrac2Svs1S_PbPbvsPP_P,alpha_syst)" );
     
     // build the pbpb pdf
     RooRealVar* effjpsi_pp_P = (RooRealVar*)ws->var("effjpsi_pp_P");
     RooRealVar* effpsip_pp_P = (RooRealVar*)ws->var("effpsip_pp_P");
     RooRealVar* effjpsi_pp_NP = (RooRealVar*)ws->var("effjpsi_pp_NP");
     Double_t Npsi2SPbPbPass = npsip_pbpb_pass_from_doubleratio_prompt(ws, RooArgList(*effjpsi_pp_P,*effpsip_pp_P,*effjpsi_pp_NP),true); // Create and import N_Psi2S_PbPb_pass_syst
     
     ws->factory( "SUM::pdfMASS_Tot_PbPb_pass_syst(N_Jpsi_PbPb_pass * pdfMASS_Jpsi_PbPb_pass, N_Psi2S_PbPb_pass_syst * pdfMASS_Psi2S_PbPb_pass, N_Bkg_PbPb_pass * pdfMASS_Bkg_PbPb_pass)" );
     ws->factory( "PROD::pdfMASS_Tot_PbPb_pass_constr(pdfMASS_Tot_PbPb_pass_syst,constr_syst)" );
     
     // build the combined pdf
     ws->factory("SIMUL::simPdf_syst_noconstr(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass_syst,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)");
     RooSimultaneous *simPdf = (RooSimultaneous*) ws->pdf("simPdf_syst_noconstr");
     RooGaussian *constr_syst = (RooGaussian*) ws->pdf("constr_syst");
     RooProdPdf *simPdf_constr = new RooProdPdf("simPdf_syst","simPdf_syst",RooArgSet(*simPdf,*constr_syst));
     ws->import(*simPdf_constr);
     
   } else {
      ws->factory("SIMUL::simPdf_syst(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)");
   }

   ws->Print();

   if (dosyst) ws->var("beta_syst")->setConstant(kFALSE);


   /////////////////////////////////////////////////////////////////////
   RooRealVar * pObs = ws->var("invMass"); // get the pointer to the observable
   RooArgSet obs("observables");
   obs.add(*pObs);
   obs.add( *ws->cat("sample"));    
   //  /////////////////////////////////////////////////////////////////////

   if (dosyst) ws->var("glob_syst")->setConstant(true);
   RooArgSet globalObs("global_obs");
   if (dosyst) globalObs.add( *ws->var("glob_syst") );

   // ws->Print();

   RooArgSet poi("poi");
   poi.add( *ws->var("RFrac2Svs1S_PbPbvsPP_P") );



   // create set of nuisance parameters
   RooArgSet nuis("nuis");
   if (dosyst) nuis.add( *ws->var("beta_syst") );

   // set parameters constant
   RooArgSet allVars = ws->allVars();
   TIterator* it = allVars.createIterator();
   RooRealVar *theVar = (RooRealVar*) it->Next();
   while (theVar) {
      TString varname(theVar->GetName());
//      if (varname != "RFrac2Svs1S_PbPbvsPP"
//            && varname != "invMass"
//            && varname != "sample"
//            )
//         theVar->setConstant();
     if ( varname.Contains("f_Jpsi_PP") || varname.Contains("f_Jpsi_PbPb") ||
           varname.Contains("rSigma21_Jpsi_PP") || 
           varname.Contains("m_Jpsi_PP") || varname.Contains("m_Jpsi_PbPb") || 
           varname.Contains("sigma1_Jpsi_PP") || varname.Contains("sigma1_Jpsi_PbPb") || 
           (varname.Contains("lambda")) ||
           (varname.Contains("_fail") && !varname.Contains("RFrac2Svs1S")))
         {
           theVar->setConstant();
         }
      if (varname=="glob_syst"
            || varname=="beta_syst"
         ) {
         cout << varname << endl;
         theVar->setConstant(!dosyst);
      }
      theVar = (RooRealVar*) it->Next();
   }

   // create signal+background Model Config
   RooStats::ModelConfig sbHypo("SbHypo");
   sbHypo.SetWorkspace( *ws );
   sbHypo.SetPdf( *ws->pdf("simPdf_syst") );
   sbHypo.SetObservables( obs );
   sbHypo.SetGlobalObservables( globalObs );
   sbHypo.SetParametersOfInterest( poi );
   sbHypo.SetNuisanceParameters( nuis );
   sbHypo.SetPriorPdf( *ws->pdf("step") ); // this is optional


   /////////////////////////////////////////////////////////////////////
   RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) );
   RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
  
   if (controlPlots)
   {
     RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,1),Title("LL and profileLL in RFrac2Svs1S_PbPbvsPP_P"));
     pNll->plotOn(framepoi,ShiftToZero());
     framepoi->SetMinimum(0);
     framepoi->SetMaximum(10);
     TCanvas *cpoi = new TCanvas();
     cpoi->cd(); framepoi->Draw();
     cpoi->SaveAs("cpoi.pdf");
   }
  
   ((RooRealVar *)poi.first())->setMin(0.);
   RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance");
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   sbHypo.SetSnapshot(*pPoiAndNuisance);
  
   if (controlPlots)
   {
     RooPlot* xframeSB_PP_pass = pObs->frame(Title("SBhypo_PP_pass"));
     data->plotOn(xframeSB_PP_pass,Cut("sample==sample::PP_pass"));
     RooAbsPdf *pdfSB_PP_pass = sbHypo.GetPdf();
     RooCategory *sample = ws->cat("sample");
     pdfSB_PP_pass->plotOn(xframeSB_PP_pass,Slice(*sample,"PP_pass"),ProjWData(*sample,*data));
     TCanvas *c1 = new TCanvas();
     c1->cd(); xframeSB_PP_pass->Draw();
     c1->SaveAs("c1.pdf");
    
     RooPlot* xframeSB_PP_fail = pObs->frame(Title("SBhypo_PP_fail"));
     data->plotOn(xframeSB_PP_fail,Cut("sample==sample::PP_fail"));
     RooAbsPdf *pdfSB_PP_fail = sbHypo.GetPdf();
     pdfSB_PP_fail->plotOn(xframeSB_PP_fail,Slice(*sample,"PP_fail"),ProjWData(*sample,*data));
     TCanvas *c2 = new TCanvas();
     c2->cd(); xframeSB_PP_fail->Draw();
     c2->SaveAs("c1.pdf");
    
     RooPlot* xframeB_PbPb_pass = pObs->frame(Title("SBhypo_PbPb_pass"));
     data->plotOn(xframeB_PbPb_pass,Cut("sample==sample::PbPb_pass"));
     RooAbsPdf *pdfB_PbPb_pass = sbHypo.GetPdf();
     pdfB_PbPb_pass->plotOn(xframeB_PbPb_pass,Slice(*sample,"PbPb_pass"),ProjWData(*sample,*data));
     TCanvas *c3 = new TCanvas();
     c3->cd(); xframeB_PbPb_pass->Draw();
     c3->SetLogy();
     c3->SaveAs("c2.pdf");
    
     RooPlot* xframeB_PbPb_fail = pObs->frame(Title("SBhypo_PbPb_fail"));
     data->plotOn(xframeB_PbPb_fail,Cut("sample==sample::PbPb_fail"));
     RooAbsPdf *pdfB_PbPb_fail = sbHypo.GetPdf();
     pdfB_PbPb_fail->plotOn(xframeB_PbPb_fail,Slice(*sample,"PbPb_fail"),ProjWData(*sample,*data));
     TCanvas *c4 = new TCanvas();
     c4->cd(); xframeB_PbPb_fail->Draw();
     c4->SetLogy();
     c4->SaveAs("c2.pdf");
   }
  
   delete pNll;
   delete pPoiAndNuisance;
   ws->import( sbHypo );
  
   /////////////////////////////////////////////////////////////////////
   RooStats::ModelConfig bHypo = sbHypo;
   bHypo.SetName("BHypo");
   bHypo.SetWorkspace(*ws);
   pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) );
   // RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
   RooArgSet poiAndGlobalObs("poiAndGlobalObs");
   poiAndGlobalObs.add( poi );
   poiAndGlobalObs.add( globalObs );
   RooAbsReal * pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables
   ((RooRealVar *)poi.first())->setVal( 0 );  // set RFrac2Svs1S_PbPbvsPP=0 here
   pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
   pPoiAndNuisance = new RooArgSet( "poiAndNuisance" );
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   bHypo.SetSnapshot(*pPoiAndNuisance);


   delete pNll;
   delete pPoiAndNuisance;

   // import model config into workspace
   bHypo.SetWorkspace(*ws);
   ws->import( bHypo );
  
   /////////////////////////////////////////////////////////////////////
   ws->Print();
   bHypo.Print();
   sbHypo.Print();

   // save workspace to file
   string mainDIR = gSystem->ExpandPathName(gSystem->pwd());
   string wsDIR = mainDIR + "/CombinedWorkspaces/";
   string ssubDirName="";
   if (subDirName) ssubDirName.append(subDirName);
   string subDIR = wsDIR + ssubDirName;
  
   void * dirp = gSystem->OpenDirectory(wsDIR.c_str());
   if (dirp) gSystem->FreeDirectory(dirp);
   else gSystem->mkdir(wsDIR.c_str(), kTRUE);

   void * dirq = gSystem->OpenDirectory(subDIR.c_str());
   if (dirq) gSystem->FreeDirectory(dirq);
   else gSystem->mkdir(subDIR.c_str(), kTRUE);
  
   const char* saveName = Form("%s/%s",subDIR.c_str(),nameOut.Data());
   ws->writeToFile(saveName);
}
Beispiel #13
0
void plot_pll(TString fname="monoh_withsm_SRCR_bg11.7_bgslop-0.0_nsig0.0.root")
{
  SetAtlasStyle();



  TFile* file =  TFile::Open(fname);
  RooWorkspace* wspace = (RooWorkspace*) file->Get("wspace");

  cout << "\n\ncheck that eff and reco terms included in BSM component to make fiducial cross-section" <<endl;
  wspace->function("nsig")->Print();
  RooRealVar* reco = wspace->var("reco");
  if(  wspace->function("nsig")->dependsOn(*reco) ) {
    cout << "all good." <<endl;
  } else {
    cout << "need to rerun fit_withsm using DO_FIDUCIAL_LIMIT true" <<endl;
    return;
  }

  /*
  // DANGER
  // TEST WITH EXAGGERATED UNCERTAINTY
  wspace->var("unc_theory")->setMax(1);
  wspace->var("unc_theory")->setVal(1);
  wspace->var("unc_theory")->Print();
  */

  // this was for making plot about decoupling/recoupling approach
  TCanvas* tc = new TCanvas("tc","",400,400);
  RooPlot *frame = wspace->var("xsec_bsm")->frame();
  RooAbsPdf* pdfc = wspace->pdf("jointModeld");
  RooAbsData* data = wspace->data("data");
  RooAbsReal *nllJoint = pdfc->createNLL(*data, RooFit::Constrained()); // slice with fixed xsec_bsm
  RooAbsReal *profileJoint = nllJoint->createProfile(*wspace->var("xsec_bsm"));

  wspace->allVars().Print("v");
  pdfc->fitTo(*data);
  wspace->allVars().Print("v");
  wspace->var("xsec_bsm")->Print();
  double nllmin = 2*nllJoint->getVal();
  wspace->var("xsec_bsm")->setVal(0);
  double nll0 = 2*nllJoint->getVal();
  cout << Form("nllmin = %f, nll0 = %f, Z=%f", nllmin, nll0, sqrt(nll0-nllmin)) << endl;
  nllJoint->plotOn(frame, RooFit::LineColor(kGreen), RooFit::LineStyle(kDotted), RooFit::ShiftToZero(), RooFit::Name("nll_statonly")); // no error
  profileJoint->plotOn(frame,RooFit::Name("pll") );
  wspace->var("xsec_sm")->Print();
  wspace->var("theory")->Print();
  wspace->var("theory")->setConstant();
  profileJoint->plotOn(frame, RooFit::LineColor(kRed), RooFit::LineStyle(kDashed), RooFit::Name("pll_smfixed") );

  frame->GetXaxis()->SetTitle("#sigma_{BSM, fid} [fb]");
  frame->GetYaxis()->SetTitle("-log #lambda  ( #sigma_{BSM, fid} )");
  double temp = frame->GetYaxis()->GetTitleOffset();
  frame->GetYaxis()->SetTitleOffset( 1.1* temp );

  frame->SetMinimum(1e-7);
  frame->SetMaximum(4);


  // Legend
  double x1,y1,x2,y2;
  GetX1Y1X2Y2(tc,x1,y1,x2,y2);
  TLegend *legend_sr=FastLegend(x2-0.75,y2-0.3,x2-0.25,y2-0.5,0.045);
  legend_sr->AddEntry(frame->findObject("pll"),"with #sigma_{SM} uncertainty","L");
  legend_sr->AddEntry(frame->findObject("pll_smfixed"),"with #sigma_{SM} constant","L");
  legend_sr->AddEntry(frame->findObject("nll_statonly"),"no systematics","L");
  frame->Draw();
  legend_sr->Draw("SAME");



  // descriptive text
  vector<TString> pavetext11;
  pavetext11.push_back("#bf{#it{ATLAS Internal}}");
  pavetext11.push_back("#sqrt{#it{s}} = 8 TeV #scale[0.6]{#int}Ldt = 20.3 fb^{-1}");
  pavetext11.push_back("#it{H}+#it{E}_{T}^{miss} , #it{H #rightarrow #gamma#gamma}, #it{m}_{#it{H}} = 125.4 GeV");

  TPaveText* text11=CreatePaveText(x2-0.75,y2-0.25,x2-0.25,y2-0.05,pavetext11,0.045);
  text11->Draw();

  tc->SaveAs("pll.pdf");



  /*
  wspace->var("xsec_bsm")->setConstant(true);
  wspace->var("eff"     )->setConstant(true);
  wspace->var("mh"      )->setConstant(true);
  wspace->var("sigma_h" )->setConstant(true);
  wspace->var("lumi"    )->setConstant(true);
  wspace->var("xsec_sm" )->setVal(v_xsec_sm);
  wspace->var("eff"     )->setVal(1.0);
  wspace->var("lumi"    )->setVal(v_lumi);
  TH1* nllHist = profileJoint->createHistogram("xsec_bsm",100);
  TFile* out = new TFile("nllHist.root","REPLACE");
  nllHist->Write()
  out->Write();
  out->Close();
  */

}
Beispiel #14
0
void LHFit()
{
    
    double lorange = 100.;
    double hirange = 140.;
    
    // Import data
    TFile *file = new TFile("/atlas/data18a/yupan/HZZ4l2012/MiniTree/MiniTree_2013Moriond/v03/MC12a/JHUPythia8_AU2CTEQ6L1_ggH125_Spin0p_ZZ4lep.root");
    TTree *tree = (TTree*)file->Get("tree_incl_4mu");
    
    // Define variables
    float m4l = 0;
    float m34 = 0;
    float m4lerr = 0;
    float wgt = 0;
    
    // Get the number of entries in the tree
    int nevents = tree->GetEntries();
    
    tree->SetBranchStatus("*",0);
    tree->SetBranchStatus("m4l_unconstrained",1);
    tree->SetBranchStatus("mZ2_unconstrained",1);
    tree->SetBranchStatus("m4lerr_unconstrained",1);
    tree->SetBranchStatus("weight_corr",1);
    
    tree->SetBranchAddress("m4l_unconstrained",&m4l);
    tree->SetBranchAddress("mZ2_unconstrained",&m34);
    tree->SetBranchAddress("m4lerr_unconstrained",&m4lerr);
    tree->SetBranchAddress("weight_corr",&wgt);
    
    
    ///////////////
    // Build pdfs
    //////////////
    RooRealVar* mass = new RooRealVar("m4l","mass",lorange,hirange,"GeV");
    RooRealVar* mZ2 = new RooRealVar("m34","mZ2",10.,60.,"GeV");
    RooRealVar merr("m4lerr","mass err",0.1,5.0,"GeV");
    RooRealVar weight("weight","weight",0,10);

    
    float totalwgt(0);
    for (Int_t i=0; i<nevents; i++) {
        tree->GetEntry(i);
        totalwgt+=wgt;
    }
    std::cout<<"total weight = "<<totalwgt<<std::endl;
    
    
    //////////////////
    // Create ND dataset
    /////////////////
    RooDataSet signal("signal","signal",RooArgSet(*mass,*mZ2,merr,weight),"weight");
    
    std::cout<<"Reading in events from signal minitree"<<std::endl;
    for (int i=0; i<nevents; i++) {
        tree->GetEntry(i);
        mass->setVal(m4l);
        mZ2->setVal(m34);
        merr.setVal(m4lerr);
        weight.setVal(wgt/totalwgt);
        signal.add(RooArgSet(*mass,*mZ2,merr),wgt/totalwgt);
    }
    
    // Create 1D kernel estimation for signal mass
    RooKeysPdf kestmass("kestmass","kestmass",*mass,signal);
    // Create histogram of 1D kernel estimation pdf for mass
    TH1* hm = kestmass.createHistogram("hm",*mass);
    // Create mass pdf from the 1D kernel histogram
    RooDataHist* dmass = new RooDataHist("dmass","dmass",RooArgSet(*mass),hm);
    RooHistPdf* masspdf = new RooHistPdf("masspdf","masspdf",*mass,*dmass,2);
    
    
    
    //////////////////////////////
    // Construct plain likelihood
    /////////////////////////////
    
    // construct unbinned likelihood
    RooAbsReal *nll = masspdf->createNLL(signal,NumCPU(2));
    
    // Minimize likelihood w.r.t all parameters before making plots
    RooMinuit(*nll).migrad();
    
    // Plot likelihood scan mass
    RooPlot* frame1 = mass->frame(Bins(10),Title("LL and profileLL in mass"));
    
    // Construct profile likelihood in mass
    RooAbsReal *pll_mass = nll->createProfile(*mass);
    
    // Plot the profile likelihood in mass
    pll_mass->plotOn(frame1,LineColor(kRed));
    

    
    
    TCanvas *c = new TCanvas("c","c",800,600);
    gPad->SetLeftMargin(0.15);
    frame1->GetYaxis()->SetTitleOffset(1.4);
    frame1->Draw();
    c->SaveAs("testProLL.png");

    
    
    
    
}
Beispiel #15
0
void rf605_profilell()
{
  // C r e a t e   m o d e l   a n d   d a t a s e t 
  // -----------------------------------------------

  // Observable
  RooRealVar x("x","x",-20,20) ;

  // Model (intentional strong correlations)
  RooRealVar mean("mean","mean of g1 and g2",0,-10,10) ;
  RooRealVar sigma_g1("sigma_g1","width of g1",3) ;
  RooGaussian g1("g1","g1",x,mean,sigma_g1) ;

  RooRealVar sigma_g2("sigma_g2","width of g2",4,3.0,6.0) ;
  RooGaussian g2("g2","g2",x,mean,sigma_g2) ;

  RooRealVar frac("frac","frac",0.5,0.0,1.0) ;
  RooAddPdf model("model","model",RooArgList(g1,g2),frac) ;

  // Generate 1000 events
  RooDataSet* data = model.generate(x,1000) ;
  


  // C o n s t r u c t   p l a i n   l i k e l i h o o d
  // ---------------------------------------------------

  // Construct unbinned likelihood
  RooAbsReal* nll = model.createNLL(*data,NumCPU(2)) ;

  // Minimize likelihood w.r.t all parameters before making plots
  RooMinuit(*nll).migrad() ;

  // Plot likelihood scan frac 
  RooPlot* frame1 = frac.frame(Bins(10),Range(0.01,0.95),Title("LL and profileLL in frac")) ;
  nll->plotOn(frame1,ShiftToZero()) ;

  // Plot likelihood scan in sigma_g2
  RooPlot* frame2 = sigma_g2.frame(Bins(10),Range(3.3,5.0),Title("LL and profileLL in sigma_g2")) ;
  nll->plotOn(frame2,ShiftToZero()) ;



  // C o n s t r u c t   p r o f i l e   l i k e l i h o o d   i n   f r a c
  // -----------------------------------------------------------------------

  // The profile likelihood estimator on nll for frac will minimize nll w.r.t
  // all floating parameters except frac for each evaluation

  RooAbsReal* pll_frac = nll->createProfile(frac) ;

  // Plot the profile likelihood in frac
  pll_frac->plotOn(frame1,LineColor(kRed)) ;

  // Adjust frame maximum for visual clarity
  frame1->SetMinimum(0) ;
  frame1->SetMaximum(3) ;



  // C o n s t r u c t   p r o f i l e   l i k e l i h o o d   i n   s i g m a _ g 2 
  // -------------------------------------------------------------------------------

  // The profile likelihood estimator on nll for sigma_g2 will minimize nll
  // w.r.t all floating parameters except sigma_g2 for each evaluation
  RooAbsReal* pll_sigmag2 = nll->createProfile(sigma_g2) ;

  // Plot the profile likelihood in sigma_g2
  pll_sigmag2->plotOn(frame2,LineColor(kRed)) ;

  // Adjust frame maximum for visual clarity
  frame2->SetMinimum(0) ;
  frame2->SetMaximum(3) ;



  // Make canvas and draw RooPlots
  TCanvas *c = new TCanvas("rf605_profilell","rf605_profilell",800, 400);
  c->Divide(2);
  c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.4) ; frame1->Draw() ;
  c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;

  delete pll_frac ;
  delete pll_sigmag2 ;
  delete nll ;
}
Beispiel #16
0
Int_t Tprime::SetParameterPoints( std::string sbModelName,
                                  std::string bModelName ) {
    //
    // Fit the data with S+B model.
    // Make a snapshot of the S+B parameter point.
    // Profile with POI=0.
    // Make a snapshot of the B parameter point
    // (B model is the S+B model with POI=0
    //

    Double_t poi_value_for_b_model = 0.0;

    // get S+B model config from workspace
    RooStats::ModelConfig * pSbModel = (RooStats::ModelConfig *)pWs->obj(sbModelName.c_str());
    pSbModel->SetWorkspace(*pWs);

    // get parameter of interest set
    const RooArgSet * poi = pSbModel->GetParametersOfInterest();

    // get B model config from workspace
    RooStats::ModelConfig * pBModel = (RooStats::ModelConfig *)pWs->obj(bModelName.c_str());
    pBModel->SetWorkspace(*pWs);

    // make sure that data has been loaded
    if (!data) return -1;

    // find parameter point for global maximum with the S+B model,
    // with conditional MLEs for nuisance parameters
    // and save the parameter point snapshot in the Workspace
    RooAbsReal * nll = pSbModel->GetPdf()->createNLL(*data);
    RooAbsReal * profile = nll->createProfile(RooArgSet());
    profile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
    RooArgSet * poiAndNuisance = new RooArgSet();
    if(pSbModel->GetNuisanceParameters())
        poiAndNuisance->add(*pSbModel->GetNuisanceParameters());
    poiAndNuisance->add(*pSbModel->GetParametersOfInterest());
    pWs->defineSet("SPlusBModelParameters", *poiAndNuisance);
    pWs->saveSnapshot("SPlusBFitParameters",*poiAndNuisance);
    pSbModel->SetSnapshot(*poi);
    RooArgSet * sbModelFitParams = (RooArgSet *)poiAndNuisance->snapshot();
    cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
    sbModelFitParams->Print("v");
    delete profile;
    delete nll;
    delete poiAndNuisance;
    delete sbModelFitParams;

    //

    // Find a parameter point for generating pseudo-data
    // with the background-only data.
    // Save the parameter point snapshot in the Workspace
    nll = pBModel->GetPdf()->createNLL(*data);
    profile = nll->createProfile(*poi);
    ((RooRealVar *)poi->first())->setVal(poi_value_for_b_model);
    profile->getVal(); // this will do fit and set nuisance parameters to profiled values
    poiAndNuisance = new RooArgSet();
    if(pBModel->GetNuisanceParameters())
        poiAndNuisance->add(*pBModel->GetNuisanceParameters());
    poiAndNuisance->add(*pBModel->GetParametersOfInterest());
    pWs->defineSet("parameterPointToGenerateData", *poiAndNuisance);
    pWs->saveSnapshot("parametersToGenerateData",*poiAndNuisance);
    pBModel->SetSnapshot(*poi);
    RooArgSet * paramsToGenerateData = (RooArgSet *)poiAndNuisance->snapshot();
    cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl;
    paramsToGenerateData->Print("v");
    delete profile;
    delete nll;
    delete poiAndNuisance;
    delete paramsToGenerateData;

    return 0;
}