void Raa3S_Workspace(const char* name_pbpb="chad_ws_fits/centFits/ws_PbPbData_262548_263757_0cent10_0.0pt50.0_0.0y2.4.root", const char* name_pp="chad_ws_fits/centFits/ws_PPData_262157_262328_-1cent1_0.0pt50.0_0.0y2.4.root", const char* name_out="fitresult_combo.root"){ //TFile File(filename); //RooWorkspace * ws = test_combine(name_pbpb, name_pp); TFile *f = new TFile("fitresult_combo_333.root") ; RooWorkspace * ws1 = (RooWorkspace*) f->Get("wcombo"); //File.GetObject("wcombo", ws); ws1->Print(); RooAbsData * data = ws1->data("data"); //dataOS, dataSS // RooDataSet * US_data = (RooDataSet*) data->reduce( "QQsign == QQsign::PlusMinus"); // US_data->SetName("US_data"); // ws->import(* US_data); // RooDataSet * hi_data = (RooDataSet*) US_data->reduce("dataCat == dataCat::hi"); // hi_data->SetName("hi_data"); // ws->import(* hi_data); // hi_data->Print(); RooRealVar* raa3 = new RooRealVar("raa3","R_{AA}(#Upsilon (3S))",0.5,-1,1); RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",0); RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",1); RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*raa3, *leftEdge, *rightEdge)); ws1->import(step); ws1->factory( "Uniform::flat(raa3)" ); //pp Luminosities, Taa and efficiency ratios Systematics ws1->factory( "Taa_hi[5.662e-9]" ); ws1->factory( "Taa_kappa[1.062]" ); // was 1.057 ws1->factory( "expr::alpha_Taa('pow(Taa_kappa,beta_Taa)',Taa_kappa,beta_Taa[0,-5,5])" ); ws1->factory( "prod::Taa_nom(Taa_hi,alpha_Taa)" ); ws1->factory( "Gaussian::constr_Taa(beta_Taa,glob_Taa[0,-5,5],1)" ); ws1->factory( "lumipp_hi[5.4]" ); ws1->factory( "lumipp_kappa[1.037]" ); // was 1.06 ws1->factory( "expr::alpha_lumipp('pow(lumipp_kappa,beta_lumipp)',lumipp_kappa,beta_lumipp[0,-5,5])" ); ws1->factory( "prod::lumipp_nom(lumipp_hi,alpha_lumipp)" ); ws1->factory( "Gaussian::constr_lumipp(beta_lumipp,glob_lumipp[0,-5,5],1)" ); // ws->factory( "effRat1[1]" ); // ws->factory( "effRat2[1]" ); ws1->factory( "effRat3_hi[0.95]" ); ws1->factory( "effRat_kappa[1.054]" ); ws1->factory( "expr::alpha_effRat('pow(effRat_kappa,beta_effRat)',effRat_kappa,beta_effRat[0,-5,5])" ); // ws->factory( "prod::effRat1_nom(effRat1_hi,alpha_effRat)" ); ws1->factory( "Gaussian::constr_effRat(beta_effRat,glob_effRat[0,-5,5],1)" ); // ws->factory( "prod::effRat2_nom(effRat2_hi,alpha_effRat)" ); ws1->factory( "prod::effRat3_nom(effRat3_hi,alpha_effRat)" ); // ws1->factory("Nmb_hi[1.161e9]"); ws1->factory("prod::denominator(Taa_nom,Nmb_hi)"); ws1->factory( "expr::lumiOverTaaNmbmodified('lumipp_nom/denominator',lumipp_nom,denominator)"); RooAbsReal *lumiOverTaaNmbmodified = ws1->function("lumiOverTaaNmbmodified"); //RooFormulaVar *lumiOverTaaNmbmodified = ws->function("lumiOverTaaNmbmodified"); // // RooRealVar *raa1 = ws->var("raa1"); // RooRealVar* nsig1_pp = ws->var("nsig1_pp"); // RooRealVar* effRat1 = ws->function("effRat1_nom"); // RooRealVar *raa2 = ws->var("raa2"); // RooRealVar* nsig2_pp = ws->var("nsig2_pp"); // RooRealVar* effRat2 = ws->function("effRat2_nom"); RooRealVar* nsig3_pp = ws1->var("R_{#frac{3S}{1S}}_pp"); //RooRealVar* nsig3_pp = ws->var("N_{#Upsilon(3S)}_pp"); cout << nsig3_pp << endl; RooAbsReal* effRat3 = ws1->function("effRat3_nom"); //RooRealVar* effRat3 = ws->function("effRat3_nom"); // // RooFormulaVar nsig1_hi_modified("nsig1_hi_modified", "@0*@1*@3/@2", RooArgList(*raa1, *nsig1_pp, *lumiOverTaaNmbmodified, *effRat1)); // ws->import(nsig1_hi_modified); // RooFormulaVar nsig2_hi_modified("nsig2_hi_modified", "@0*@1*@3/@2", RooArgList(*raa2, *nsig2_pp, *lumiOverTaaNmbmodified, *effRat2)); // ws->import(nsig2_hi_modified); RooFormulaVar nsig3_hi_modified("nsig3_hi_modified", "@0*@1*@3/@2", RooArgList(*raa3, *nsig3_pp, *lumiOverTaaNmbmodified, *effRat3)); ws1->import(nsig3_hi_modified); // // background yield with systematics ws1->factory( "nbkg_hi_kappa[1.10]" ); ws1->factory( "expr::alpha_nbkg_hi('pow(nbkg_hi_kappa,beta_nbkg_hi)',nbkg_hi_kappa,beta_nbkg_hi[0,-5,5])" ); ws1->factory( "SUM::nbkg_hi_nom(alpha_nbkg_hi*bkgPdf_hi)" ); ws1->factory( "Gaussian::constr_nbkg_hi(beta_nbkg_hi,glob_nbkg_hi[0,-5,5],1)" ); RooAbsPdf* sig1S_hi = ws1->pdf("sig1S_hi"); //RooAbsPdf* sig1S_hi = ws->pdf("cbcb_hi"); RooAbsPdf* sig2S_hi = ws1->pdf("sig2S_hi"); RooAbsPdf* sig3S_hi = ws1->pdf("sig3S_hi"); RooAbsPdf* LSBackground_hi = ws1->pdf("nbkg_hi_nom"); RooRealVar* nsig1_hi = ws1->var("N_{#Upsilon(1S)}_hi"); RooRealVar* nsig2_hi = ws1->var("R_{#frac{2S}{1S}}_hi"); RooAbsReal* nsig3_hi = ws1->function("nsig3_hi_modified"); //RooFormulaVar* nsig3_hi = ws->function("nsig3_hi_modified"); cout << nsig1_hi << " " << nsig2_hi << " " << nsig3_pp << endl; RooRealVar* norm_nbkg_hi = ws1->var("n_{Bkgd}_hi"); RooArgList pdfs_hi( *sig1S_hi,*sig2S_hi,*sig3S_hi, *LSBackground_hi); RooArgList norms_hi(*nsig1_hi,*nsig2_hi,*nsig3_hi, *norm_nbkg_hi); //////////////////////////////////////////////////////////////////////////////// ws1->factory( "nbkg_pp_kappa[1.03]" ); ws1->factory( "expr::alpha_nbkg_pp('pow(nbkg_pp_kappa,beta_nbkg_pp)',nbkg_pp_kappa,beta_nbkg_pp[0,-5,5])" ); ws1->factory( "SUM::nbkg_pp_nom(alpha_nbkg_pp*bkgPdf_pp)" ); ws1->factory( "Gaussian::constr_nbkg_pp(beta_nbkg_pp,glob_nbkg_pp[0,-5,5],1)" ); RooAbsPdf* sig1S_pp = ws1->pdf("sig1S_pp"); //RooAbsPdf* sig1S_pp = ws1->pdf("cbcb_pp"); RooAbsPdf* sig2S_pp = ws1->pdf("sig2S_pp"); RooAbsPdf* sig3S_pp = ws1->pdf("sig3S_pp"); RooAbsPdf* LSBackground_pp = ws1->pdf("nbkg_pp_nom"); RooRealVar* nsig1_pp = ws1->var("N_{#Upsilon(1S)}_pp"); RooRealVar* nsig2_pp = ws1->var("R_{#frac{2S}{1S}}_pp"); //RooRealVar* nsig2_pp = ws1->var("N_{#Upsilon(2S)}_pp"); // RooRealVar* nsig3_pp = ws1->var("N_{#Upsilon(3S)}_pp"); RooRealVar* norm_nbkg_pp = ws1->var("n_{Bkgd}_pp"); RooArgList pdfs_pp( *sig1S_pp,*sig2S_pp,*sig3S_pp, *LSBackground_pp); RooArgList norms_pp( *nsig1_pp,*nsig2_pp,*nsig3_pp,*norm_nbkg_pp); RooAddPdf model_num("model_num", "model_num", pdfs_hi,norms_hi); ws1->import(model_num); ws1->factory("PROD::model_hi(model_num, constr_nbkg_hi,constr_lumipp,constr_Taa,constr_effRat)"); RooAddPdf model_den("model_den", "model_den", pdfs_pp,norms_pp); ws1->import(model_den); ws1->factory("PROD::model_pp(model_den, constr_nbkg_pp)"); ws1->factory("SIMUL::joint(dataCat,hi=model_hi,pp=model_pp)"); ///////////////////////////////////////////////////////////////////// RooRealVar * pObs = ws1->var("invariantMass"); // get the pointer to the observable RooArgSet obs("observables"); obs.add(*pObs); obs.add( *ws1->cat("dataCat")); // ///////////////////////////////////////////////////////////////////// ws1->var("glob_lumipp")->setConstant(true); ws1->var("glob_Taa")->setConstant(true); ws1->var("glob_effRat")->setConstant(true); ws1->var("glob_nbkg_pp")->setConstant(true); ws1->var("glob_nbkg_hi")->setConstant(true); RooArgSet globalObs("global_obs"); globalObs.add( *ws1->var("glob_lumipp") ); globalObs.add( *ws1->var("glob_Taa") ); globalObs.add( *ws1->var("glob_effRat") ); globalObs.add( *ws1->var("glob_nbkg_hi") ); globalObs.add( *ws1->var("glob_nbkg_pp") ); cout << "66666" << endl; // ws1->Print(); RooArgSet poi("poi"); poi.add( *ws1->var("raa3") ); cout << "77777" << endl; // create set of nuisance parameters RooArgSet nuis("nuis"); nuis.add( *ws1->var("beta_lumipp") ); nuis.add( *ws1->var("beta_nbkg_hi") ); nuis.add( *ws1->var("beta_nbkg_pp") ); nuis.add( *ws1->var("beta_Taa") ); nuis.add( *ws1->var("beta_effRat") ); cout << "88888" << endl; ws1->var("#alpha_{CB}_hi")->setConstant(true); ws1->var("#alpha_{CB}_pp")->setConstant(true); ws1->var("#sigma_{CB1}_hi")->setConstant(true); ws1->var("#sigma_{CB1}_pp")->setConstant(true); ws1->var("#sigma_{CB2}/#sigma_{CB1}_hi")->setConstant(true); ws1->var("#sigma_{CB2}/#sigma_{CB1}_pp")->setConstant(true); //ws1->var("Centrality")->setConstant(true); //delete ws1->var("N_{#varUpsilon(1S)}_hi")->setConstant(true); ws1->var("N_{#varUpsilon(1S)}_pp")->setConstant(true); //ws1->var("N_{#Upsilon(2S)}_hi")->setConstant(true); //ws1->var("N_{#Upsilon(2S)}_pp")->setConstant(true); //ws1->var("N_{#Upsilon(3S)}_pp")->setConstant(true); ws1->var("R_{#frac{2S}{1S}}_hi")->setConstant(true); //new ws1->var("R_{#frac{2S}{1S}}_pp")->setConstant(true); //new ws1->var("R_{#frac{3S}{1S}}_hi")->setConstant(true); //new ws1->var("R_{#frac{3S}{1S}}_pp")->setConstant(true); //new ws1->var("Nmb_hi")->setConstant(true); // ws1->var("QQsign")->setConstant(true); ws1->var("Taa_hi")->setConstant(true); ws1->var("Taa_kappa")->setConstant(true); // ws1->var("beta_Taa")->setConstant(true); // ws1->var("beta_effRat")->setConstant(true); // ws1->var("beta_lumipp")->setConstant(true); // ws1->var("beta_nbkg_hi")->setConstant(true); // ws1->var("beta_nbkg_pp")->setConstant(true); // ws1->var("dataCat")->setConstant(true); ws1->var("decay_hi")->setConstant(true); ws1->var("decay_pp")->setConstant(true); ws1->var("effRat3_hi")->setConstant(true); ws1->var("effRat_kappa")->setConstant(true); // ws1->var("glob_Taa")->setConstant(true); // ws1->var("glob_effRat")->setConstant(true); // ws1->var("glob_lumipp")->setConstant(true); // ws1->var("glob_nbkg_hi")->setConstant(true); // ws1->var("glob_nbkg_pp")->setConstant(true); // ws1->var("invariantMass")->setConstant(true); ws1->var("leftEdge")->setConstant(true); ws1->var("lumipp_hi")->setConstant(true); ws1->var("lumipp_kappa")->setConstant(true); ws1->var("m_{ #varUpsilon(1S)}_hi")->setConstant(true); //ws1->var("mass1S_hi")->setConstant(true); ws1->var("m_{ #varUpsilon(1S)}_pp")->setConstant(true); //ws1->var("mass1S_pp")->setConstant(true); ws1->var("muMinusPt")->setConstant(true); ws1->var("muPlusPt")->setConstant(true); ws1->var("n_{Bkgd}_hi")->setConstant(true); ws1->var("n_{Bkgd}_pp")->setConstant(true); ws1->var("nbkg_hi_kappa")->setConstant(true); ws1->var("nbkg_pp_kappa")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true); ws1->var("n_{CB}_hi")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true); ws1->var("n_{CB}_pp")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true); // ws1->var("raa3")->setConstant(true); ws1->var("rightEdge")->setConstant(true); ws1->var("sigmaFraction_hi")->setConstant(true); ws1->var("sigmaFraction_pp")->setConstant(true); ws1->var("turnOn_hi")->setConstant(true); ws1->var("turnOn_pp")->setConstant(true); ws1->var("dimuPt")->setConstant(true); //ws1->var("upsPt")->setConstant(true); ws1->var("dimuRapidity")->setConstant(true); //ws1->var("upsRapidity")->setConstant(true); ws1->var("vProb")->setConstant(true); ws1->var("width_hi")->setConstant(true); ws1->var("width_pp")->setConstant(true); // ws1->var("x3raw")->setConstant(true); // RooArgSet fixed_again("fixed_again"); // fixed_again.add( *ws1->var("leftEdge") ); // fixed_again.add( *ws1->var("rightEdge") ); // fixed_again.add( *ws1->var("Taa_hi") ); // fixed_again.add( *ws1->var("Nmb_hi") ); // fixed_again.add( *ws1->var("lumipp_hi") ); // fixed_again.add( *ws1->var("effRat1_hi") ); // fixed_again.add( *ws1->var("effRat2_hi") ); // fixed_again.add( *ws1->var("effRat3_hi") ); // fixed_again.add( *ws1->var("nsig3_pp") ); // fixed_again.add( *ws1->var("nsig1_pp") ); // fixed_again.add( *ws1->var("nbkg_hi") ); // fixed_again.add( *ws1->var("alpha") ); // fixed_again.add( *ws1->var("nbkg_kappa") ); // fixed_again.add( *ws1->var("Taa_kappa") ); // fixed_again.add( *ws1->var("lumipp_kappa") ); // fixed_again.add( *ws1->var("mean_hi") ); // fixed_again.add( *ws1->var("mean_pp") ); // fixed_again.add( *ws1->var("width_hi") ); // fixed_again.add( *ws1->var("turnOn_hi") ); // fixed_again.add( *ws1->var("bkg_a1_pp") ); // fixed_again.add( *ws1->var("bkg_a2_pp") ); // fixed_again.add( *ws1->var("decay_hi") ); // fixed_again.add( *ws1->var("raa1") ); // fixed_again.add( *ws1->var("raa2") ); // fixed_again.add( *ws1->var("nsig2_pp") ); // fixed_again.add( *ws1->var("sigma1") ); // fixed_again.add( *ws1->var("nbkg_pp") ); // fixed_again.add( *ws1->var("npow") ); // fixed_again.add( *ws1->var("muPlusPt") ); // fixed_again.add( *ws1->var("muMinusPt") ); // fixed_again.add( *ws1->var("mscale_hi") ); // fixed_again.add( *ws1->var("mscale_pp") ); // // ws1->Print(); cout << "99999" << endl; // create signal+background Model Config RooStats::ModelConfig sbHypo("SbHypo"); sbHypo.SetWorkspace( *ws1 ); sbHypo.SetPdf( *ws1->pdf("joint") ); sbHypo.SetObservables( obs ); sbHypo.SetGlobalObservables( globalObs ); sbHypo.SetParametersOfInterest( poi ); sbHypo.SetNuisanceParameters( nuis ); sbHypo.SetPriorPdf( *ws1->pdf("step") ); // this is optional // ws1->Print(); ///////////////////////////////////////////////////////////////////// RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(10) ); cout << "111111" << endl; RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots cout << "444444" << endl; RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,0.2),Title("LL and profileLL in raa3")); cout << "222222" << endl; pNll->plotOn(framepoi,ShiftToZero()); cout << "333333" << endl; RooAbsReal * pProfile = pNll->createProfile( globalObs ); // do not profile global observables pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values pProfile->plotOn(framepoi,LineColor(kRed)); framepoi->SetMinimum(0); framepoi->SetMaximum(3); TCanvas *cpoi = new TCanvas(); cpoi->cd(); framepoi->Draw(); cpoi->SaveAs("cpoi.pdf"); ((RooRealVar *)poi.first())->setMin(0.); RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance"); // pPoiAndNuisance->add(*sbHypo.GetNuisanceParameters()); // pPoiAndNuisance->add(*sbHypo.GetParametersOfInterest()); pPoiAndNuisance->add( nuis ); pPoiAndNuisance->add( poi ); sbHypo.SetSnapshot(*pPoiAndNuisance); RooPlot* xframeSB = pObs->frame(Title("SBhypo")); data->plotOn(xframeSB,Cut("dataCat==dataCat::hi")); RooAbsPdf *pdfSB = sbHypo.GetPdf(); RooCategory *dataCat = ws1->cat("dataCat"); pdfSB->plotOn(xframeSB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data)); TCanvas *c1 = new TCanvas(); c1->cd(); xframeSB->Draw(); c1->SaveAs("c1.pdf"); delete pProfile; delete pNll; delete pPoiAndNuisance; ws1->import( sbHypo ); ///////////////////////////////////////////////////////////////////// RooStats::ModelConfig bHypo = sbHypo; bHypo.SetName("BHypo"); bHypo.SetWorkspace(*ws1); pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(2) ); RooArgSet poiAndGlobalObs("poiAndGlobalObs"); poiAndGlobalObs.add( poi ); poiAndGlobalObs.add( globalObs ); pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables ((RooRealVar *)poi.first())->setVal( 0 ); // set raa3=0 here pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet( "poiAndNuisance" ); pPoiAndNuisance->add( nuis ); pPoiAndNuisance->add( poi ); bHypo.SetSnapshot(*pPoiAndNuisance); RooPlot* xframeB = pObs->frame(Title("Bhypo")); data->plotOn(xframeB,Cut("dataCat==dataCat::hi")); RooAbsPdf *pdfB = bHypo.GetPdf(); pdfB->plotOn(xframeB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data)); TCanvas *c2 = new TCanvas(); c2->cd(); xframeB->Draw(); c2->SaveAs("c2.pdf"); delete pProfile; delete pNll; delete pPoiAndNuisance; // import model config into workspace bHypo.SetWorkspace(*ws1); ws1->import( bHypo ); ///////////////////////////////////////////////////////////////////// ws1->Print(); bHypo.Print(); sbHypo.Print(); // save workspace to file ws1 -> SaveAs(name_out); return; }
void LL(){ //y0 = 0.000135096401209 sigma_y0 = 0.000103896581837 x0 = 0.000446013873443 sigma_x0 =1.81384394011e-06 //0.014108652249 0.0168368471049 0.0219755396247 0.000120423865262 1.5575931164 1.55759310722 3.41637854038 //0.072569437325 0.084063541977 0.0376693978906 0.000284216132439 0.51908074913 0.519080758095 1.12037749267 // double d = 0.014108652249; // double sd = 0.0168368471049; // double mc = 0.0219755396247; // double smc = 0.000120423865262; // double r0 = d/mc; double d = 0.072569437325; double sd = 0.084063541977; double mc = 0.0376693978906; double smc = 0.00028421613243; double r0 = d/mc; RooRealVar x("x","x",mc*0.9,mc*1.1); RooRealVar x0("x0","x0",mc); RooRealVar sx("sx","sx",smc); RooRealVar r("r","r",r0,0.,5.); RooRealVar y0("y0","y0",d); RooRealVar sy("sy","sy",sd); RooProduct rx("rx","rx",RooArgList(r,x)); RooGaussian g1("g1","g1",x,x0,sx); RooGaussian g2("g2","g2",rx,y0,sy); RooProdPdf LL("LL","LL",g1,g2); RooArgSet obs(x0,y0); //observables RooArgSet poi(r); //parameters of interest RooDataSet data("data", "data", obs); data.add(obs); //actually add the data RooFitResult* res = LL.fitTo(data,RooFit::Minos(poi),RooFit::Save(),RooFit::Hesse(false)); if(res->status()==0) { r.Print(); x.Print(); cout << r.getErrorLo() << " " << r.getErrorHi() << endl; } else { cout << "Likelihood maximization failed" << endl; } RooAbsReal* nll = LL.createNLL(data); RooPlot* frame = r.frame(); RooAbsReal* pll = nll->createProfile(poi); pll->plotOn(frame);//,RooFit::LineColor(ROOT::kRed)); frame->Draw(); r.setVal(0.); cout << pll->getVal() << endl; return; }
/* * Prepares the workspace to be used by the hypothesis test calculator */ void workspace_preparer(char *signal_file_name, char *signal_hist_name_in_file, char *background_file_name, char *background_hist_name_in_file, char *data_file_name, char *data_hist_name_in_file, char *config_file) { // Include the config_reader class. TString path = gSystem->GetIncludePath(); path.Append(" -I/home/max/cern/cls/mario"); gSystem->SetIncludePath(path); gROOT->LoadMacro("config_reader.cxx"); // RooWorkspace used to store values. RooWorkspace * pWs = new RooWorkspace("ws"); // Create a config_reader (see source for details) to read the config // file. config_reader reader(config_file, pWs); // Read MR and RR bounds from the config file. double MR_lower = reader.find_double("MR_lower"); double MR_upper = reader.find_double("MR_upper"); double RR_lower = reader.find_double("RR_lower"); double RR_upper = reader.find_double("RR_upper"); double MR_initial = (MR_lower + MR_upper)/2; double RR_initial = (RR_lower + RR_upper)/2; // Define the Razor Variables RooRealVar MR = RooRealVar("MR", "MR", MR_initial, MR_lower, MR_upper); RooRealVar RR = RooRealVar("RSQ", "RSQ", RR_initial, RR_lower, RR_upper); // Argument lists RooArgList pdf_arg_list(MR, RR, "input_args_list"); RooArgSet pdf_arg_set(MR, RR, "input_pdf_args_set"); /***********************************************************************/ /* PART 1: IMPORTING SIGNAL AND BACKGROUND HISTOGRAMS */ /***********************************************************************/ /* * Get the signal's unextended pdf by converting the TH2D in the file * into a RooHistPdf */ TFile *signal_file = new TFile(signal_file_name); TH2D *signal_hist = (TH2D *)signal_file->Get(signal_hist_name_in_file); RooDataHist *signal_RooDataHist = new RooDataHist("signal_roodatahist", "signal_roodatahist", pdf_arg_list, signal_hist); RooHistPdf *unextended_sig_pdf = new RooHistPdf("unextended_sig_pdf", "unextended_sig_pdf", pdf_arg_set, *signal_RooDataHist); /* * Repeat this process for the background. */ TFile *background_file = new TFile(background_file_name); TH2D *background_hist = (TH2D *)background_file->Get(background_hist_name_in_file); RooDataHist *background_RooDataHist = new RooDataHist("background_roodatahist", "background_roodatahist", pdf_arg_list, background_hist); RooHistPdf *unextended_bkg_pdf = new RooHistPdf("unextended_bkg_pdf", "unextended_bkg_pdf", pdf_arg_set, *background_RooDataHist); /* * Now, we want to create the bprime variable, which represents the * integral over the background-only sample. We will perform the * integral automatically (that's why this is the only nuisance * parameter declared in this file - its value can be determined from * the input histograms). */ ostringstream bprime_string; ostringstream bprime_pdf_string; bprime_string << "bprime[" << background_hist->Integral() << ", 0, 999999999]"; bprime_pdf_string << "Poisson::bprime_pdf(bprime, " << background_hist->Integral() << ")"; pWs->factory(bprime_string.str().c_str()); pWs->factory(bprime_pdf_string.str().c_str()); /* * This simple command will create all values from the config file * with 'make:' at the beginning and a delimiter at the end (see config * _reader if you don't know what a delimiter is). In other * words, the luminosity, efficiency, transfer factors, and their pdfs * are created from this command. The declarations are contained in the * config file to be changed easily without having to modify this code. */ reader.factory_all(); /* * Now, we want to create the extended pdfs from the unextended pdfs, as * well as from the S and B values we manufactured in the config file. * S and B are the values by which the signal and background pdfs, * respectively, are extended. Recall that they were put in the * workspace in the reader.facotry_all() command. */ RooAbsReal *S = pWs->function("S"); RooAbsReal *B = pWs->function("B"); RooExtendPdf *signalpart = new RooExtendPdf("signalpart", "signalpart", *unextended_sig_pdf, *S); RooExtendPdf *backgroundpart = new RooExtendPdf("backgroundpart", "backgroundpart", *unextended_bkg_pdf, *B); RooArgList *pdf_list = new RooArgList(*signalpart, *backgroundpart, "list"); // Add the signal and background pdfs to make a TotalPdf RooAddPdf *TotalPdf = new RooAddPdf("TotalPdf", "TotalPdf", *pdf_list); RooArgList *pdf_prod_list = new RooArgList(*TotalPdf, *pWs->pdf("lumi_pdf"), *pWs->pdf("eff_pdf"), *pWs->pdf("rho_pdf"), *pWs->pdf("bprime_pdf")); // This creates the final model pdf. RooProdPdf *model = new RooProdPdf("model", "model", *pdf_prod_list); /* * Up until now, we have been using the workspace pWs to contain all of * our values. Now, all of our values that we require are in use in the * RooProdPdf called "model". So, we need to import "model" into a * RooWorkspace. To avoid recopying values into the rooworkspace, when * the values may already be present (which can cause problems), we will * simply create a new RooWorkspace to avoid confusion and problems. The * new RooWorkspace is created here. */ RooWorkspace *newworkspace = new RooWorkspace("newws"); newworkspace->import(*model); // Immediately delete pWs, so we don't accidentally use it again. delete pWs; // Show off the newworkspace newworkspace->Print(); // observables RooArgSet obs(*newworkspace->var("MR"), *newworkspace->var("RSQ"), "obs"); // global observables RooArgSet globalObs(*newworkspace->var("nom_lumi"), *newworkspace->var("nom_eff"), *newworkspace->var("nom_rho")); //fix global observables to their nominal values newworkspace->var("nom_lumi")->setConstant(); newworkspace->var("nom_eff")->setConstant(); newworkspace->var("nom_rho")->setConstant(); //Set Parameters of interest RooArgSet poi(*newworkspace->var("sigma"), "poi"); //Set Nuisnaces RooArgSet nuis(*newworkspace->var("prime_lumi"), *newworkspace->var("prime_eff"), *newworkspace->var("prime_rho"), *newworkspace->var("bprime")); // priors (for Bayesian calculation) newworkspace->factory("Uniform::prior_signal(sigma)"); // for parameter of interest newworkspace->factory("Uniform::prior_bg_b(bprime)"); // for data driven nuisance parameter newworkspace->factory("PROD::prior(prior_signal,prior_bg_b)"); // total prior //Observed data is pulled from histogram. //TFile *data_file = new TFile(data_file_name); TFile *data_file = new TFile(data_file_name); TH2D *data_hist = (TH2D *)data_file->Get(data_hist_name_in_file); RooDataHist *pData = new RooDataHist("data", "data", obs, data_hist); newworkspace->import(*pData); // Now, we will draw our data from a RooDataHist. /*TFile *data_file = new TFile(data_file_name); TTree *data_tree = (TTree *) data_file->Get(data_hist_name_in_file); RooDataSet *pData = new RooDataSet("data", "data", data_tree, obs); newworkspace->import(*pData);*/ // Craft the signal+background model ModelConfig * pSbModel = new ModelConfig("SbModel"); pSbModel->SetWorkspace(*newworkspace); pSbModel->SetPdf(*newworkspace->pdf("model")); pSbModel->SetPriorPdf(*newworkspace->pdf("prior")); pSbModel->SetParametersOfInterest(poi); pSbModel->SetNuisanceParameters(nuis); pSbModel->SetObservables(obs); pSbModel->SetGlobalObservables(globalObs); // set all but obs, poi and nuisance to const SetConstants(newworkspace, pSbModel); newworkspace->import(*pSbModel); // background-only model // use the same PDF as s+b, with sig=0 // POI value under the background hypothesis // (We will set the value to 0 later) Double_t poiValueForBModel = 0.0; ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)newworkspace->obj("SbModel")); pBModel->SetName("BModel"); pBModel->SetWorkspace(*newworkspace); newworkspace->import(*pBModel); // find global maximum with the signal+background model // with conditional MLEs for nuisance parameters // and save the parameter point snapshot in the Workspace // - safer to keep a default name because some RooStats calculators // will anticipate it RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*pData); RooAbsReal * pProfile = pNll->createProfile(RooArgSet()); pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values RooArgSet * pPoiAndNuisance = new RooArgSet(); if(pSbModel->GetNuisanceParameters()) pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest()); cout << "\nWill save these parameter points that correspond to the fit to data" << endl; pPoiAndNuisance->Print("v"); pSbModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // Find a parameter point for generating pseudo-data // with the background-only data. // Save the parameter point snapshot in the Workspace pNll = pBModel->GetPdf()->createNLL(*pData); pProfile = pNll->createProfile(poi); ((RooRealVar *)poi.first())->setVal(poiValueForBModel); pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet(); if(pBModel->GetNuisanceParameters()) pPoiAndNuisance->add(*pBModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pBModel->GetParametersOfInterest()); cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl; pPoiAndNuisance->Print("v"); pBModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // save workspace to file newworkspace->writeToFile("ws_twobin.root"); // clean up delete newworkspace; delete pData; delete pSbModel; delete pBModel; } // ----- end of tutorial ----------------------------------------
// implementation void TwoBinInstructional( void ){ // let's time this example TStopwatch t; t.Start(); // set RooFit random seed for reproducible results RooRandom::randomGenerator()->SetSeed(4357); // make model RooWorkspace * pWs = new RooWorkspace("ws"); // derived from data pWs->factory("xsec[0.2,0,2]"); // POI pWs->factory("bg_b[10,0,50]"); // data driven nuisance // predefined nuisances pWs->factory("lumi[100,0,1000]"); pWs->factory("eff_a[0.2,0,1]"); pWs->factory("eff_b[0.05,0,1]"); pWs->factory("tau[0,1]"); pWs->factory("xsec_bg_a[0.05]"); // constant pWs->var("xsec_bg_a")->setConstant(1); // channel a (signal): lumi*xsec*eff_a + lumi*bg_a + tau*bg_b pWs->factory("prod::sig_a(lumi,xsec,eff_a)"); pWs->factory("prod::bg_a(lumi,xsec_bg_a)"); pWs->factory("prod::tau_bg_b(tau, bg_b)"); pWs->factory("Poisson::pdf_a(na[14,0,100],sum::mu_a(sig_a,bg_a,tau_bg_b))"); // channel b (control): lumi*xsec*eff_b + bg_b pWs->factory("prod::sig_b(lumi,xsec,eff_b)"); pWs->factory("Poisson::pdf_b(nb[11,0,100],sum::mu_b(sig_b,bg_b))"); // nuisance constraint terms (systematics) pWs->factory("Lognormal::l_lumi(lumi,nom_lumi[100,0,1000],sum::kappa_lumi(1,d_lumi[0.1]))"); pWs->factory("Lognormal::l_eff_a(eff_a,nom_eff_a[0.20,0,1],sum::kappa_eff_a(1,d_eff_a[0.05]))"); pWs->factory("Lognormal::l_eff_b(eff_b,nom_eff_b[0.05,0,1],sum::kappa_eff_b(1,d_eff_b[0.05]))"); pWs->factory("Lognormal::l_tau(tau,nom_tau[0.50,0,1],sum::kappa_tau(1,d_tau[0.05]))"); //pWs->factory("Lognormal::l_bg_a(bg_a,nom_bg_a[0.05,0,1],sum::kappa_bg_a(1,d_bg_a[0.10]))"); // complete model PDF pWs->factory("PROD::model(pdf_a,pdf_b,l_lumi,l_eff_a,l_eff_b,l_tau)"); // Now create sets of variables. Note that we could use the factory to // create sets but in that case many of the sets would be duplicated // when the ModelConfig objects are imported into the workspace. So, // we create the sets outside the workspace, and only the needed ones // will be automatically imported by ModelConfigs // observables RooArgSet obs(*pWs->var("na"), *pWs->var("nb"), "obs"); // global observables RooArgSet globalObs(*pWs->var("nom_lumi"), *pWs->var("nom_eff_a"), *pWs->var("nom_eff_b"), *pWs->var("nom_tau"), "global_obs"); // parameters of interest RooArgSet poi(*pWs->var("xsec"), "poi"); // nuisance parameters RooArgSet nuis(*pWs->var("lumi"), *pWs->var("eff_a"), *pWs->var("eff_b"), *pWs->var("tau"), "nuis"); // priors (for Bayesian calculation) pWs->factory("Uniform::prior_xsec(xsec)"); // for parameter of interest pWs->factory("Uniform::prior_bg_b(bg_b)"); // for data driven nuisance parameter pWs->factory("PROD::prior(prior_xsec,prior_bg_b)"); // total prior // create data pWs->var("na")->setVal(14); pWs->var("nb")->setVal(11); RooDataSet * pData = new RooDataSet("data","",obs); pData->add(obs); pWs->import(*pData); //pData->Print(); // signal+background model ModelConfig * pSbModel = new ModelConfig("SbModel"); pSbModel->SetWorkspace(*pWs); pSbModel->SetPdf(*pWs->pdf("model")); pSbModel->SetPriorPdf(*pWs->pdf("prior")); pSbModel->SetParametersOfInterest(poi); pSbModel->SetNuisanceParameters(nuis); pSbModel->SetObservables(obs); pSbModel->SetGlobalObservables(globalObs); // set all but obs, poi and nuisance to const SetConstants(pWs, pSbModel); pWs->import(*pSbModel); // background-only model // use the same PDF as s+b, with xsec=0 // POI value under the background hypothesis Double_t poiValueForBModel = 0.0; ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)pWs->obj("SbModel")); pBModel->SetName("BModel"); pBModel->SetWorkspace(*pWs); pWs->import(*pBModel); // find global maximum with the signal+background model // with conditional MLEs for nuisance parameters // and save the parameter point snapshot in the Workspace // - safer to keep a default name because some RooStats calculators // will anticipate it RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*pData); RooAbsReal * pProfile = pNll->createProfile(RooArgSet()); pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values RooArgSet * pPoiAndNuisance = new RooArgSet(); if(pSbModel->GetNuisanceParameters()) pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest()); cout << "\nWill save these parameter points that correspond to the fit to data" << endl; pPoiAndNuisance->Print("v"); pSbModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // Find a parameter point for generating pseudo-data // with the background-only data. // Save the parameter point snapshot in the Workspace pNll = pBModel->GetPdf()->createNLL(*pData); pProfile = pNll->createProfile(poi); ((RooRealVar *)poi.first())->setVal(poiValueForBModel); pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet(); if(pBModel->GetNuisanceParameters()) pPoiAndNuisance->add(*pBModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pBModel->GetParametersOfInterest()); cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl; pPoiAndNuisance->Print("v"); pBModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // inspect workspace pWs->Print(); // save workspace to file pWs->writeToFile("ws_twobin.root"); // clean up delete pWs; delete pData; delete pSbModel; delete pBModel; } // ----- end of tutorial ----------------------------------------
RooWorkspace* makeInvertedANFit(TTree* tree, float forceSigma=-1, bool constrainMu=false, float forceMu=-1) { RooWorkspace *ws = new RooWorkspace("ws",""); std::vector< TString (*)(TString, RooRealVar&, RooWorkspace&) > bkgPdfList; bkgPdfList.push_back(makeSingleExp); bkgPdfList.push_back(makeDoubleExp); #if DEBUG==0 //bkgPdfList.push_back(makeTripleExp); bkgPdfList.push_back(makeModExp); bkgPdfList.push_back(makeSinglePow); bkgPdfList.push_back(makeDoublePow); bkgPdfList.push_back(makePoly2); bkgPdfList.push_back(makePoly3); #endif RooRealVar mgg("mgg","m_{#gamma#gamma}",103,160,"GeV"); mgg.setBins(38); mgg.setRange("sideband_low", 103,120); mgg.setRange("sideband_high",131,160); mgg.setRange("signal",120,131); RooRealVar MR("MR","",0,3000,"GeV"); MR.setBins(60); RooRealVar Rsq("t1Rsq","",0,1,"GeV"); Rsq.setBins(20); RooRealVar hem1_M("hem1_M","",-1,2000,"GeV"); hem1_M.setBins(40); RooRealVar hem2_M("hem2_M","",-1,2000,"GeV"); hem2_M.setBins(40); RooRealVar ptgg("ptgg","p_{T}^{#gamma#gamma}",0,500,"GeV"); ptgg.setBins(50); RooDataSet data("data","",tree,RooArgSet(mgg,MR,Rsq,hem1_M,hem2_M,ptgg)); RooDataSet* blind_data = (RooDataSet*)data.reduce("mgg<121 || mgg>130"); std::vector<TString> tags; //fit many different background models for(auto func = bkgPdfList.begin(); func != bkgPdfList.end(); func++) { TString tag = (*func)("bonly",mgg,*ws); tags.push_back(tag); ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high")); RooFitResult* bres = ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high")); bres->SetName(tag+"_bonly_fitres"); ws->import(*bres); //make blinded fit RooPlot *fmgg_b = mgg.frame(); blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high")); TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum()); blindBox.SetFillColor(kGray); fmgg_b->addObject(&blindBox); ws->pdf("bonly_"+tag+"_ext")->plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high")); fmgg_b->SetName(tag+"_blinded_frame"); ws->import(*fmgg_b); delete fmgg_b; //set all the parameters constant RooArgSet* vars = ws->pdf("bonly_"+tag)->getVariables(); RooFIter iter = vars->fwdIterator(); RooAbsArg* a; while( (a = iter.next()) ){ if(string(a->GetName()).compare("mgg")==0) continue; static_cast<RooRealVar*>(a)->setConstant(kTRUE); } //make the background portion of the s+b fit (*func)("b",mgg,*ws); RooRealVar sigma(tag+"_s_sigma","",5,0,100); if(forceSigma!=-1) { sigma.setVal(forceSigma); sigma.setConstant(true); } RooRealVar mu(tag+"_s_mu","",126,120,132); if(forceMu!=-1) { mu.setVal(forceMu); mu.setConstant(true); } RooGaussian sig(tag+"_sig_model","",mgg,mu,sigma); RooRealVar Nsig(tag+"_sb_Ns","",5,0,100); RooRealVar Nbkg(tag+"_sb_Nb","",100,0,100000); RooRealVar HiggsMass("HiggsMass","",125.1); RooRealVar HiggsMassError("HiggsMassError","",0.24); RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError); RooAddPdf fitModel(tag+"_sb_model","",RooArgList( *ws->pdf("b_"+tag), sig ),RooArgList(Nbkg,Nsig)); RooFitResult* sbres; RooAbsReal* nll; if(constrainMu) { fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); } else { fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE)); sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE)); nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE)); } sbres->SetName(tag+"_sb_fitres"); ws->import(*sbres); ws->import(fitModel); RooPlot *fmgg = mgg.frame(); data.plotOn(fmgg); fitModel.plotOn(fmgg); ws->pdf("b_"+tag+"_ext")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full")); fmgg->SetName(tag+"_frame"); ws->import(*fmgg); delete fmgg; RooMinuit(*nll).migrad(); RooPlot *fNs = Nsig.frame(0,25); fNs->SetName(tag+"_Nsig_pll"); RooAbsReal *pll = nll->createProfile(Nsig); //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed)); pll->plotOn(fNs); ws->import(*fNs); delete fNs; RooPlot *fmu = mu.frame(125,132); fmu->SetName(tag+"_mu_pll"); RooAbsReal *pll_mu = nll->createProfile(mu); pll_mu->plotOn(fmu); ws->import(*fmu); delete fmu; } RooArgSet weights("weights"); RooArgSet pdfs_bonly("pdfs_bonly"); RooArgSet pdfs_b("pdfs_b"); RooRealVar minAIC("minAIC","",1E10); //compute AIC stuff for(auto t = tags.begin(); t!=tags.end(); t++) { RooAbsPdf *p_bonly = ws->pdf("bonly_"+*t); RooAbsPdf *p_b = ws->pdf("b_"+*t); RooFitResult *sb = (RooFitResult*)ws->obj(*t+"_bonly_fitres"); RooRealVar k(*t+"_b_k","",p_bonly->getParameters(RooArgSet(mgg))->getSize()); RooRealVar nll(*t+"_b_minNll","",sb->minNll()); RooRealVar Npts(*t+"_b_N","",blind_data->sumEntries()); RooFormulaVar AIC(*t+"_b_AIC","2*@0+2*@1+2*@1*(@1+1)/(@2-@1-1)",RooArgSet(nll,k,Npts)); ws->import(AIC); if(AIC.getVal() < minAIC.getVal()) { minAIC.setVal(AIC.getVal()); } //aicExpSum+=TMath::Exp(-0.5*AIC.getVal()); //we will need this precomputed for the next step pdfs_bonly.add(*p_bonly); pdfs_b.add(*p_b); } ws->import(minAIC); //compute the AIC weight float aicExpSum=0; for(auto t = tags.begin(); t!=tags.end(); t++) { RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC"); aicExpSum+=TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal())); //we will need this precomputed for the next step } std::cout << "aicExpSum: " << aicExpSum << std::endl; for(auto t = tags.begin(); t!=tags.end(); t++) { RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC"); RooRealVar *AICw = new RooRealVar(*t+"_b_AICWeight","",TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal()))/aicExpSum); if( TMath::IsNaN(AICw->getVal()) ) {AICw->setVal(0);} ws->import(*AICw); std::cout << *t << ": " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl; weights.add(*AICw); } RooAddPdf bonly_AIC("bonly_AIC","",pdfs_bonly,weights); RooAddPdf b_AIC("b_AIC","",pdfs_b,weights); //b_AIC.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high")); //RooFitResult* bres = b_AIC.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high")); //bres->SetName("AIC_b_fitres"); //ws->import(*bres); //make blinded fit RooPlot *fmgg_b = mgg.frame(RooFit::Range("sideband_low,sideband_high")); blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high")); TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum()); blindBox.SetFillColor(kGray); fmgg_b->addObject(&blindBox); bonly_AIC.plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high")); fmgg_b->SetName("AIC_blinded_frame"); ws->import(*fmgg_b); delete fmgg_b; #if 1 RooRealVar sigma("AIC_s_sigma","",5,0,100); if(forceSigma!=-1) { sigma.setVal(forceSigma); sigma.setConstant(true); } RooRealVar mu("AIC_s_mu","",126,120,132); if(forceMu!=-1) { mu.setVal(forceMu); mu.setConstant(true); } RooGaussian sig("AIC_sig_model","",mgg,mu,sigma); RooRealVar Nsig("AIC_sb_Ns","",5,0,100); RooRealVar Nbkg("AIC_sb_Nb","",100,0,100000); RooRealVar HiggsMass("HiggsMass","",125.1); RooRealVar HiggsMassError("HiggsMassError","",0.24); RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError); RooAddPdf fitModel("AIC_sb_model","",RooArgList( b_AIC, sig ),RooArgList(Nbkg,Nsig)); RooFitResult* sbres; RooAbsReal *nll; if(constrainMu) { fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint))); } else { fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE)); sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE)); nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE)); } assert(nll!=0); sbres->SetName("AIC_sb_fitres"); ws->import(*sbres); ws->import(fitModel); RooPlot *fmgg = mgg.frame(); data.plotOn(fmgg); fitModel.plotOn(fmgg); ws->pdf("b_AIC")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full")); fmgg->SetName("AIC_frame"); ws->import(*fmgg); delete fmgg; RooMinuit(*nll).migrad(); RooPlot *fNs = Nsig.frame(0,25); fNs->SetName("AIC_Nsig_pll"); RooAbsReal *pll = nll->createProfile(Nsig); //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed)); pll->plotOn(fNs); ws->import(*fNs); delete fNs; RooPlot *fmu = mu.frame(125,132); fmu->SetName("AIC_mu_pll"); RooAbsReal *pll_mu = nll->createProfile(mu); pll_mu->plotOn(fmu); ws->import(*fmu); delete fmu; std::cout << "min AIC: " << minAIC.getVal() << std::endl; for(auto t = tags.begin(); t!=tags.end(); t++) { RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC"); RooRealVar *AICw = ws->var(*t+"_b_AICWeight"); RooRealVar* k = ws->var(*t+"_b_k"); printf("%s & %0.0f & %0.2f & %0.2f \\\\\n",t->Data(),k->getVal(),AIC->getVal()-minAIC.getVal(),AICw->getVal()); //std::cout << k->getVal() << " " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl; } #endif return ws; }
void OneSidedFrequentistUpperLimitWithBands(const char* infile = "", const char* workspaceName = "combined", const char* modelConfigName = "ModelConfig", const char* dataName = "obsData") { double confidenceLevel=0.95; int nPointsToScan = 20; int nToyMC = 200; // ------------------------------------------------------- // First part is just to access a user-defined file // or create the standard example file if it doesn't exist const char* filename = ""; if (!strcmp(infile,"")) { filename = "results/example_combined_GaussExample_model.root"; bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code // if file does not exists generate with histfactory if (!fileExist) { #ifdef _WIN32 cout << "HistFactory file cannot be generated on Windows - exit" << endl; return; #endif // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<<endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<<endl; cout <<"Done creating example input"<<endl; cout <<"---------------------\n\n"<<endl; } } else filename = infile; // Try to open the file TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file ){ cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl; return; } // ------------------------------------------------------- // Now get the data and workspace // get the workspace out of the file RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !mc){ w->Print(); cout << "data or ModelConfig was not found" <<endl; return; } // ------------------------------------------------------- // Now get the POI for convenience // you may want to adjust the range of your POI RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first(); /* firstPOI->setMin(0);*/ /* firstPOI->setMax(10);*/ // -------------------------------------------- // Create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config // REMEMBER, we will change the test statistic // so this is NOT a Feldman-Cousins interval FeldmanCousins fc(*data,*mc); fc.SetConfidenceLevel(confidenceLevel); /* fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/ /* fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/ fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting // ------------------------------------------------------- // Feldman-Cousins is a unified limit by definition // but the tool takes care of a few things for us like which values // of the nuisance parameters should be used to generate toys. // so let's just change the test statistic and realize this is // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction. /* ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/ /* fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/ /* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */ ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic()); testStat->SetOneSided(true); // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) fc.FluctuateNumDataEntries(false); else cout <<"Not sure what to do about this model" <<endl; } // We can use PROOF to speed things along in parallel // However, the test statistic has to be installed on the workers // so either turn off PROOF or include the modified test statistic // in your `$ROOTSYS/roofit/roostats/inc` directory, // add the additional line to the LinkDef.h file, // and recompile root. if (useProof) { ProofConfig pc(*w, nworkers, "", false); toymcsampler->SetProofConfig(&pc); // enable proof } if(mc->GetGlobalObservables()){ cout << "will use global observables for unconditional ensemble"<<endl; mc->GetGlobalObservables()->Print(); toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables()); } // Now get the interval PointSetInterval* interval = fc.GetInterval(); ConfidenceBelt* belt = fc.GetConfidenceBelt(); // print out the interval on the first Parameter of Interest cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<< interval->LowerLimit(*firstPOI) << ", "<< interval->UpperLimit(*firstPOI) <<"] "<<endl; // get observed UL and value of test statistic evaluated there RooArgSet tmpPOI(*firstPOI); double observedUL = interval->UpperLimit(*firstPOI); firstPOI->setVal(observedUL); double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI); // Ask the calculator which points were scanned RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan(); RooArgSet* tmpPoint; // make a histogram of parameter vs. threshold TH1F* histOfThresholds = new TH1F("histOfThresholds","", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName()); histOfThresholds->GetYaxis()->SetTitle("Threshold"); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); //cout <<"get threshold"<<endl; double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ; histOfThresholds->Fill(poiVal,arMax); } TCanvas* c1 = new TCanvas(); c1->Divide(2); c1->cd(1); histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); c1->cd(2); // ------------------------------------------------------- // Now we generate the expected bands and power-constraint // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters RooAbsReal* nll = mc->GetPdf()->createNLL(*data); RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest()); firstPOI->setVal(0.); profile->getVal(); // this will do fit and set nuisance parameters to profiled values RooArgSet* poiAndNuisance = new RooArgSet(); if(mc->GetNuisanceParameters()) poiAndNuisance->add(*mc->GetNuisanceParameters()); poiAndNuisance->add(*mc->GetParametersOfInterest()); w->saveSnapshot("paramsToGenerateData",*poiAndNuisance); RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot(); cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); RooArgSet unconditionalObs; unconditionalObs.add(*mc->GetObservables()); unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble double CLb=0; double CLbinclusive=0; // Now we generate background only and find distribution of upper limits TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax()); histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)"); histOfUL->GetYaxis()->SetTitle("Entries"); for(int imc=0; imc<nToyMC; ++imc){ // set parameters back to values for generating pseudo data // cout << "\n get current nuis, set vals, print again" << endl; w->loadSnapshot("paramsToGenerateData"); // poiAndNuisance->Print("v"); RooDataSet* toyData = 0; // now generate a toy dataset if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) toyData = mc->GetPdf()->generate(*mc->GetObservables(),1); else cout <<"Not sure what to do about this model" <<endl; } else{ // cout << "generating extended dataset"<<endl; toyData = mc->GetPdf()->generate(*mc->GetObservables(),Extended()); } // generate global observables // need to be careful for simpdf // RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1); RooSimultaneous* simPdf = dynamic_cast<RooSimultaneous*>(mc->GetPdf()); if(!simPdf){ RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1); const RooArgSet *values = one->get(); RooArgSet *allVars = mc->GetPdf()->getVariables(); *allVars = *values; delete allVars; delete values; delete one; } else { //try fix for sim pdf TIterator* iter = simPdf->indexCat().typeIterator() ; RooCatType* tt = NULL; while((tt=(RooCatType*) iter->Next())) { // Get pdf associated with state from simpdf RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ; // Generate only global variables defined by the pdf associated with this state RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ; RooDataSet* tmp = pdftmp->generate(*globtmp,1) ; // Transfer values to output placeholder *globtmp = *tmp->get(0) ; // Cleanup delete globtmp ; delete tmp ; } } // globalData->Print("v"); // unconditionalObs = *globalData->get(); // mc->GetGlobalObservables()->Print("v"); // delete globalData; // cout << "toy data = " << endl; // toyData->get()->Print("v"); // get test stat at observed UL in observed data firstPOI->setVal(observedUL); double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // toyData->get()->Print("v"); // cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl; if(obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet CLb+= (1.)/nToyMC; if(obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet CLbinclusive+= (1.)/nToyMC; // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<<endl; if(thisTS<=arMax){ thisUL = firstPOI->getVal(); } else{ break; } } /* // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; i<histOfThresholds->GetNbinsX(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); cout <<"---------------- "<<i<<endl; tmpPoint->Print("v"); cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <<endl; double arMax = histOfThresholds->GetBinContent(i+1); // cout << " threhold from Hist = aMax " << arMax<<endl; // double arMax2 = belt->GetAcceptanceRegionMax(*tmpPoint); // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D // cout << "scan - hist" << arMax2-arMax << endl; firstPOI->setVal( histOfThresholds->GetBinCenter(i+1)); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<<endl; // NOTE: need to add a small epsilon term for single precision vs. double precision if(thisTS<=arMax + 1e-7){ thisUL = firstPOI->getVal(); } else{ break; } } */ histOfUL->Fill(thisUL); // for few events, data is often the same, and UL is often the same // cout << "thisUL = " << thisUL<<endl; delete toyData; } histOfUL->Draw(); c1->SaveAs("one-sided_upper_limit_output.pdf"); // if you want to see a plot of the sampling distribution for a particular scan point: /* SamplingDistPlot sampPlot; int indexInScan = 0; tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp"); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); toymcsampler->SetParametersForTestStat(tmpPOI); SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint); sampPlot.AddSamplingDistribution(samp); sampPlot.Draw(); */ // Now find bands and power constraint Double_t* bins = histOfUL->GetIntegral(); TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative"); cumulative->SetContent(bins); double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp; for(int i=1; i<=cumulative->GetNbinsX(); ++i){ if(bins[i]<RooStats::SignificanceToPValue(2)) band2sigDown=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(1)) band1sigDown=cumulative->GetBinCenter(i); if(bins[i]<0.5) bandMedian=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-1)) band1sigUp=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-2)) band2sigUp=cumulative->GetBinCenter(i); } cout << "-2 sigma band " << band2sigDown << endl; cout << "-1 sigma band " << band1sigDown << " [Power Constraint)]" << endl; cout << "median of band " << bandMedian << endl; cout << "+1 sigma band " << band1sigUp << endl; cout << "+2 sigma band " << band2sigUp << endl; // print out the interval on the first Parameter of Interest cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl; cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl; cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl; delete profile; delete nll; }
int DiagnosisMacro(int Nbins = 10, int Nsigma = 10, int CPUused = 1, TString Filename = "FIT_DATA_Psi2SJpsi_PPPrompt_Bkg_SecondOrderChebychev_pt65300_rap016_cent0200_262620_263757.root", TString Outputdir = "./") //Nbins: Number of points for which to calculate profile likelihood. Time required is about (1/CPU) minutes per point per parameter. 0 means do plain likelihood only //Nsigma: The range in which the scan is performed (value-Nsigma*sigma, value+Nsigma*sigma) //CPUused: anything larger than 1 causes weird fit results on my laptop, runs fine on lxplus with more (16) { // R e a d w o r k s p a c e f r o m f i l e // ----------------------------------------------- // Open input file with workspace //Filename = "FIT_DATA_Psi2SJpsi_PP_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev2_pt6590_rap016_cent0200.root"; //Filename = "FIT_DATA_Psi2SJpsi_PbPb_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev1_pt6590_rap016_cent0200.root"; TFile *f = new TFile(Filename); // Retrieve workspace from file RooWorkspace* w = (RooWorkspace*)f->Get("workspace"); // Retrieve x,model and data from workspace RooRealVar* x = w->var("invMass"); RooAbsPdf* model = w->pdf("simPdf_syst"); if (model == 0) { model = w->pdf("simPdf"); } if (model == 0) { model = w->pdf("pdfMASS_Tot_PP"); } if (model == 0) { model = w->pdf("pdfMASS_Tot_PbPb"); } if (model == 0) { cout << "[ERROR] pdf failed to load from the workspace" << endl; return false; } RooAbsData* data = w->data("dOS_DATA"); if (data == 0) { data = w->data("dOS_DATA_PP"); } if (data == 0) { data = w->data("dOS_DATA_PbPb"); } if (data == 0) { cout << "[ERROR] data failed to load from the workspace" << endl; return false; } // Print structure of composite p.d.f. model->Print("t"); /* // P l o t m o d e l // --------------------------------------------------------- // Plot data and PDF overlaid RooPlot* xframe = x->frame(Title("J/psi Model and Data")); data->plotOn(xframe); model->plotOn(xframe); // Draw the frame on the canvas TCanvas* c2 = new TCanvas("PlotModel", "PlotModel", 1000, 1000); gPad->SetLeftMargin(0.15); xframe->GetYaxis()->SetTitleOffset(2.0); xframe->Draw();//*/ ///// Check parameters RooArgSet* paramSet1 = model->getDependents(data); paramSet1->Print("v"); // Just check RooArgSet* paramSet2 = model->getParameters(data); paramSet2->Print("v"); int Nparams = paramSet2->getSize(); cout << "Number of parameters: " << Nparams<<endl<<endl; // C o n s t r u c t p l a i n l i k e l i h o o d // --------------------------------------------------- // Construct unbinned likelihood RooAbsReal* nll = model->createNLL(*data, NumCPU(CPUused)); // Minimize likelihood w.r.t all parameters before making plots RooMinuit(*nll).migrad(); ////////////////////////////////////////////////////// /////////////////// L O O P O V E R P A R A M E T E R S ///////////////////////////////////////////////////// /// Set up loop over parameters TString ParamName; double ParamValue; double ParamError; double ParamLimitLow; double ParamLimitHigh; double FitRangeLow; double FitRangeHigh; RooRealVar* vParam; int counter = 0; // Loop start TIterator* iter = paramSet2->createIterator(); TObject* var = iter->Next(); while (var != 0) { counter++; ParamName = var->GetName(); vParam = w->var(ParamName); ParamValue = vParam->getVal(); ParamError = vParam->getError(); ParamLimitLow = vParam->getMin(); ParamLimitHigh = vParam->getMax(); cout << ParamName << " has value " << ParamValue << " with error: " << ParamError << " and limits: " << ParamLimitLow << " to " << ParamLimitHigh << endl << endl; if (ParamError == 0) { //Skipping fixed parameters cout << "Parameter was fixed, skipping its fitting" << endl; cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl; var = iter->Next(); continue; } // determining fit range: Nsigma sigma on each side unless it would be outside of parameter limits if ((ParamValue - Nsigma * ParamError) > ParamLimitLow) { FitRangeLow = (ParamValue - Nsigma * ParamError); } else { FitRangeLow = ParamLimitLow; } if ((ParamValue + Nsigma * ParamError) < ParamLimitHigh) { FitRangeHigh = (ParamValue + Nsigma * ParamError); } else { FitRangeHigh = ParamLimitHigh; } // P l o t p l a i n l i k e l i h o o d a n d C o n s t r u c t p r o f i l e l i k e l i h o o d // --------------------------------------------------- RooPlot* frame1; RooAbsReal* pll=NULL; if (Nbins != 0) { frame1 = vParam->frame(Bins(Nbins), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data()))); nll->plotOn(frame1, ShiftToZero()); pll = nll->createProfile(*vParam); // Plot the profile likelihood pll->plotOn(frame1, LineColor(kRed), RooFit::Precision(-1)); } else { //Skip profile likelihood frame1 = vParam->frame(Bins(10), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data()))); nll->plotOn(frame1, ShiftToZero()); } // D r a w a n d s a v e p l o t s // ----------------------------------------------------------------------- // Adjust frame maximum for visual clarity frame1->SetMinimum(0); frame1->SetMaximum(20); TCanvas* c = new TCanvas("CLikelihoodResult", "CLikelihoodResult", 800, 600); c->cd(1); gPad->SetLeftMargin(0.15); frame1->GetYaxis()->SetTitleOffset(1.4); frame1->Draw(); TLegend* leg = new TLegend(0.70, 0.70, 0.95, 0.88, ""); leg->SetFillColor(kWhite); leg->SetBorderSize(0); leg->SetTextSize(0.035); TLegendEntry *le1 = leg->AddEntry(nll, "Plain likelihood", "l"); le1->SetLineColor(kBlue); le1->SetLineWidth(3); TLegendEntry *le2 = leg->AddEntry(pll, "Profile likelihood", "l"); le2->SetLineColor(kRed); le2->SetLineWidth(3); leg->Draw("same"); //Save plot TString StrippedName = TString(Filename(Filename.Last('/')+1,Filename.Length())); StrippedName = StrippedName.ReplaceAll(".root",""); cout << StrippedName << endl; gSystem->mkdir(Form("%s/root/%s", Outputdir.Data(), StrippedName.Data()), kTRUE); c->SaveAs(Form("%s/root/%s/Likelihood_scan_%s.root", Outputdir.Data(), StrippedName.Data(), ParamName.Data())); gSystem->mkdir(Form("%s/pdf/%s", Outputdir.Data(), StrippedName.Data()), kTRUE); c->SaveAs(Form("%s/pdf/%s/Likelihood_scan_%s.pdf", Outputdir.Data(), StrippedName.Data(), ParamName.Data())); gSystem->mkdir(Form("%s/png/%s", Outputdir.Data(), StrippedName.Data()), kTRUE); c->SaveAs(Form("%s/png/%s/Likelihood_scan_%s.png", Outputdir.Data(), StrippedName.Data(), ParamName.Data())); delete c; delete frame1; if (pll) delete pll; cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl; //if (counter == 2){ break; } //Exit - for testing var = iter->Next(); } // End of the loop return true; }
void new_RA4(){ // let's time this challenging example TStopwatch t; t.Start(); // set RooFit random seed for reproducible results RooRandom::randomGenerator()->SetSeed(4357); // make model RooWorkspace* wspace = new RooWorkspace("wspace"); wspace->factory("Gaussian::sigCons(prime_SigEff[0,-5,5], nom_SigEff[0,-5,5], 1)"); wspace->factory("expr::SigEff('1.0*pow(1.20,@0)',prime_SigEff)"); // // 1+-20%, 1.20=exp(20%) wspace->factory("Poisson::on(non[0,50], sum::splusb(prod::SigUnc(s[0,0,50],SigEff),mainb[8.8,0,50],dilep[0.9,0,20],tau[2.3,0,20],QCD[0.,0,10],MC[0.1,0,4]))"); wspace->factory("Gaussian::mcCons(prime_rho[0,-5,5], nom_rho[0,-5,5], 1)"); wspace->factory("expr::rho('1.0*pow(1.39,@0)',prime_rho)"); // // 1+-39% wspace->factory("Poisson::off(noff[0,200], prod::rhob(mainb,rho,mu_plus_e[0.74,0.01,10],1.08))"); wspace->factory("Gaussian::mcCons2(mu_plus_enom[0.74,0.01,4], mu_plus_e, sigmatwo[.05])"); wspace->factory("Gaussian::dilep_pred(dilep_nom[0.9,0,20], dilep, sigma3[2.2])"); wspace->factory("Gaussian::tau_pred(tau_nom[2.3,0,20], tau, sigma4[0.5])"); wspace->factory("Gaussian::QCD_pred(QCD_nom[0.0,0,10], QCD, sigma5[1.0])"); wspace->factory("Gaussian::MC_pred(MC_nom[0.1,0.01,4], MC, sigma7[0.14])"); wspace->factory("PROD::model(on,off,mcCons,mcCons2,sigCons,dilep_pred,tau_pred,QCD_pred,MC_pred)"); RooArgSet obs(*wspace->var("non"), *wspace->var("noff"), *wspace->var("mu_plus_enom"), *wspace->var("dilep_nom"), *wspace->var("tau_nom"), "obs"); obs.add(*wspace->var("QCD_nom")); obs.add(*wspace->var("MC_nom")); RooArgSet globalObs(*wspace->var("nom_SigEff"), *wspace->var("nom_rho"), "global_obs"); // fix global observables to their nominal values wspace->var("nom_SigEff")->setConstant(); wspace->var("nom_rho")->setConstant(); RooArgSet poi(*wspace->var("s"), "poi"); RooArgSet nuis(*wspace->var("mainb"), *wspace->var("prime_rho"), *wspace->var("prime_SigEff"), *wspace->var("mu_plus_e"), *wspace->var("dilep"), *wspace->var("tau"), "nuis"); nuis.add(*wspace->var("QCD")); nuis.add(*wspace->var("MC")); wspace->factory("Uniform::prior_poi({s})"); wspace->factory("Uniform::prior_nuis({mainb,mu_plus_e,dilep,tau,QCD,MC})"); wspace->factory("PROD::prior(prior_poi,prior_nuis)"); wspace->var("non")->setVal(8); //observed //wspace->var("non")->setVal(12); //expected observation wspace->var("noff")->setVal(7); //observed events in control region wspace->var("mu_plus_enom")->setVal(0.74); wspace->var("dilep_nom")->setVal(0.9); wspace->var("tau_nom")->setVal(2.3); wspace->var("QCD")->setVal(0.0); wspace->var("MC")->setVal(0.1); RooDataSet * data = new RooDataSet("data","",obs); data->add(obs); wspace->import(*data); ///////////////////////////////////////////////////// // Now the statistical tests // model config ModelConfig* pSbModel = new ModelConfig("SbModel"); pSbModel->SetWorkspace(*wspace); pSbModel->SetPdf(*wspace->pdf("model")); pSbModel->SetPriorPdf(*wspace->pdf("prior")); pSbModel->SetParametersOfInterest(poi); pSbModel->SetNuisanceParameters(nuis); pSbModel->SetObservables(obs); pSbModel->SetGlobalObservables(globalObs); wspace->import(*pSbModel); // set all but obs, poi and nuisance to const SetConstants(wspace, pSbModel); wspace->import(*pSbModel); Double_t poiValueForBModel = 0.0; ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)wspace->obj("SbModel")); pBModel->SetName("BModel"); pBModel->SetWorkspace(*wspace); wspace->import(*pBModel); RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*data); RooAbsReal * pProfile = pNll->createProfile(RooArgSet()); pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values RooArgSet * pPoiAndNuisance = new RooArgSet(); //if(pSbModel->GetNuisanceParameters()) // pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest()); cout << "\nWill save these parameter points that correspond to the fit to data" << endl; pPoiAndNuisance->Print("v"); pSbModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; pNll = pBModel->GetPdf()->createNLL(*data); pProfile = pNll->createProfile(poi); ((RooRealVar *)poi.first())->setVal(poiValueForBModel); pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet(); //if(pBModel->GetNuisanceParameters()) // pPoiAndNuisance->add(*pBModel->GetNuisanceParameters()); pPoiAndNuisance->add(*pBModel->GetParametersOfInterest()); cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl; pPoiAndNuisance->Print("v"); pBModel->SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // inspect workspace wspace->Print(); // save workspace to file wspace->writeToFile("tight.root"); //wspace->writeToFile("tight_median.root"); // clean up delete wspace; delete data; delete pSbModel; delete pBModel; }
void MakeWorkspace( void ){ // // this function implements a RooFit model for a counting experiment // // create workspace RooWorkspace * pWs = new RooWorkspace("myWS"); // observable: number of events pWs->factory( "n[0.0]" ); // integrated luminosity with systematics pWs->factory( "lumi_nom[5000.0, 4000.0, 6000.0]" ); pWs->factory( "lumi_kappa[1.045]" ); pWs->factory( "cexpr::alpha_lumi('pow(lumi_kappa,beta_lumi)',lumi_kappa,beta_lumi[0,-5,5])" ); pWs->factory( "prod::lumi(lumi_nom,alpha_lumi)" ); pWs->factory( "Gaussian::constr_lumi(beta_lumi,glob_lumi[0,-5,5],1)" ); // cross section - parameter of interest pWs->factory( "xsec[0.001,0.0,0.1]" ); // selection efficiency * acceptance with systematics pWs->factory( "efficiency_nom[0.1, 0.05, 0.15]" ); pWs->factory( "efficiency_kappa[1.10]" ); pWs->factory( "cexpr::alpha_efficiency('pow(efficiency_kappa,beta_efficiency)',efficiency_kappa,beta_efficiency[0,-5,5])" ); pWs->factory( "prod::efficiency(efficiency_nom,alpha_efficiency)" ); pWs->factory( "Gaussian::constr_efficiency(beta_efficiency,glob_efficiency[0,-5,5],1)" ); // signal yield pWs->factory( "prod::nsig(lumi,xsec,efficiency)" ); // background yield with systematics pWs->factory( "nbkg_nom[10.0, 5.0, 15.0]" ); pWs->factory( "nbkg_kappa[1.10]" ); pWs->factory( "cexpr::alpha_nbkg('pow(nbkg_kappa,beta_nbkg)',nbkg_kappa,beta_nbkg[0,-5,5])" ); pWs->factory( "prod::nbkg(nbkg_nom,alpha_lumi,alpha_nbkg)" ); pWs->factory( "Gaussian::constr_nbkg(beta_nbkg,glob_nbkg[0,-5,5],1)" ); // full event yield pWs->factory("sum::yield(nsig,nbkg)"); // Core model: Poisson probability with mean signal+bkg pWs->factory( "Poisson::model_core(n,yield)" ); // define Bayesian prior PDF for POI pWs->factory( "Uniform::prior(xsec)" ); // model with systematics pWs->factory( "PROD::model(model_core,constr_lumi,constr_efficiency,constr_nbkg)" ); // create set of observables (will need it for datasets and ModelConfig later) RooRealVar * pObs = pWs->var("n"); // get the pointer to the observable RooArgSet obs("observables"); obs.add(*pObs); // create the dataset pObs->setVal(11); // this is your observed data: we counted ten events RooDataSet * data = new RooDataSet("data", "data", obs); data->add( *pObs ); // import dataset into workspace pWs->import(*data); // create set of global observables (need to be defined as constants) pWs->var("glob_lumi")->setConstant(true); pWs->var("glob_efficiency")->setConstant(true); pWs->var("glob_nbkg")->setConstant(true); RooArgSet globalObs("global_obs"); globalObs.add( *pWs->var("glob_lumi") ); globalObs.add( *pWs->var("glob_efficiency") ); globalObs.add( *pWs->var("glob_nbkg") ); // create set of parameters of interest (POI) RooArgSet poi("poi"); poi.add( *pWs->var("xsec") ); // create set of nuisance parameters RooArgSet nuis("nuis"); nuis.add( *pWs->var("beta_lumi") ); nuis.add( *pWs->var("beta_efficiency") ); nuis.add( *pWs->var("beta_nbkg") ); // create signal+background Model Config RooStats::ModelConfig sbHypo("SbHypo"); sbHypo.SetWorkspace( *pWs ); sbHypo.SetPdf( *pWs->pdf("model") ); sbHypo.SetObservables( obs ); sbHypo.SetGlobalObservables( globalObs ); sbHypo.SetParametersOfInterest( poi ); sbHypo.SetNuisanceParameters( nuis ); sbHypo.SetPriorPdf( *pWs->pdf("prior") ); // this is optional // fix all other variables in model: // everything except observables, POI, and nuisance parameters // must be constant pWs->var("lumi_nom")->setConstant(true); pWs->var("efficiency_nom")->setConstant(true); pWs->var("nbkg_nom")->setConstant(true); pWs->var("lumi_kappa")->setConstant(true); pWs->var("efficiency_kappa")->setConstant(true); pWs->var("nbkg_kappa")->setConstant(true); RooArgSet fixed("fixed"); fixed.add( *pWs->var("lumi_nom") ); fixed.add( *pWs->var("efficiency_nom") ); fixed.add( *pWs->var("nbkg_nom") ); fixed.add( *pWs->var("lumi_kappa") ); fixed.add( *pWs->var("efficiency_kappa") ); fixed.add( *pWs->var("nbkg_kappa") ); // set parameter snapshot that corresponds to the best fit to data RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data ); RooAbsReal * pProfile = pNll->createProfile( globalObs ); // do not profile global observables pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance"); pPoiAndNuisance->add(*sbHypo.GetNuisanceParameters()); pPoiAndNuisance->add(*sbHypo.GetParametersOfInterest()); sbHypo.SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // import S+B ModelConfig into workspace pWs->import( sbHypo ); // create background-only Model Config from the S+B one RooStats::ModelConfig bHypo = sbHypo; bHypo.SetName("BHypo"); bHypo.SetWorkspace(*pWs); // set parameter snapshot for bHypo, setting xsec=0 // it is useful to understand how this block of code works // but you can also use it as a recipe to make a parameter snapshot pNll = bHypo.GetPdf()->createNLL( *data ); RooArgSet poiAndGlobalObs("poiAndGlobalObs"); poiAndGlobalObs.add( poi ); poiAndGlobalObs.add( globalObs ); pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables ((RooRealVar *)poi.first())->setVal( 0 ); // set xsec=0 here pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet( "poiAndNuisance" ); pPoiAndNuisance->add( nuis ); pPoiAndNuisance->add( poi ); bHypo.SetSnapshot(*pPoiAndNuisance); delete pProfile; delete pNll; delete pPoiAndNuisance; // import model config into workspace pWs->import( bHypo ); // print out the workspace contents pWs->Print(); // save workspace to file pWs -> SaveAs("workspace.root"); return; }
void build_hbb_workspace1( const char* infile = "outputfiles/input-file.txt", const char* outfile = "outputfiles/ws.root" ) { //------------------------------------------------------------------------- //-- Create workspace and other RooStats things. printf("\n\n Creating workspace.\n\n") ; RooWorkspace workspace("ws") ; workspace.autoImportClassCode(true) ; globalObservables = new RooArgSet("globalObservables"); allNuisances = new RooArgSet("allNuisances"); allNuisancePdfs = new RooArgSet("allNuisancePdfs"); RooArgSet* observedParametersList = new RooArgSet("observables") ; //------------------------------------------------------------------------- printf("\n\n Reading input file: %s\n\n", infile ) ; float fileVal ; char pname[1000] ; char formula[1000] ; sprintf( pname, "bins_of_met" ) ; if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } int bins_of_met = TMath::Nint( fileVal ) ; //-- save bins_of_met in the workspace for convenience. RooRealVar bom( "bins_of_met", "bins_of_met", bins_of_met, 0., 1000. ) ; bom.setConstant(kTRUE) ; workspace.import(bom) ; //-- save bins_of_nb in the workspace for convenience. RooRealVar bonb( "bins_of_nb", "bins_of_nb", bins_of_nb, 0., 1000. ) ; bonb.setConstant(kTRUE) ; workspace.import(bonb) ; RooRealVar* rv_N_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooRealVar* rv_N_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooRealVar* rv_smc_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooRealVar* rv_smc_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_Rsigsb_corr[bins_of_nb][max_bins_of_met] ; for ( int nbi=0; nbi<bins_of_nb; nbi++ ) { for ( int mbi=0; mbi<bins_of_met; mbi++ ) { sprintf( pname, "N_%db_msig_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } rv_N_msig[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ; rv_N_msig[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ; rv_N_msig[nbi][mbi] -> setConstant( kTRUE ) ; observedParametersList -> add( *rv_N_msig[nbi][mbi] ) ; sprintf( pname, "N_%db_msb_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } rv_N_msb[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ; rv_N_msb[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ; rv_N_msb[nbi][mbi] -> setConstant( kTRUE ) ; observedParametersList -> add( *rv_N_msb[nbi][mbi] ) ; sprintf( pname, "smc_%db_msig_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } rv_smc_msig[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ; rv_smc_msig[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ; rv_smc_msig[nbi][mbi] -> setConstant( kTRUE ) ; sprintf( pname, "smc_%db_msb_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, fileVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } rv_smc_msb[nbi][mbi] = new RooRealVar( pname, pname, 0., 1.e6 ) ; rv_smc_msb[nbi][mbi] -> setVal( TMath::Nint(fileVal) ) ; rv_smc_msb[nbi][mbi] -> setConstant( kTRUE ) ; float corrVal, corrSyst ; sprintf( pname, "Rsigsb_syst_%db_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, corrSyst ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } sprintf( pname, "Rsigsb_corr_%db_met%d", nbi+2, mbi+1 ) ; if ( !getFileValue( infile, pname, corrVal ) ) { printf("\n\n *** Error. Can't find %s\n\n", pname ) ; return ; } rv_Rsigsb_corr[nbi][mbi] = makeLognormalConstraint( pname, corrVal, corrSyst ) ; } // mbi. } // nbi. //-- Finished reading input from file. //------------------------------------------------------------------------- printf("\n\n Creating and importing dataset into workspace.\n\n") ; RooDataSet* dsObserved = new RooDataSet("hbb_observed_rds", "hbb observed data values", *observedParametersList ) ; dsObserved -> add( *observedParametersList ) ; workspace.import( *dsObserved ) ; //------------------------------------------------------------------------- //-- Define all floats. printf("\n\n Defining all unconstrained floats (Ratios, signal strength).\n\n") ; double R_msigmsb_initialval(0.15) ; RooRealVar* rv_R_msigmsb[50] ; for ( int mbi=0; mbi<bins_of_met; mbi++ ) { sprintf( pname, "R_msigmsb_met%d", mbi+1 ) ; printf( " %s\n", pname ) ; rv_R_msigmsb[mbi] = new RooRealVar( pname, pname, R_msigmsb_initialval, 0., 3. ) ; rv_R_msigmsb[mbi] -> setConstant( kFALSE ) ; rv_R_msigmsb[mbi] -> Print() ; } // mbi. printf("\n") ; sprintf( pname, "sig_strength" ) ; RooRealVar* rv_sig_strength = new RooRealVar( pname, pname, 1.0, 0., 10. ) ; rv_sig_strength -> setConstant(kFALSE) ; rv_sig_strength -> Print() ; printf(" %s\n\n", pname ) ; //------------------------------------------------------------------------- //-- Define all mu parameters. printf("\n\n Defining mu parameters.\n\n") ; RooAbsReal* rv_mu_bg_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_mu_bg_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_mu_sig_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_mu_sig_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. for ( int nbi=0; nbi<bins_of_nb; nbi++ ) { for ( int mbi=0; mbi<bins_of_met; mbi++ ) { sprintf( pname, "mu_bg_%db_msb_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_mu_bg_msb[nbi][mbi] = new RooRealVar( pname, pname, rv_N_msb[nbi][mbi] -> getVal(), 0., 1.e6 ) ; rv_mu_bg_msb[nbi][mbi] -> Print() ; sprintf( formula, "@0 * @1 * @2" ) ; sprintf( pname, "mu_bg_%db_msig_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_mu_bg_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_Rsigsb_corr[nbi][mbi], *rv_R_msigmsb[mbi], *rv_mu_bg_msb[nbi][mbi] ) ) ; rv_mu_bg_msig[nbi][mbi] -> Print() ; sprintf( formula, "@0 * @1" ) ; sprintf( pname, "mu_sig_%db_msig_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_mu_sig_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_sig_strength, *rv_smc_msig[nbi][mbi] ) ) ; rv_mu_sig_msig[nbi][mbi] -> Print() ; sprintf( formula, "@0 * @1" ) ; sprintf( pname, "mu_sig_%db_msb_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_mu_sig_msb[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_sig_strength, *rv_smc_msb[nbi][mbi] ) ) ; rv_mu_sig_msb[nbi][mbi] -> Print() ; } // mbi. } // nbi. //-- Finished defining mu parameters. //------------------------------------------------------------------------- //-- Defining small n's printf("\n\n Defining small n's.\n\n") ; RooAbsReal* rv_n_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_n_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. for ( int nbi=0; nbi<bins_of_nb; nbi++ ) { for ( int mbi=0; mbi<bins_of_met; mbi++ ) { sprintf( formula, "@0 + @1" ) ; sprintf( pname, "n_%db_msig_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_n_msig[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_mu_sig_msig[nbi][mbi], *rv_mu_bg_msig[nbi][mbi] ) ) ; rv_n_msig[nbi][mbi] -> Print() ; workspace.import( *rv_n_msig[nbi][mbi] ) ; sprintf( pname, "n_%db_msb_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_n_msb[nbi][mbi] = new RooFormulaVar( pname, formula, RooArgSet( *rv_mu_sig_msb[nbi][mbi], *rv_mu_bg_msb[nbi][mbi] ) ) ; rv_n_msb[nbi][mbi] -> Print() ; workspace.import( *rv_n_msb[nbi][mbi] ) ; } // mbi. } // nbi. //------------------------------------------------------------------------- //-- Define the Poisson pdfs for the observables. printf("\n\n Defining Poisson pdfs for the observables.\n\n") ; RooAbsReal* rv_pdf_msig[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooAbsReal* rv_pdf_msb[bins_of_nb][max_bins_of_met] ; // first index is number of btags, second is met bin. RooArgSet pdflist ; for ( int nbi=0; nbi<bins_of_nb; nbi++ ) { for ( int mbi=0; mbi<bins_of_met; mbi++ ) { sprintf( pname, "pdf_%db_msig_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_pdf_msig[nbi][mbi] = new RooPoisson( pname, pname, *rv_N_msig[nbi][mbi], *rv_n_msig[nbi][mbi] ) ; rv_pdf_msig[nbi][mbi] -> Print() ; pdflist.add( *rv_pdf_msig[nbi][mbi] ) ; sprintf( pname, "pdf_%db_msb_met%d", nbi+2, mbi+1 ) ; printf( " %s\n", pname ) ; rv_pdf_msb[nbi][mbi] = new RooPoisson( pname, pname, *rv_N_msb[nbi][mbi], *rv_n_msb[nbi][mbi] ) ; rv_pdf_msb[nbi][mbi] -> Print() ; pdflist.add( *rv_pdf_msb[nbi][mbi] ) ; } // mbi. } // nbi. //------------------------------------------------------------------------- //-- Build the likelihood. printf("\n\n Building the likelihood.\n\n") ; pdflist.add( *allNuisancePdfs ) ; pdflist.Print() ; printf("\n") ; RooProdPdf* likelihood = new RooProdPdf( "likelihood", "hbb likelihood", pdflist ) ; likelihood->Print() ; //------------------------------------------------------------------------- // printf("\n\n Running a test fit.\n\n") ; // dsObserved -> Print() ; // dsObserved -> printMultiline(cout, 1, kTRUE, "") ; // printf("\n\n =============================================\n\n") ; // likelihood -> fitTo( *dsObserved, PrintLevel(3), Hesse(0), Minos(0) ) ; // printf("\n\n =============================================\n\n") ; //-- Set up RooStats models. printf("\n\n Setting up S+B model.\n\n") ; RooArgSet poi( *rv_sig_strength, "poi" ) ; RooUniform signal_prior( "signal_prior", "signal_prior", *rv_sig_strength ) ; ModelConfig sbModel ("SbModel"); sbModel.SetWorkspace( workspace ) ; sbModel.SetPdf( *likelihood ) ; sbModel.SetParametersOfInterest( poi ); sbModel.SetPriorPdf(signal_prior); sbModel.SetObservables( *observedParametersList ); sbModel.SetNuisanceParameters( *allNuisances ); sbModel.SetGlobalObservables( *globalObservables ); workspace.Print() ; printf("\n\n Doing fit for S+B model.\n" ) ; fflush(stdout) ; RooAbsReal* pNll = sbModel.GetPdf()->createNLL(*dsObserved); RooAbsReal* pProfile = pNll->createProfile(RooArgSet()); pProfile->getVal(); RooArgSet* pPoiAndNuisance = new RooArgSet(); pPoiAndNuisance->add(*sbModel.GetParametersOfInterest()); if(sbModel.GetNuisanceParameters()) pPoiAndNuisance->add(*sbModel.GetNuisanceParameters()); printf("\n\n Will save these parameter points that correspond to the fit to data.\n\n") ; fflush(stdout) ; pPoiAndNuisance->Print("v"); sbModel.SetSnapshot(*pPoiAndNuisance); workspace.import (sbModel); delete pProfile ; delete pNll ; delete pPoiAndNuisance ; printf("\n\n Setting up BG-only model.\n\n") ; ModelConfig bModel (*(RooStats::ModelConfig *)workspace.obj("SbModel")); bModel.SetName("BModel"); bModel.SetWorkspace(workspace); printf("\n\n Doing fit for BG-only model.\n" ) ; fflush(stdout) ; pNll = bModel.GetPdf()->createNLL(*dsObserved); pProfile = pNll->createProfile(*bModel.GetParametersOfInterest()); ((RooRealVar *)(bModel.GetParametersOfInterest()->first()))->setVal(0.); pProfile->getVal(); pPoiAndNuisance = new RooArgSet(); pPoiAndNuisance->add(*bModel.GetParametersOfInterest()); if(bModel.GetNuisanceParameters()) pPoiAndNuisance->add(*bModel.GetNuisanceParameters()); printf("\n\n Should use these parameter points to generate pseudo data for bkg only.\n\n") ; fflush(stdout) ; pPoiAndNuisance->Print("v"); bModel.SetSnapshot(*pPoiAndNuisance); workspace.import (bModel); delete pProfile ; delete pNll ; delete pPoiAndNuisance ; workspace.Print() ; printf("\n\n Saving workspace in : %s\n\n", outfile ) ; gSystem->Exec(" mkdir -p outputfiles " ) ; workspace.writeToFile( outfile ) ; } // build_hbb_workspace1.
void OneSidedFrequentistUpperLimitWithBands_intermediate(const char* infile = "", const char* workspaceName = "combined", const char* modelConfigName = "ModelConfig", const char* dataName = "obsData"){ double confidenceLevel=0.95; // degrade/improve number of pseudo-experiments used to define the confidence belt. // value of 1 corresponds to default number of toys in the tail, which is 50/(1-confidenceLevel) double additionalToysFac = 1.; int nPointsToScan = 30; // number of steps in the parameter of interest int nToyMC = 100; // number of toys used to define the expected limit and band TStopwatch t; t.Start(); ///////////////////////////////////////////////////////////// // First part is just to access a user-defined file // or create the standard example file if it doesn't exist //////////////////////////////////////////////////////////// const char* filename = ""; if (!strcmp(infile,"")) filename = "results/example_combined_GaussExample_model.root"; else filename = infile; // Check if example input file exists TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file && strcmp(infile,"")){ cout <<"file not found" << endl; return; } // if default file not found, try to create it if(!file ){ // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<<endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<<endl; cout <<"Done creating example input"<<endl; cout <<"---------------------\n\n"<<endl; } // now try to access the file again file = TFile::Open(filename); if(!file){ // if it is still not there, then we can't continue cout << "Not able to run hist2workspace to create example input" <<endl; return; } ///////////////////////////////////////////////////////////// // Now get the data and workspace //////////////////////////////////////////////////////////// // get the workspace out of the file RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !mc){ w->Print(); cout << "data or ModelConfig was not found" <<endl; return; } cout << "Found data and ModelConfig:" <<endl; mc->Print(); ///////////////////////////////////////////////////////////// // Now get the POI for convenience // you may want to adjust the range of your POI //////////////////////////////////////////////////////////// RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first(); // firstPOI->setMin(0); // firstPOI->setMax(10); ///////////////////////////////////////////// // create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config // REMEMBER, we will change the test statistic // so this is NOT a Feldman-Cousins interval FeldmanCousins fc(*data,*mc); fc.SetConfidenceLevel(confidenceLevel); fc.AdditionalNToysFactor(additionalToysFac); // improve sampling that defines confidence belt // fc.UseAdaptiveSampling(true); // speed it up a bit, but don't use for expectd limits fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting ///////////////////////////////////////////// // Feldman-Cousins is a unified limit by definition // but the tool takes care of a few things for us like which values // of the nuisance parameters should be used to generate toys. // so let's just change the test statistic and realize this is // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction. // ProfileLikelihoodTestStatModified onesided(*mc->GetPdf()); // fc.GetTestStatSampler()->SetTestStatistic(&onesided); // ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic()); testStat->SetOneSided(true); // test speedups: testStat->SetReuseNLL(true); // toymcsampler->setUseMultiGen(true); // not fully validated // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) fc.FluctuateNumDataEntries(false); else cout <<"Not sure what to do about this model" <<endl; } // We can use PROOF to speed things along in parallel ProofConfig pc(*w, 4, "",false); if(mc->GetGlobalObservables()){ cout << "will use global observables for unconditional ensemble"<<endl; mc->GetGlobalObservables()->Print(); toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables()); } toymcsampler->SetProofConfig(&pc); // enable proof // Now get the interval PointSetInterval* interval = fc.GetInterval(); ConfidenceBelt* belt = fc.GetConfidenceBelt(); // print out the iterval on the first Parameter of Interest cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<< interval->LowerLimit(*firstPOI) << ", "<< interval->UpperLimit(*firstPOI) <<"] "<<endl; // get observed UL and value of test statistic evaluated there RooArgSet tmpPOI(*firstPOI); double observedUL = interval->UpperLimit(*firstPOI); firstPOI->setVal(observedUL); double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI); // Ask the calculator which points were scanned RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan(); RooArgSet* tmpPoint; // make a histogram of parameter vs. threshold TH1F* histOfThresholds = new TH1F("histOfThresholds","", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName()); histOfThresholds->GetYaxis()->SetTitle("Threshold"); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ; histOfThresholds->Fill(poiVal,arMax); } TCanvas* c1 = new TCanvas(); c1->Divide(2); c1->cd(1); histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); c1->cd(2); ///////////////////////////////////////////////////////////// // Now we generate the expected bands and power-constriant //////////////////////////////////////////////////////////// // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters RooAbsReal* nll = mc->GetPdf()->createNLL(*data); RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest()); firstPOI->setVal(0.); profile->getVal(); // this will do fit and set nuisance parameters to profiled values RooArgSet* poiAndNuisance = new RooArgSet(); if(mc->GetNuisanceParameters()) poiAndNuisance->add(*mc->GetNuisanceParameters()); poiAndNuisance->add(*mc->GetParametersOfInterest()); w->saveSnapshot("paramsToGenerateData",*poiAndNuisance); RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot(); cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); double CLb=0; double CLbinclusive=0; // Now we generate background only and find distribution of upper limits TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax()); histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)"); histOfUL->GetYaxis()->SetTitle("Entries"); for(int imc=0; imc<nToyMC; ++imc){ // set parameters back to values for generating pseudo data w->loadSnapshot("paramsToGenerateData"); // in 5.30 there is a nicer way to generate toy data & randomize global obs RooAbsData* toyData = toymcsampler->GenerateToyData(*paramsToGenerateData); // get test stat at observed UL in observed data firstPOI->setVal(observedUL); double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // toyData->get()->Print("v"); // cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl; if(obsTSatObsUL < toyTSatObsUL) // (should be checked) CLb+= (1.)/nToyMC; if(obsTSatObsUL <= toyTSatObsUL) // (should be checked) CLbinclusive+= (1.)/nToyMC; // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); if(thisTS<=arMax){ thisUL = firstPOI->getVal(); } else{ break; } } histOfUL->Fill(thisUL); delete toyData; } histOfUL->Draw(); c1->SaveAs("one-sided_upper_limit_output.pdf"); // if you want to see a plot of the sampling distribution for a particular scan point: // Now find bands and power constraint Double_t* bins = histOfUL->GetIntegral(); TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative"); cumulative->SetContent(bins); double band2sigDown=0, band1sigDown=0, bandMedian=0, band1sigUp=0,band2sigUp=0; for(int i=1; i<=cumulative->GetNbinsX(); ++i){ if(bins[i]<RooStats::SignificanceToPValue(2)) band2sigDown=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(1)) band1sigDown=cumulative->GetBinCenter(i); if(bins[i]<0.5) bandMedian=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-1)) band1sigUp=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-2)) band2sigUp=cumulative->GetBinCenter(i); } t.Stop(); t.Print(); cout << "-2 sigma band " << band2sigDown << endl; cout << "-1 sigma band " << band1sigDown << endl; cout << "median of band " << bandMedian << " [Power Constriant)]" << endl; cout << "+1 sigma band " << band1sigUp << endl; cout << "+2 sigma band " << band2sigUp << endl; // print out the iterval on the first Parameter of Interest cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl; cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl; cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl; delete profile; delete nll; }
void combinedWorkspace_4WS(const char* name_pbpb_pass="******", const char* name_pbpb_fail="fitresult_pbpb_fail.root", const char* name_pp_pass="******", const char* name_pp_fail="fitresult_pp_fail.root", const char* name_out="fitresult_combo.root", const float systval = 0., const char* subDirName ="wsTest", int nCPU=2){ // subdir: Directory to save workspaces under currentPATH/CombinedWorkspaces/subDir/ // set things silent gErrorIgnoreLevel=kError; RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR); bool dosyst = (systval > 0.); TString nameOut(name_out); RooWorkspace * ws = test_combine_4WS(name_pbpb_pass, name_pp_pass, name_pbpb_fail, name_pp_fail, false, nCPU); RooAbsData * data = ws->data("dOS_DATA"); RooRealVar* RFrac2Svs1S_PbPbvsPP_P = ws->var("RFrac2Svs1S_PbPbvsPP_P"); RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",-10); RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",10); RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*RFrac2Svs1S_PbPbvsPP_P, *leftEdge, *rightEdge)); ws->import(step); ws->factory( "Uniform::flat(RFrac2Svs1S_PbPbvsPP_P)" ); // systematics if (dosyst) { ws->factory( Form("kappa_syst[%f]",systval) ); ws->factory( "expr::alpha_syst('kappa_syst*beta_syst',kappa_syst,beta_syst[0,-5,5])" ); ws->factory( "Gaussian::constr_syst(beta_syst,glob_syst[0,-5,5],1)" ); // add systematics into the double ratio ws->factory( "expr::RFrac2Svs1S_PbPbvsPP_P_syst('@0+@1',RFrac2Svs1S_PbPbvsPP_P,alpha_syst)" ); // build the pbpb pdf RooRealVar* effjpsi_pp_P = (RooRealVar*)ws->var("effjpsi_pp_P"); RooRealVar* effpsip_pp_P = (RooRealVar*)ws->var("effpsip_pp_P"); RooRealVar* effjpsi_pp_NP = (RooRealVar*)ws->var("effjpsi_pp_NP"); Double_t Npsi2SPbPbPass = npsip_pbpb_pass_from_doubleratio_prompt(ws, RooArgList(*effjpsi_pp_P,*effpsip_pp_P,*effjpsi_pp_NP),true); // Create and import N_Psi2S_PbPb_pass_syst ws->factory( "SUM::pdfMASS_Tot_PbPb_pass_syst(N_Jpsi_PbPb_pass * pdfMASS_Jpsi_PbPb_pass, N_Psi2S_PbPb_pass_syst * pdfMASS_Psi2S_PbPb_pass, N_Bkg_PbPb_pass * pdfMASS_Bkg_PbPb_pass)" ); ws->factory( "PROD::pdfMASS_Tot_PbPb_pass_constr(pdfMASS_Tot_PbPb_pass_syst,constr_syst)" ); // build the combined pdf ws->factory("SIMUL::simPdf_syst_noconstr(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass_syst,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)"); RooSimultaneous *simPdf = (RooSimultaneous*) ws->pdf("simPdf_syst_noconstr"); RooGaussian *constr_syst = (RooGaussian*) ws->pdf("constr_syst"); RooProdPdf *simPdf_constr = new RooProdPdf("simPdf_syst","simPdf_syst",RooArgSet(*simPdf,*constr_syst)); ws->import(*simPdf_constr); } else { ws->factory("SIMUL::simPdf_syst(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)"); } ws->Print(); if (dosyst) ws->var("beta_syst")->setConstant(kFALSE); ///////////////////////////////////////////////////////////////////// RooRealVar * pObs = ws->var("invMass"); // get the pointer to the observable RooArgSet obs("observables"); obs.add(*pObs); obs.add( *ws->cat("sample")); // ///////////////////////////////////////////////////////////////////// if (dosyst) ws->var("glob_syst")->setConstant(true); RooArgSet globalObs("global_obs"); if (dosyst) globalObs.add( *ws->var("glob_syst") ); // ws->Print(); RooArgSet poi("poi"); poi.add( *ws->var("RFrac2Svs1S_PbPbvsPP_P") ); // create set of nuisance parameters RooArgSet nuis("nuis"); if (dosyst) nuis.add( *ws->var("beta_syst") ); // set parameters constant RooArgSet allVars = ws->allVars(); TIterator* it = allVars.createIterator(); RooRealVar *theVar = (RooRealVar*) it->Next(); while (theVar) { TString varname(theVar->GetName()); // if (varname != "RFrac2Svs1S_PbPbvsPP" // && varname != "invMass" // && varname != "sample" // ) // theVar->setConstant(); if ( varname.Contains("f_Jpsi_PP") || varname.Contains("f_Jpsi_PbPb") || varname.Contains("rSigma21_Jpsi_PP") || varname.Contains("m_Jpsi_PP") || varname.Contains("m_Jpsi_PbPb") || varname.Contains("sigma1_Jpsi_PP") || varname.Contains("sigma1_Jpsi_PbPb") || (varname.Contains("lambda")) || (varname.Contains("_fail") && !varname.Contains("RFrac2Svs1S"))) { theVar->setConstant(); } if (varname=="glob_syst" || varname=="beta_syst" ) { cout << varname << endl; theVar->setConstant(!dosyst); } theVar = (RooRealVar*) it->Next(); } // create signal+background Model Config RooStats::ModelConfig sbHypo("SbHypo"); sbHypo.SetWorkspace( *ws ); sbHypo.SetPdf( *ws->pdf("simPdf_syst") ); sbHypo.SetObservables( obs ); sbHypo.SetGlobalObservables( globalObs ); sbHypo.SetParametersOfInterest( poi ); sbHypo.SetNuisanceParameters( nuis ); sbHypo.SetPriorPdf( *ws->pdf("step") ); // this is optional ///////////////////////////////////////////////////////////////////// RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) ); RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots if (controlPlots) { RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,1),Title("LL and profileLL in RFrac2Svs1S_PbPbvsPP_P")); pNll->plotOn(framepoi,ShiftToZero()); framepoi->SetMinimum(0); framepoi->SetMaximum(10); TCanvas *cpoi = new TCanvas(); cpoi->cd(); framepoi->Draw(); cpoi->SaveAs("cpoi.pdf"); } ((RooRealVar *)poi.first())->setMin(0.); RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance"); pPoiAndNuisance->add( nuis ); pPoiAndNuisance->add( poi ); sbHypo.SetSnapshot(*pPoiAndNuisance); if (controlPlots) { RooPlot* xframeSB_PP_pass = pObs->frame(Title("SBhypo_PP_pass")); data->plotOn(xframeSB_PP_pass,Cut("sample==sample::PP_pass")); RooAbsPdf *pdfSB_PP_pass = sbHypo.GetPdf(); RooCategory *sample = ws->cat("sample"); pdfSB_PP_pass->plotOn(xframeSB_PP_pass,Slice(*sample,"PP_pass"),ProjWData(*sample,*data)); TCanvas *c1 = new TCanvas(); c1->cd(); xframeSB_PP_pass->Draw(); c1->SaveAs("c1.pdf"); RooPlot* xframeSB_PP_fail = pObs->frame(Title("SBhypo_PP_fail")); data->plotOn(xframeSB_PP_fail,Cut("sample==sample::PP_fail")); RooAbsPdf *pdfSB_PP_fail = sbHypo.GetPdf(); pdfSB_PP_fail->plotOn(xframeSB_PP_fail,Slice(*sample,"PP_fail"),ProjWData(*sample,*data)); TCanvas *c2 = new TCanvas(); c2->cd(); xframeSB_PP_fail->Draw(); c2->SaveAs("c1.pdf"); RooPlot* xframeB_PbPb_pass = pObs->frame(Title("SBhypo_PbPb_pass")); data->plotOn(xframeB_PbPb_pass,Cut("sample==sample::PbPb_pass")); RooAbsPdf *pdfB_PbPb_pass = sbHypo.GetPdf(); pdfB_PbPb_pass->plotOn(xframeB_PbPb_pass,Slice(*sample,"PbPb_pass"),ProjWData(*sample,*data)); TCanvas *c3 = new TCanvas(); c3->cd(); xframeB_PbPb_pass->Draw(); c3->SetLogy(); c3->SaveAs("c2.pdf"); RooPlot* xframeB_PbPb_fail = pObs->frame(Title("SBhypo_PbPb_fail")); data->plotOn(xframeB_PbPb_fail,Cut("sample==sample::PbPb_fail")); RooAbsPdf *pdfB_PbPb_fail = sbHypo.GetPdf(); pdfB_PbPb_fail->plotOn(xframeB_PbPb_fail,Slice(*sample,"PbPb_fail"),ProjWData(*sample,*data)); TCanvas *c4 = new TCanvas(); c4->cd(); xframeB_PbPb_fail->Draw(); c4->SetLogy(); c4->SaveAs("c2.pdf"); } delete pNll; delete pPoiAndNuisance; ws->import( sbHypo ); ///////////////////////////////////////////////////////////////////// RooStats::ModelConfig bHypo = sbHypo; bHypo.SetName("BHypo"); bHypo.SetWorkspace(*ws); pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) ); // RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots RooArgSet poiAndGlobalObs("poiAndGlobalObs"); poiAndGlobalObs.add( poi ); poiAndGlobalObs.add( globalObs ); RooAbsReal * pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables ((RooRealVar *)poi.first())->setVal( 0 ); // set RFrac2Svs1S_PbPbvsPP=0 here pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values pPoiAndNuisance = new RooArgSet( "poiAndNuisance" ); pPoiAndNuisance->add( nuis ); pPoiAndNuisance->add( poi ); bHypo.SetSnapshot(*pPoiAndNuisance); delete pNll; delete pPoiAndNuisance; // import model config into workspace bHypo.SetWorkspace(*ws); ws->import( bHypo ); ///////////////////////////////////////////////////////////////////// ws->Print(); bHypo.Print(); sbHypo.Print(); // save workspace to file string mainDIR = gSystem->ExpandPathName(gSystem->pwd()); string wsDIR = mainDIR + "/CombinedWorkspaces/"; string ssubDirName=""; if (subDirName) ssubDirName.append(subDirName); string subDIR = wsDIR + ssubDirName; void * dirp = gSystem->OpenDirectory(wsDIR.c_str()); if (dirp) gSystem->FreeDirectory(dirp); else gSystem->mkdir(wsDIR.c_str(), kTRUE); void * dirq = gSystem->OpenDirectory(subDIR.c_str()); if (dirq) gSystem->FreeDirectory(dirq); else gSystem->mkdir(subDIR.c_str(), kTRUE); const char* saveName = Form("%s/%s",subDIR.c_str(),nameOut.Data()); ws->writeToFile(saveName); }
void plot_pll(TString fname="monoh_withsm_SRCR_bg11.7_bgslop-0.0_nsig0.0.root") { SetAtlasStyle(); TFile* file = TFile::Open(fname); RooWorkspace* wspace = (RooWorkspace*) file->Get("wspace"); cout << "\n\ncheck that eff and reco terms included in BSM component to make fiducial cross-section" <<endl; wspace->function("nsig")->Print(); RooRealVar* reco = wspace->var("reco"); if( wspace->function("nsig")->dependsOn(*reco) ) { cout << "all good." <<endl; } else { cout << "need to rerun fit_withsm using DO_FIDUCIAL_LIMIT true" <<endl; return; } /* // DANGER // TEST WITH EXAGGERATED UNCERTAINTY wspace->var("unc_theory")->setMax(1); wspace->var("unc_theory")->setVal(1); wspace->var("unc_theory")->Print(); */ // this was for making plot about decoupling/recoupling approach TCanvas* tc = new TCanvas("tc","",400,400); RooPlot *frame = wspace->var("xsec_bsm")->frame(); RooAbsPdf* pdfc = wspace->pdf("jointModeld"); RooAbsData* data = wspace->data("data"); RooAbsReal *nllJoint = pdfc->createNLL(*data, RooFit::Constrained()); // slice with fixed xsec_bsm RooAbsReal *profileJoint = nllJoint->createProfile(*wspace->var("xsec_bsm")); wspace->allVars().Print("v"); pdfc->fitTo(*data); wspace->allVars().Print("v"); wspace->var("xsec_bsm")->Print(); double nllmin = 2*nllJoint->getVal(); wspace->var("xsec_bsm")->setVal(0); double nll0 = 2*nllJoint->getVal(); cout << Form("nllmin = %f, nll0 = %f, Z=%f", nllmin, nll0, sqrt(nll0-nllmin)) << endl; nllJoint->plotOn(frame, RooFit::LineColor(kGreen), RooFit::LineStyle(kDotted), RooFit::ShiftToZero(), RooFit::Name("nll_statonly")); // no error profileJoint->plotOn(frame,RooFit::Name("pll") ); wspace->var("xsec_sm")->Print(); wspace->var("theory")->Print(); wspace->var("theory")->setConstant(); profileJoint->plotOn(frame, RooFit::LineColor(kRed), RooFit::LineStyle(kDashed), RooFit::Name("pll_smfixed") ); frame->GetXaxis()->SetTitle("#sigma_{BSM, fid} [fb]"); frame->GetYaxis()->SetTitle("-log #lambda ( #sigma_{BSM, fid} )"); double temp = frame->GetYaxis()->GetTitleOffset(); frame->GetYaxis()->SetTitleOffset( 1.1* temp ); frame->SetMinimum(1e-7); frame->SetMaximum(4); // Legend double x1,y1,x2,y2; GetX1Y1X2Y2(tc,x1,y1,x2,y2); TLegend *legend_sr=FastLegend(x2-0.75,y2-0.3,x2-0.25,y2-0.5,0.045); legend_sr->AddEntry(frame->findObject("pll"),"with #sigma_{SM} uncertainty","L"); legend_sr->AddEntry(frame->findObject("pll_smfixed"),"with #sigma_{SM} constant","L"); legend_sr->AddEntry(frame->findObject("nll_statonly"),"no systematics","L"); frame->Draw(); legend_sr->Draw("SAME"); // descriptive text vector<TString> pavetext11; pavetext11.push_back("#bf{#it{ATLAS Internal}}"); pavetext11.push_back("#sqrt{#it{s}} = 8 TeV #scale[0.6]{#int}Ldt = 20.3 fb^{-1}"); pavetext11.push_back("#it{H}+#it{E}_{T}^{miss} , #it{H #rightarrow #gamma#gamma}, #it{m}_{#it{H}} = 125.4 GeV"); TPaveText* text11=CreatePaveText(x2-0.75,y2-0.25,x2-0.25,y2-0.05,pavetext11,0.045); text11->Draw(); tc->SaveAs("pll.pdf"); /* wspace->var("xsec_bsm")->setConstant(true); wspace->var("eff" )->setConstant(true); wspace->var("mh" )->setConstant(true); wspace->var("sigma_h" )->setConstant(true); wspace->var("lumi" )->setConstant(true); wspace->var("xsec_sm" )->setVal(v_xsec_sm); wspace->var("eff" )->setVal(1.0); wspace->var("lumi" )->setVal(v_lumi); TH1* nllHist = profileJoint->createHistogram("xsec_bsm",100); TFile* out = new TFile("nllHist.root","REPLACE"); nllHist->Write() out->Write(); out->Close(); */ }
void LHFit() { double lorange = 100.; double hirange = 140.; // Import data TFile *file = new TFile("/atlas/data18a/yupan/HZZ4l2012/MiniTree/MiniTree_2013Moriond/v03/MC12a/JHUPythia8_AU2CTEQ6L1_ggH125_Spin0p_ZZ4lep.root"); TTree *tree = (TTree*)file->Get("tree_incl_4mu"); // Define variables float m4l = 0; float m34 = 0; float m4lerr = 0; float wgt = 0; // Get the number of entries in the tree int nevents = tree->GetEntries(); tree->SetBranchStatus("*",0); tree->SetBranchStatus("m4l_unconstrained",1); tree->SetBranchStatus("mZ2_unconstrained",1); tree->SetBranchStatus("m4lerr_unconstrained",1); tree->SetBranchStatus("weight_corr",1); tree->SetBranchAddress("m4l_unconstrained",&m4l); tree->SetBranchAddress("mZ2_unconstrained",&m34); tree->SetBranchAddress("m4lerr_unconstrained",&m4lerr); tree->SetBranchAddress("weight_corr",&wgt); /////////////// // Build pdfs ////////////// RooRealVar* mass = new RooRealVar("m4l","mass",lorange,hirange,"GeV"); RooRealVar* mZ2 = new RooRealVar("m34","mZ2",10.,60.,"GeV"); RooRealVar merr("m4lerr","mass err",0.1,5.0,"GeV"); RooRealVar weight("weight","weight",0,10); float totalwgt(0); for (Int_t i=0; i<nevents; i++) { tree->GetEntry(i); totalwgt+=wgt; } std::cout<<"total weight = "<<totalwgt<<std::endl; ////////////////// // Create ND dataset ///////////////// RooDataSet signal("signal","signal",RooArgSet(*mass,*mZ2,merr,weight),"weight"); std::cout<<"Reading in events from signal minitree"<<std::endl; for (int i=0; i<nevents; i++) { tree->GetEntry(i); mass->setVal(m4l); mZ2->setVal(m34); merr.setVal(m4lerr); weight.setVal(wgt/totalwgt); signal.add(RooArgSet(*mass,*mZ2,merr),wgt/totalwgt); } // Create 1D kernel estimation for signal mass RooKeysPdf kestmass("kestmass","kestmass",*mass,signal); // Create histogram of 1D kernel estimation pdf for mass TH1* hm = kestmass.createHistogram("hm",*mass); // Create mass pdf from the 1D kernel histogram RooDataHist* dmass = new RooDataHist("dmass","dmass",RooArgSet(*mass),hm); RooHistPdf* masspdf = new RooHistPdf("masspdf","masspdf",*mass,*dmass,2); ////////////////////////////// // Construct plain likelihood ///////////////////////////// // construct unbinned likelihood RooAbsReal *nll = masspdf->createNLL(signal,NumCPU(2)); // Minimize likelihood w.r.t all parameters before making plots RooMinuit(*nll).migrad(); // Plot likelihood scan mass RooPlot* frame1 = mass->frame(Bins(10),Title("LL and profileLL in mass")); // Construct profile likelihood in mass RooAbsReal *pll_mass = nll->createProfile(*mass); // Plot the profile likelihood in mass pll_mass->plotOn(frame1,LineColor(kRed)); TCanvas *c = new TCanvas("c","c",800,600); gPad->SetLeftMargin(0.15); frame1->GetYaxis()->SetTitleOffset(1.4); frame1->Draw(); c->SaveAs("testProLL.png"); }
void rf605_profilell() { // C r e a t e m o d e l a n d d a t a s e t // ----------------------------------------------- // Observable RooRealVar x("x","x",-20,20) ; // Model (intentional strong correlations) RooRealVar mean("mean","mean of g1 and g2",0,-10,10) ; RooRealVar sigma_g1("sigma_g1","width of g1",3) ; RooGaussian g1("g1","g1",x,mean,sigma_g1) ; RooRealVar sigma_g2("sigma_g2","width of g2",4,3.0,6.0) ; RooGaussian g2("g2","g2",x,mean,sigma_g2) ; RooRealVar frac("frac","frac",0.5,0.0,1.0) ; RooAddPdf model("model","model",RooArgList(g1,g2),frac) ; // Generate 1000 events RooDataSet* data = model.generate(x,1000) ; // C o n s t r u c t p l a i n l i k e l i h o o d // --------------------------------------------------- // Construct unbinned likelihood RooAbsReal* nll = model.createNLL(*data,NumCPU(2)) ; // Minimize likelihood w.r.t all parameters before making plots RooMinuit(*nll).migrad() ; // Plot likelihood scan frac RooPlot* frame1 = frac.frame(Bins(10),Range(0.01,0.95),Title("LL and profileLL in frac")) ; nll->plotOn(frame1,ShiftToZero()) ; // Plot likelihood scan in sigma_g2 RooPlot* frame2 = sigma_g2.frame(Bins(10),Range(3.3,5.0),Title("LL and profileLL in sigma_g2")) ; nll->plotOn(frame2,ShiftToZero()) ; // C o n s t r u c t p r o f i l e l i k e l i h o o d i n f r a c // ----------------------------------------------------------------------- // The profile likelihood estimator on nll for frac will minimize nll w.r.t // all floating parameters except frac for each evaluation RooAbsReal* pll_frac = nll->createProfile(frac) ; // Plot the profile likelihood in frac pll_frac->plotOn(frame1,LineColor(kRed)) ; // Adjust frame maximum for visual clarity frame1->SetMinimum(0) ; frame1->SetMaximum(3) ; // C o n s t r u c t p r o f i l e l i k e l i h o o d i n s i g m a _ g 2 // ------------------------------------------------------------------------------- // The profile likelihood estimator on nll for sigma_g2 will minimize nll // w.r.t all floating parameters except sigma_g2 for each evaluation RooAbsReal* pll_sigmag2 = nll->createProfile(sigma_g2) ; // Plot the profile likelihood in sigma_g2 pll_sigmag2->plotOn(frame2,LineColor(kRed)) ; // Adjust frame maximum for visual clarity frame2->SetMinimum(0) ; frame2->SetMaximum(3) ; // Make canvas and draw RooPlots TCanvas *c = new TCanvas("rf605_profilell","rf605_profilell",800, 400); c->Divide(2); c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.4) ; frame1->Draw() ; c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ; delete pll_frac ; delete pll_sigmag2 ; delete nll ; }
Int_t Tprime::SetParameterPoints( std::string sbModelName, std::string bModelName ) { // // Fit the data with S+B model. // Make a snapshot of the S+B parameter point. // Profile with POI=0. // Make a snapshot of the B parameter point // (B model is the S+B model with POI=0 // Double_t poi_value_for_b_model = 0.0; // get S+B model config from workspace RooStats::ModelConfig * pSbModel = (RooStats::ModelConfig *)pWs->obj(sbModelName.c_str()); pSbModel->SetWorkspace(*pWs); // get parameter of interest set const RooArgSet * poi = pSbModel->GetParametersOfInterest(); // get B model config from workspace RooStats::ModelConfig * pBModel = (RooStats::ModelConfig *)pWs->obj(bModelName.c_str()); pBModel->SetWorkspace(*pWs); // make sure that data has been loaded if (!data) return -1; // find parameter point for global maximum with the S+B model, // with conditional MLEs for nuisance parameters // and save the parameter point snapshot in the Workspace RooAbsReal * nll = pSbModel->GetPdf()->createNLL(*data); RooAbsReal * profile = nll->createProfile(RooArgSet()); profile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values RooArgSet * poiAndNuisance = new RooArgSet(); if(pSbModel->GetNuisanceParameters()) poiAndNuisance->add(*pSbModel->GetNuisanceParameters()); poiAndNuisance->add(*pSbModel->GetParametersOfInterest()); pWs->defineSet("SPlusBModelParameters", *poiAndNuisance); pWs->saveSnapshot("SPlusBFitParameters",*poiAndNuisance); pSbModel->SetSnapshot(*poi); RooArgSet * sbModelFitParams = (RooArgSet *)poiAndNuisance->snapshot(); cout << "\nWill save these parameter points that correspond to the fit to data" << endl; sbModelFitParams->Print("v"); delete profile; delete nll; delete poiAndNuisance; delete sbModelFitParams; // // Find a parameter point for generating pseudo-data // with the background-only data. // Save the parameter point snapshot in the Workspace nll = pBModel->GetPdf()->createNLL(*data); profile = nll->createProfile(*poi); ((RooRealVar *)poi->first())->setVal(poi_value_for_b_model); profile->getVal(); // this will do fit and set nuisance parameters to profiled values poiAndNuisance = new RooArgSet(); if(pBModel->GetNuisanceParameters()) poiAndNuisance->add(*pBModel->GetNuisanceParameters()); poiAndNuisance->add(*pBModel->GetParametersOfInterest()); pWs->defineSet("parameterPointToGenerateData", *poiAndNuisance); pWs->saveSnapshot("parametersToGenerateData",*poiAndNuisance); pBModel->SetSnapshot(*poi); RooArgSet * paramsToGenerateData = (RooArgSet *)poiAndNuisance->snapshot(); cout << "\nShould use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); delete profile; delete nll; delete poiAndNuisance; delete paramsToGenerateData; return 0; }