Beispiel #1
0
  Number CGPenaltyCq::dT_times_barH_times_d()
  {
    DBG_START_METH("IpoptCalculatedQuantities::dT_times_barH_times_d()",
                   dbg_verbosity);
    Number result;
    SmartPtr<const Vector> d_x = CGPenData().delta_cgfast()->x();
    SmartPtr<const Vector> d_s = CGPenData().delta_cgfast()->s();
    SmartPtr<const Vector> y_c = ip_data_->curr()->y_c();
    SmartPtr<const Vector> y_d = ip_data_->curr()->y_d();
    SmartPtr<const Vector> dy_c = CGPenData().delta_cgfast()->y_c();
    SmartPtr<const Vector> dy_d = CGPenData().delta_cgfast()->y_d();
    SmartPtr<const Vector> c = ip_cq_->curr_c();
    SmartPtr<const Vector> d_minus_s = ip_cq_->curr_d_minus_s();
    Number deriv_barrier_dx = ip_cq_->curr_grad_barrier_obj_x()->Dot(*d_x);
    Number deriv_barrier_dx_ds = deriv_barrier_dx + ip_cq_->curr_grad_barrier_obj_s()->Dot(*d_s);
    Number penalty = CGPenData().curr_penalty();
    result = -y_c->Dot(*dy_c);
    result -= y_d->Dot(*dy_d);
    result *= curr_cg_pert_fact();
    result -= deriv_barrier_dx_ds;
    result += c->Dot(*y_c);
    result += d_minus_s->Dot(*y_d);
    result -= c->Dot(*dy_c);
    result -= d_minus_s->Dot(*dy_d);
    result += penalty*ip_cq_->curr_primal_infeasibility(NORM_2);

    return result;
  }
Beispiel #2
0
  Number CGPenaltyCq::curr_direct_deriv_penalty_function()
  {
    DBG_START_METH("CGPenaltyCq::curr_direct_deriv_penalty_function()",
                   dbg_verbosity);

    Number result;
    SmartPtr<const Vector> x = ip_data_->curr()->x();
    SmartPtr<const Vector> s = ip_data_->curr()->s();
    SmartPtr<const Vector> y_c = ip_data_->curr()->y_c();
    SmartPtr<const Vector> y_d = ip_data_->curr()->y_d();
    SmartPtr<const Vector> dy_c = CGPenData().delta_cgpen()->y_c();
    SmartPtr<const Vector> dy_d = CGPenData().delta_cgpen()->y_d();
    SmartPtr<const Vector> dx = CGPenData().delta_cgpen()->x();
    SmartPtr<const Vector> ds = CGPenData().delta_cgpen()->s();
    std::vector<const TaggedObject*> tdeps(8);
    tdeps[0] = GetRawPtr(x);
    tdeps[1] = GetRawPtr(s);
    tdeps[2] = GetRawPtr(y_c);
    tdeps[3] = GetRawPtr(y_d);
    tdeps[4] = GetRawPtr(dy_c);
    tdeps[5] = GetRawPtr(dy_d);
    tdeps[6] = GetRawPtr(dx);
    tdeps[7] = GetRawPtr(ds);
    Number mu = ip_data_->curr_mu();
    Number penalty = CGPenData().curr_penalty();
    std::vector<Number> sdeps(2);
    sdeps[0] = mu;
    sdeps[1] = penalty;
    if (!curr_direct_deriv_penalty_function_cache_.GetCachedResult(result, tdeps, sdeps)) {
      result = ip_cq_->curr_grad_barrier_obj_x()->Dot(*dx) +
               ip_cq_->curr_grad_barrier_obj_s()->Dot(*ds);
      Number curr_inf = ip_cq_->curr_primal_infeasibility(NORM_2);
      result -= penalty*curr_inf;
      if (curr_inf != 0.) {
        Number fac = penalty*CGPenData().CurrPenaltyPert()/curr_inf;
        SmartPtr<const Vector> c = ip_cq_->curr_c();
        SmartPtr<const Vector> d_minus_s = ip_cq_->curr_d_minus_s();
        Number result1 = c->Dot(*y_c);
        result1 += c->Dot(*dy_c);
        result1 += d_minus_s->Dot(*y_d);
        result1 += d_minus_s->Dot(*dy_d);
        result1 *= fac;
        result += result1;
      }
      curr_direct_deriv_penalty_function_cache_.AddCachedResult(result, tdeps, sdeps);
    }
    return result;
  }
Beispiel #3
0
  Number CGPenaltyCq::compute_curr_cg_penalty(const Number pen_des_fact )
  {
    DBG_START_METH("CGPenaltyCq::compute_curr_cg_penalty()",
                   dbg_verbosity);

    SmartPtr<const Vector> d_x = ip_data_->delta()->x();
    SmartPtr<const Vector> d_s = ip_data_->delta()->s();
    SmartPtr<const Vector> y_c = ip_data_->curr()->y_c();
    SmartPtr<const Vector> y_d = ip_data_->curr()->y_d();
    SmartPtr<const Vector> dy_c = ip_data_->delta()->y_c();
    SmartPtr<const Vector> dy_d = ip_data_->delta()->y_d();

    // Compute delta barrier times (delta x, delta s)
    Number deriv_barrier_dx = ip_cq_->curr_grad_barrier_obj_x()->Dot(*d_x);
    Number deriv_barrier_dx_ds = deriv_barrier_dx + ip_cq_->curr_grad_barrier_obj_s()->Dot(*d_s);
    // Compute delta x times the damped Hessian times delta x
    SmartPtr<const Vector> tem_jac_cT_times_y_c =
      ip_cq_->curr_jac_cT_times_vec(*y_c);
    SmartPtr<const Vector> tem_jac_cT_times_dy_c =
      ip_cq_->curr_jac_cT_times_vec(*dy_c);
    SmartPtr<Vector> tem_jac_cT_times_y_c_plus_dy_c =
      tem_jac_cT_times_y_c->MakeNew();
    tem_jac_cT_times_y_c_plus_dy_c->AddTwoVectors(1.,*tem_jac_cT_times_y_c, 1.,
        *tem_jac_cT_times_dy_c, 0.);
    SmartPtr<const Vector> tem_jac_dT_times_y_d =
      ip_cq_->curr_jac_dT_times_vec(*y_d);
    SmartPtr<const Vector> tem_jac_dT_times_dy_d =
      ip_cq_->curr_jac_cT_times_vec(*dy_c);
    SmartPtr<Vector> tem_jac_dT_times_y_d_plus_dy_d =
      tem_jac_cT_times_y_c->MakeNew();
    tem_jac_dT_times_y_d_plus_dy_d->AddTwoVectors(1.,*tem_jac_dT_times_y_d, 1.,
        *tem_jac_dT_times_dy_d, 0.);
    Number d_xs_times_damped_Hessian_times_d_xs = -deriv_barrier_dx_ds;
    d_xs_times_damped_Hessian_times_d_xs +=
      -(tem_jac_cT_times_y_c_plus_dy_c->Dot(*d_x)
        +tem_jac_dT_times_y_d_plus_dy_d->Dot(*d_x)
        -y_d->Dot(*d_s)
        -dy_d->Dot(*d_s));
    Number dxs_nrm = pow(d_x->Nrm2(), 2.) + pow(d_s->Nrm2(), 2.);
    d_xs_times_damped_Hessian_times_d_xs = Max(1e-8*dxs_nrm,
                                           d_xs_times_damped_Hessian_times_d_xs);
    Number infeasibility = ip_cq_->curr_primal_infeasibility(NORM_2);
    Number penalty = 0.;
    if (infeasibility > 0.) {
      Number deriv_inf = 0.;
      Number fac = CGPenData().CurrPenaltyPert()/infeasibility;
      SmartPtr<const Vector> c = ip_cq_->curr_c();
      SmartPtr<const Vector> d_minus_s = ip_cq_->curr_d_minus_s();
      if (CGPenData().HaveCgFastDeltas()) {
        SmartPtr<const Vector> fast_dy_c = CGPenData().delta_cgfast()->y_c();
        SmartPtr<const Vector> fast_dy_d = CGPenData().delta_cgfast()->y_d();
        deriv_inf += c->Dot(*fast_dy_c);
        deriv_inf += d_minus_s->Dot(*fast_dy_d);
        deriv_inf *= fac;
        deriv_inf -= infeasibility;
      }
      else {
        SmartPtr<const Vector> cgpen_dy_c = CGPenData().delta_cgpen()->y_c();
        SmartPtr<const Vector> cgpen_dy_d = CGPenData().delta_cgpen()->y_d();
        deriv_inf += c->Dot(*cgpen_dy_c);
        deriv_inf += c->Dot(*y_c);
        deriv_inf += d_minus_s->Dot(*cgpen_dy_d);
        deriv_inf += d_minus_s->Dot(*y_d);
        deriv_inf *= fac;
        deriv_inf -= infeasibility;
      }
      penalty = -(deriv_barrier_dx_ds + pen_des_fact*
                  d_xs_times_damped_Hessian_times_d_xs)/
                (deriv_inf + pen_des_fact*infeasibility);
    }

    return penalty;
  }
Beispiel #4
0
Number InexactLSAcceptor::ComputeAlphaForY(
   Number                    alpha_primal,
   Number                    alpha_dual,
   SmartPtr<IteratesVector>& delta
   )
{
   DBG_START_METH("InexactLSAcceptor::ComputeAlphaForY",
      dbg_verbosity);

   // Here, we choose as stepsize for y either alpha_primal, if the
   // conditions from the ineqaxt paper is satisfied for it, or we
   // compute the step size closest to alpha_primal but great than
   // it, that does give the same progress as the full step would
   // give.

   Number alpha_y = alpha_primal;

   SmartPtr<Vector> gx = IpCq().curr_grad_barrier_obj_x()->MakeNewCopy();
   gx->AddTwoVectors(1., *IpCq().curr_jac_cT_times_curr_y_c(), 1., *IpCq().curr_jac_dT_times_curr_y_d(), 1.);
   SmartPtr<Vector> Jxy = gx->MakeNew();
   IpCq().curr_jac_c()->TransMultVector(1., *delta->y_c(), 0., *Jxy);
   IpCq().curr_jac_d()->TransMultVector(1., *delta->y_d(), 1., *Jxy);

   SmartPtr<const Vector> curr_scaling_slacks = InexCq().curr_scaling_slacks();
   SmartPtr<Vector> gs = curr_scaling_slacks->MakeNew();
   gs->AddTwoVectors(1., *IpCq().curr_grad_barrier_obj_s(), -1., *IpData().curr()->y_d(), 0.);
   gs->ElementWiseMultiply(*curr_scaling_slacks);

   SmartPtr<Vector> Sdy = delta->y_d()->MakeNewCopy();
   Sdy->ElementWiseMultiply(*curr_scaling_slacks);

   // using the magic formula in my notebook
   Number a = pow(Jxy->Nrm2(), 2) + pow(Sdy->Nrm2(), 2);
   Number b = 2 * (gx->Dot(*Jxy) - gs->Dot(*Sdy));
   Number c = pow(gx->Nrm2(), 2) + pow(gs->Nrm2(), 2);

   // First we check if the primal step size is good enough:
   Number val_ap = alpha_primal * alpha_primal * a + alpha_primal * b + c;
   Number val_1 = a + b + c;

   if( val_ap <= val_1 )
   {
      Jnlst().Printf(J_DETAILED, J_LINE_SEARCH, "  Step size for y: using alpha_primal\n.");
   }
   else
   {
      Number alpha_2 = -b / a - 1.;
      Jnlst().Printf(J_DETAILED, J_LINE_SEARCH, "  Step size for y candidate: %8.2e - ", alpha_2);
      if( alpha_2 > alpha_primal && alpha_2 < 1. )
      {
         alpha_y = alpha_2;
         Jnlst().Printf(J_DETAILED, J_LINE_SEARCH, "using that one\n.");
      }
      else
      {
         alpha_y = 1.;
         Jnlst().Printf(J_DETAILED, J_LINE_SEARCH, "using 1 instead\n");
      }
   }

   return alpha_y;
}