Beispiel #1
0
bool EffectRepeat::Process()
{
   this->CopyInputWaveTracks(); // Set up mOutputWaveTracks.
   bool bGoodResult = true;

   TrackListIterator iter(mOutputWaveTracks);
   WaveTrack *track = (WaveTrack *) iter.First();
   int nTrack = 0;
	double maxDestLen = 0.0; // used to change selection to generated bit
   while ((track != NULL) && bGoodResult) {
      double trackStart = track->GetStartTime();
      double trackEnd = track->GetEndTime();
      double t0 = mT0 < trackStart? trackStart: mT0;
      double t1 = mT1 > trackEnd? trackEnd: mT1;

      if (t1 <= t0)
         continue;

      sampleCount start = track->TimeToLongSamples(t0);
      sampleCount end = track->TimeToLongSamples(t1);
      sampleCount len = (sampleCount)(end - start);
      double tLen = track->LongSamplesToTime(len);
      double tc = t0 + tLen;

      if (len <= 0)
         continue;

      Track *dest;
      track->Copy(t0, t1, &dest);
      for(int j=0; j<repeatCount; j++)
      {
         if (!track->Paste(tc, dest) || 
               TrackProgress(nTrack, j / repeatCount)) // TrackProgress returns true on Cancel.
         {
            bGoodResult = false;
            break;
         }
         tc += tLen;
      }
      if (tc > maxDestLen)
         maxDestLen = tc;
      delete dest;

      track = (WaveTrack *) iter.Next();
      nTrack++;
   }

   if (bGoodResult)
   {
      // Change selection to just the generated bits.
      mT0 = mT1;
	   mT1 = maxDestLen;
   }

   this->ReplaceProcessedWaveTracks(bGoodResult); 
   return bGoodResult;
}
Beispiel #2
0
bool EffectRepeat::Process()
{
   // Set up mOutputTracks.
   // This effect needs Track::All for sync-lock grouping.
   CopyInputTracks(Track::All);

   int nTrack = 0;
   bool bGoodResult = true;
   double maxDestLen = 0.0; // used to change selection to generated bit

   TrackListIterator iter(mOutputTracks);

   for (Track *t = iter.First(); t && bGoodResult; t = iter.Next())
   {
      if (t->GetKind() == Track::Label)
      {
         if (t->GetSelected() || t->IsSyncLockSelected())
         {
            LabelTrack* track = (LabelTrack*)t;

            if (!track->Repeat(mT0, mT1, repeatCount))
            {
               bGoodResult = false;
               break;
            }
         }
      }
      else if (t->GetKind() == Track::Wave && t->GetSelected())
      {
         WaveTrack* track = (WaveTrack*)t;

         sampleCount start = track->TimeToLongSamples(mT0);
         sampleCount end = track->TimeToLongSamples(mT1);
         sampleCount len = (sampleCount)(end - start);
         double tLen = track->LongSamplesToTime(len);
         double tc = mT0 + tLen;

         if (len <= 0)
         {
            continue;
         }

         auto dest = track->Copy(mT0, mT1);
         for(int j=0; j<repeatCount; j++)
         {
            if (!track->Paste(tc, dest.get()) ||
                  TrackProgress(nTrack, j / repeatCount)) // TrackProgress returns true on Cancel.
            {
               bGoodResult = false;
               break;
            }
            tc += tLen;
         }
         if (tc > maxDestLen)
            maxDestLen = tc;
         nTrack++;
      }
      else if (t->IsSyncLockSelected())
      {
         t->SyncLockAdjust(mT1, mT1 + (mT1 - mT0) * repeatCount);
      }
   }

   if (bGoodResult)
   {
      // Select the NEW bits + original bit
      mT1 = maxDestLen;
   }

   ReplaceProcessedTracks(bGoodResult);
   return bGoodResult;
}
Beispiel #3
0
bool EffectTruncSilence::Process()
{
   // Typical fraction of total time taken by detection (better to guess low)
   const double detectFrac = .4;

   // Copy tracks
   this->CopyInputTracks(Track::All);

   // Lower bound on the amount of silence to find at a time -- this avoids
   // detecting silence repeatedly in low-frequency sounds.
   const double minTruncMs = 0.001;
   double truncDbSilenceThreshold = Enums::Db2Signal[mTruncDbChoiceIndex];

   // Master list of silent regions; it is responsible for deleting them.
   // This list should always be kept in order.
   RegionList silences;
   silences.DeleteContents(true);

   // Start with the whole selection silent
   Region *sel = new Region;
   sel->start = mT0;
   sel->end = mT1;
   silences.push_back(sel);

   // Remove non-silent regions in each track
   SelectedTrackListOfKindIterator iter(Track::Wave, mTracks);
   int whichTrack = 0;
   for (Track *t = iter.First(); t; t = iter.Next())
   {
      WaveTrack *wt = (WaveTrack *)t;

      // Smallest silent region to detect in frames
      sampleCount minSilenceFrames =
            sampleCount(wxMax( mInitialAllowedSilence, minTruncMs) *
                  wt->GetRate());

      //
      // Scan the track for silences
      //
      RegionList trackSilences;
      trackSilences.DeleteContents(true);
      sampleCount blockLen = wt->GetMaxBlockSize();
      sampleCount start = wt->TimeToLongSamples(mT0);
      sampleCount end = wt->TimeToLongSamples(mT1);

      // Allocate buffer
      float *buffer = new float[blockLen];

      sampleCount index = start;
      sampleCount silentFrames = 0;
      bool cancelled = false;

      // Keep position in overall silences list for optimization
      RegionList::iterator rit(silences.begin());

      while (index < end) {
         // Show progress dialog, test for cancellation
         cancelled = TotalProgress(
               detectFrac * (whichTrack + index / (double)end) /
               (double)GetNumWaveTracks());
         if (cancelled)
            break;

         //
         // Optimization: if not in a silent region skip ahead to the next one
         //
         double curTime = wt->LongSamplesToTime(index);
         for ( ; rit != silences.end(); ++rit)
         {
            // Find the first silent region ending after current time
            if ((*rit)->end >= curTime)
               break;
         }

         if (rit == silences.end()) {
            // No more regions -- no need to process the rest of the track
            break;
         }
         else if ((*rit)->start > curTime) {
            // End current silent region, skip ahead
            if (silentFrames >= minSilenceFrames) {
               Region *r = new Region;
               r->start = wt->LongSamplesToTime(index - silentFrames);
               r->end = wt->LongSamplesToTime(index);
               trackSilences.push_back(r);
            }
            silentFrames = 0;

            index = wt->TimeToLongSamples((*rit)->start);
         }
         //
         // End of optimization
         //

         // Limit size of current block if we've reached the end
         sampleCount count = blockLen;
         if ((index + count) > end) {
            count = end - index;
         }

         // Fill buffer
         wt->Get((samplePtr)(buffer), floatSample, index, count);

         // Look for silences in current block
         for (sampleCount i = 0; i < count; ++i) {
            if (fabs(buffer[i]) < truncDbSilenceThreshold) {
               ++silentFrames;
            }
            else {
               if (silentFrames >= minSilenceFrames)
               {
                  // Record the silent region
                  Region *r = new Region;
                  r->start = wt->LongSamplesToTime(index + i - silentFrames);
                  r->end = wt->LongSamplesToTime(index + i);
                  trackSilences.push_back(r);
               }
               silentFrames = 0;
            }
         }

         // Next block
         index += count;
      }

      delete [] buffer;

      // Buffer has been freed, so we're OK to return if cancelled
      if (cancelled)
      {
         ReplaceProcessedTracks(false);
         return false;
      }

      if (silentFrames >= minSilenceFrames)
      {
         // Track ended in silence -- record region
         Region *r = new Region;
         r->start = wt->LongSamplesToTime(index - silentFrames);
         r->end = wt->LongSamplesToTime(index);
         trackSilences.push_back(r);
      }

      // Intersect with the overall silent region list
      Intersect(silences, trackSilences);
      whichTrack++;
   }

   //
   // Now remove the silent regions from all selected / sync-lock selected tracks.
   //

   // Loop over detected regions in reverse (so cuts don't change time values
   // down the line)
   int whichReg = 0;
   RegionList::reverse_iterator rit;
   double totalCutLen = 0.0;  // For cutting selection at the end
   for (rit = silences.rbegin(); rit != silences.rend(); ++rit) {
      Region *r = *rit;

      // Progress dialog and cancellation. Do additional cleanup before return.
      if (TotalProgress(detectFrac + (1 - detectFrac) * whichReg / (double)silences.size()))
      {
         ReplaceProcessedTracks(false);
         return false;
      }

      // Intersection may create regions smaller than allowed; ignore them.
      // Allow one nanosecond extra for consistent results with exact milliseconds of allowed silence.
      if ((r->end - r->start) < (mInitialAllowedSilence - 0.000000001))
         continue;

      // Find new silence length as requested
      double inLength = r->end - r->start;
      double outLength;

      switch (mProcessIndex) {
      case 0:
         outLength = wxMin(mTruncLongestAllowedSilence, inLength);
         break;
      case 1:
         outLength = mInitialAllowedSilence +
                        (inLength - mInitialAllowedSilence) * mSilenceCompressPercent / 100.0;
         break;
      default: // Not currently used.
         outLength = wxMin(mInitialAllowedSilence +
                              (inLength - mInitialAllowedSilence) * mSilenceCompressPercent / 100.0,
                           mTruncLongestAllowedSilence);
      }

      double cutLen = inLength - outLength;
      totalCutLen += cutLen;

      TrackListIterator iterOut(mOutputTracks);
      for (Track *t = iterOut.First(); t; t = iterOut.Next())
      {
         // Don't waste time past the end of a track
         if (t->GetEndTime() < r->start)
            continue;

         if (t->GetKind() == Track::Wave && (
                  t->GetSelected() || t->IsSyncLockSelected()))
         {
            // In WaveTracks, clear with a cross-fade
            WaveTrack *wt = (WaveTrack *)t;
            sampleCount blendFrames = mBlendFrameCount;
            double cutStart = (r->start + r->end - cutLen) / 2;
            double cutEnd = cutStart + cutLen;
            // Round start/end times to frame boundaries
            cutStart = wt->LongSamplesToTime(wt->TimeToLongSamples(cutStart));
            cutEnd = wt->LongSamplesToTime(wt->TimeToLongSamples(cutEnd));

            // Make sure the cross-fade does not affect non-silent frames
            if (wt->LongSamplesToTime(blendFrames) > inLength) {
               blendFrames = wt->TimeToLongSamples(inLength);
            }

            // Perform cross-fade in memory
            float *buf1 = new float[blendFrames];
            float *buf2 = new float[blendFrames];
            sampleCount t1 = wt->TimeToLongSamples(cutStart) - blendFrames / 2;
            sampleCount t2 = wt->TimeToLongSamples(cutEnd) - blendFrames / 2;

            wt->Get((samplePtr)buf1, floatSample, t1, blendFrames);
            wt->Get((samplePtr)buf2, floatSample, t2, blendFrames);

            for (sampleCount i = 0; i < blendFrames; ++i) {
               buf1[i] = ((blendFrames-i) * buf1[i] + i * buf2[i]) /
                         (double)blendFrames;
            }

            // Perform the cut
            wt->Clear(cutStart, cutEnd);

            // Write cross-faded data
            wt->Set((samplePtr)buf1, floatSample, t1, blendFrames);

            delete [] buf1;
            delete [] buf2;
         }
         else if (t->GetSelected() || t->IsSyncLockSelected())
         {
            // Non-wave tracks: just do a sync-lock adjust
            double cutStart = (r->start + r->end - cutLen) / 2;
            double cutEnd = cutStart + cutLen;
            t->SyncLockAdjust(cutEnd, cutStart);
         }
      }
      ++whichReg;
   }

   mT1 -= totalCutLen;

   ReplaceProcessedTracks(true);

   return true;
}