nsIntRegion
ContentClientRemoteBuffer::GetUpdatedRegion(const nsIntRegion& aRegionToDraw,
                                            const nsIntRegion& aVisibleRegion,
                                            bool aDidSelfCopy)
{
  nsIntRegion updatedRegion;
  if (mIsNewBuffer || aDidSelfCopy) {
    // A buffer reallocation clears both buffers. The front buffer has all the
    // content by now, but the back buffer is still clear. Here, in effect, we
    // are saying to copy all of the pixels of the front buffer to the back.
    // Also when we self-copied in the buffer, the buffer space
    // changes and some changed buffer content isn't reflected in the
    // draw or invalidate region (on purpose!).  When this happens, we
    // need to read back the entire buffer too.
    updatedRegion = aVisibleRegion.GetBounds();
    mIsNewBuffer = false;
  } else {
    updatedRegion = aRegionToDraw;
  }

  NS_ASSERTION(BufferRect().Contains(aRegionToDraw.GetBounds()),
               "Update outside of buffer rect!");
  MOZ_ASSERT(mTextureClient, "should have a back buffer by now");

  return updatedRegion;
}
void
SimpleTiledLayerBuffer::PaintThebes(const nsIntRegion& aNewValidRegion,
                                    const nsIntRegion& aPaintRegion,
                                    LayerManager::DrawThebesLayerCallback aCallback,
                                    void* aCallbackData)
{
  mCallback = aCallback;
  mCallbackData = aCallbackData;

#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  long start = PR_IntervalNow();
#endif

  // If this region is empty XMost() - 1 will give us a negative value.
  NS_ASSERTION(!aPaintRegion.GetBounds().IsEmpty(), "Empty paint region\n");

  PROFILER_LABEL("SimpleTiledLayerBuffer", "PaintThebesUpdate");

  Update(aNewValidRegion, aPaintRegion);

#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  if (PR_IntervalNow() - start > 10) {
    const nsIntRect bounds = aPaintRegion.GetBounds();
    printf_stderr("Time to tile [%i, %i, %i, %i] -> %i\n", bounds.x, bounds.y, bounds.width, bounds.height, PR_IntervalNow() - start);
  }
#endif

  mLastPaintOpaque = mThebesLayer->CanUseOpaqueSurface();
  mCallback = nullptr;
  mCallbackData = nullptr;
}
already_AddRefed<gfxASurface>
ContentClientIncremental::GetUpdateSurface(BufferType aType,
                                           nsIntRegion& aUpdateRegion)
{
  nsIntRect rgnSize = aUpdateRegion.GetBounds();
  if (!mBufferRect.Contains(rgnSize)) {
    NS_ERROR("update outside of image");
    return nullptr;
  }
  SurfaceDescriptor desc;
  if (!mForwarder->AllocSurfaceDescriptor(gfxIntSize(rgnSize.width, rgnSize.height),
                                          mContentType,
                                          &desc)) {
    NS_WARNING("creating SurfaceDescriptor failed!");
    return nullptr;
  }

  nsRefPtr<gfxASurface> tmpASurface =
    ShadowLayerForwarder::OpenDescriptor(OPEN_READ_WRITE, desc);

  if (aType == BUFFER_BLACK) {
    MOZ_ASSERT(!IsSurfaceDescriptorValid(mUpdateDescriptor));
    mUpdateDescriptor = desc;
  } else {
    MOZ_ASSERT(!IsSurfaceDescriptorValid(mUpdateDescriptorOnWhite));
    MOZ_ASSERT(aType == BUFFER_WHITE);
    mUpdateDescriptorOnWhite = desc;
  }

  return tmpASurface.forget();
}
TemporaryRef<DrawTarget>
ContentClientIncremental::GetUpdateSurface(BufferType aType,
        const nsIntRegion& aUpdateRegion)
{
    nsIntRect rgnSize = aUpdateRegion.GetBounds();
    if (!mBufferRect.Contains(rgnSize)) {
        NS_ERROR("update outside of image");
        return nullptr;
    }
    SurfaceDescriptor desc;
    if (!mForwarder->AllocSurfaceDescriptor(rgnSize.Size().ToIntSize(),
                                            mContentType,
                                            &desc)) {
        NS_WARNING("creating SurfaceDescriptor failed!");
        Clear();
        return nullptr;
    }

    if (aType == BUFFER_BLACK) {
        MOZ_ASSERT(!IsSurfaceDescriptorValid(mUpdateDescriptor));
        mUpdateDescriptor = desc;
    } else {
        MOZ_ASSERT(!IsSurfaceDescriptorValid(mUpdateDescriptorOnWhite));
        MOZ_ASSERT(aType == BUFFER_WHITE);
        mUpdateDescriptorOnWhite = desc;
    }

    return GetDrawTargetForDescriptor(desc, gfx::BackendType::COREGRAPHICS);
}
bool
TextureImageEGL::DirectUpdate(gfxASurface* aSurf, const nsIntRegion& aRegion, const nsIntPoint& aFrom /* = nsIntPoint(0, 0) */)
{
    nsIntRect bounds = aRegion.GetBounds();

    nsIntRegion region;
    if (mTextureState != Valid) {
        bounds = nsIntRect(0, 0, mSize.width, mSize.height);
        region = nsIntRegion(bounds);
    } else {
        region = aRegion;
    }

    mTextureFormat =
      UploadSurfaceToTexture(mGLContext,
                             aSurf,
                             region,
                             mTexture,
                             mTextureState == Created,
                             bounds.TopLeft() + aFrom,
                             false);

    mTextureState = Valid;
    return true;
}
Beispiel #6
0
void
Compositor::DrawDiagnostics(DiagnosticFlags aFlags,
                            const nsIntRegion& aVisibleRegion,
                            const gfx::Rect& aClipRect,
                            const gfx::Matrix4x4& aTransform,
                            uint32_t aFlashCounter)
{
  if (!ShouldDrawDiagnostics(aFlags)) {
    return;
  }

  if (aVisibleRegion.GetNumRects() > 1) {
    nsIntRegionRectIterator screenIter(aVisibleRegion);

    while (const gfx::IntRect* rect = screenIter.Next())
    {
      DrawDiagnostics(aFlags | DiagnosticFlags::REGION_RECT,
                      IntRectToRect(*rect), aClipRect, aTransform,
                      aFlashCounter);
    }
  }

  DrawDiagnostics(aFlags, IntRectToRect(aVisibleRegion.GetBounds()),
                  aClipRect, aTransform, aFlashCounter);
}
/* static */ void
nsBaseWidget::debug_DumpPaintEvent(FILE *                aFileOut,
                                   nsIWidget *           aWidget,
                                   const nsIntRegion &   aRegion,
                                   const nsAutoCString & aWidgetName,
                                   int32_t               aWindowID)
{
  NS_ASSERTION(nullptr != aFileOut,"cmon, null output FILE");
  NS_ASSERTION(nullptr != aWidget,"cmon, the widget is null");

  if (!debug_GetCachedBoolPref("nglayout.debug.paint_dumping"))
    return;

  nsIntRect rect = aRegion.GetBounds();
  fprintf(aFileOut,
          "%4d PAINT      widget=%p name=%-12s id=0x%-6x bounds-rect=%3d,%-3d %3d,%-3d",
          _GetPrintCount(),
          (void *) aWidget,
          aWidgetName.get(),
          aWindowID,
          rect.x, rect.y, rect.width, rect.height
    );

  fprintf(aFileOut,"\n");
}
RenderViewMLGPU::RenderViewMLGPU(FrameBuilder* aBuilder,
                                 MLGRenderTarget* aTarget,
                                 const nsIntRegion& aInvalidRegion)
    : RenderViewMLGPU(aBuilder, nullptr) {
  mTarget = aTarget;
  mInvalidBounds = aInvalidRegion.GetBounds();

  // The clear region on the layer manager is the area that must be clear after
  // we finish drawing.
  mPostClearRegion = aBuilder->GetManager()->GetRegionToClear();

  // Clamp the post-clear region to the invalid bounds, since clears don't go
  // through the scissor rect if using ClearView.
  mPostClearRegion.AndWith(mInvalidBounds);

  // Since the post-clear will occlude everything, we include it in the final
  // opaque area.
  mOccludedRegion.OrWith(ViewAs<LayerPixel>(
      mPostClearRegion,
      PixelCastJustification::RenderTargetIsParentLayerForRoot));

  AL_LOG("RenderView %p root with invalid area %s, clear area %s\n", this,
         Stringify(mInvalidBounds).c_str(),
         Stringify(mPostClearRegion).c_str());
}
void
ContentClientDoubleBuffered::UpdateDestinationFrom(const RotatedBuffer& aSource,
                                                   const nsIntRegion& aUpdateRegion)
{
  nsRefPtr<gfxContext> destCtx =
    GetContextForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_BLACK);
  destCtx->SetOperator(gfxContext::OPERATOR_SOURCE);

  bool isClippingCheap = IsClippingCheap(destCtx, aUpdateRegion);
  if (isClippingCheap) {
    gfxUtils::ClipToRegion(destCtx, aUpdateRegion);
  }

  if (SupportsAzureContent()) {
    MOZ_ASSERT(!destCtx->IsCairo());

    if (destCtx->GetDrawTarget()->GetFormat() == FORMAT_B8G8R8A8) {
      destCtx->GetDrawTarget()->ClearRect(Rect(0, 0, mFrontBufferRect.width, mFrontBufferRect.height));
    }
    aSource.DrawBufferWithRotation(destCtx->GetDrawTarget(), BUFFER_BLACK);
  } else {
    aSource.DrawBufferWithRotation(destCtx, BUFFER_BLACK);
  }

  if (aSource.HaveBufferOnWhite()) {
    MOZ_ASSERT(HaveBufferOnWhite());
    nsRefPtr<gfxContext> destCtx =
      GetContextForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_WHITE);
    destCtx->SetOperator(gfxContext::OPERATOR_SOURCE);

    bool isClippingCheap = IsClippingCheap(destCtx, aUpdateRegion);
    if (isClippingCheap) {
      gfxUtils::ClipToRegion(destCtx, aUpdateRegion);
    }

    if (SupportsAzureContent()) {
      MOZ_ASSERT(!destCtx->IsCairo());

      if (destCtx->GetDrawTarget()->GetFormat() == FORMAT_B8G8R8A8) {
        destCtx->GetDrawTarget()->ClearRect(Rect(0, 0, mFrontBufferRect.width, mFrontBufferRect.height));
      }
      aSource.DrawBufferWithRotation(destCtx->GetDrawTarget(), BUFFER_WHITE);
    } else {
      aSource.DrawBufferWithRotation(destCtx, BUFFER_WHITE);
    }
  }
}
Beispiel #10
0
bool
ContentHostSingleBuffered::UpdateThebes(const ThebesBufferData& aData,
                                        const nsIntRegion& aUpdated,
                                        const nsIntRegion& aOldValidRegionBack,
                                        nsIntRegion* aUpdatedRegionBack)
{
  aUpdatedRegionBack->SetEmpty();

  if (!mTextureHost) {
    mInitialised = false;
    return true; // FIXME should we return false? Returning true for now
  }              // to preserve existing behavior of NOT causing IPC errors.

  // updated is in screen coordinates. Convert it to buffer coordinates.
  nsIntRegion destRegion(aUpdated);
  destRegion.MoveBy(-aData.rect().TopLeft());

  if (!aData.rect().Contains(aUpdated.GetBounds()) ||
      aData.rotation().x > aData.rect().width ||
      aData.rotation().y > aData.rect().height) {
    NS_ERROR("Invalid update data");
    return false;
  }

  // destRegion is now in logical coordinates relative to the buffer, but we
  // need to account for rotation. We do that by moving the region to the
  // rotation offset and then wrapping any pixels that extend off the
  // bottom/right edges.

  // Shift to the rotation point
  destRegion.MoveBy(aData.rotation());

  nsIntSize bufferSize = aData.rect().Size();

  // Select only the pixels that are still within the buffer.
  nsIntRegion finalRegion;
  finalRegion.And(nsIntRect(nsIntPoint(), bufferSize), destRegion);

  // For each of the overlap areas (right, bottom-right, bottom), select those
  // pixels and wrap them around to the opposite edge of the buffer rect.
  AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, 0));
  AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, aData.rect().height));
  AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(0, aData.rect().height));

  MOZ_ASSERT(nsIntRect(0, 0, aData.rect().width, aData.rect().height).Contains(finalRegion.GetBounds()));

  mTextureHost->Updated(&finalRegion);
  if (mTextureHostOnWhite) {
    mTextureHostOnWhite->Updated(&finalRegion);
  }
  mInitialised = true;

  mBufferRect = aData.rect();
  mBufferRotation = aData.rotation();

  return true;
}
void
ContentClientDoubleBuffered::UpdateDestinationFrom(const RotatedBuffer& aSource,
                                                   const nsIntRegion& aUpdateRegion)
{
  nsRefPtr<gfxContext> destCtx =
    GetContextForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_BLACK);
  if (!destCtx) {
    return;
  }
  destCtx->SetOperator(gfxContext::OPERATOR_SOURCE);

  bool isClippingCheap = IsClippingCheap(destCtx, aUpdateRegion);
  if (isClippingCheap) {
    gfxUtils::ClipToRegion(destCtx, aUpdateRegion);
  }

  if (SupportsAzureContent()) {
    MOZ_ASSERT(!destCtx->IsCairo());
    aSource.DrawBufferWithRotation(destCtx->GetDrawTarget(), BUFFER_BLACK, 1.0, OP_SOURCE);
  } else {
    aSource.DrawBufferWithRotation(destCtx, BUFFER_BLACK);
  }

  if (aSource.HaveBufferOnWhite()) {
    MOZ_ASSERT(HaveBufferOnWhite());
    nsRefPtr<gfxContext> destCtx =
      GetContextForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_WHITE);
    destCtx->SetOperator(gfxContext::OPERATOR_SOURCE);

    bool isClippingCheap = IsClippingCheap(destCtx, aUpdateRegion);
    if (isClippingCheap) {
      gfxUtils::ClipToRegion(destCtx, aUpdateRegion);
    }

    if (SupportsAzureContent()) {
      MOZ_ASSERT(!destCtx->IsCairo());
      aSource.DrawBufferWithRotation(destCtx->GetDrawTarget(), BUFFER_WHITE, 1.0, OP_SOURCE);
    } else {
      aSource.DrawBufferWithRotation(destCtx, BUFFER_WHITE);
    }
  }
}
Beispiel #12
0
SurfaceFormat
UploadSurfaceToTexture(GLContext* gl,
                       gfxASurface *aSurface,
                       const nsIntRegion& aDstRegion,
                       GLuint& aTexture,
                       bool aOverwrite,
                       const nsIntPoint& aSrcPoint,
                       bool aPixelBuffer,
                       GLenum aTextureUnit,
                       GLenum aTextureTarget)
{

    nsRefPtr<gfxImageSurface> imageSurface = aSurface->GetAsImageSurface();
    unsigned char* data = nullptr;

    if (!imageSurface ||
        (imageSurface->Format() != gfxImageFormatARGB32 &&
         imageSurface->Format() != gfxImageFormatRGB24 &&
         imageSurface->Format() != gfxImageFormatRGB16_565 &&
         imageSurface->Format() != gfxImageFormatA8)) {
        // We can't get suitable pixel data for the surface, make a copy
        nsIntRect bounds = aDstRegion.GetBounds();
        imageSurface =
          new gfxImageSurface(gfxIntSize(bounds.width, bounds.height),
                              gfxImageFormatARGB32);

        nsRefPtr<gfxContext> context = new gfxContext(imageSurface);

        context->Translate(-gfxPoint(aSrcPoint.x, aSrcPoint.y));
        context->SetSource(aSurface);
        context->Paint();
        data = imageSurface->Data();
        NS_ASSERTION(!aPixelBuffer,
                     "Must be using an image compatible surface with pixel buffers!");
    } else {
        // If a pixel buffer is bound the data pointer parameter is relative
        // to the start of the data block.
        if (!aPixelBuffer) {
              data = imageSurface->Data();
        }
        data += DataOffset(aSrcPoint, imageSurface->Stride(),
                           imageSurface->Format());
    }

    MOZ_ASSERT(imageSurface);
    imageSurface->Flush();

    return UploadImageDataToTexture(gl,
                                    data,
                                    imageSurface->Stride(),
                                    imageSurface->Format(),
                                    aDstRegion, aTexture, aOverwrite,
                                    aPixelBuffer, aTextureUnit, aTextureTarget);
}
Beispiel #13
0
void
ContentClientDoubleBuffered::UpdateDestinationFrom(const RotatedBuffer& aSource,
                                                   const nsIntRegion& aUpdateRegion)
{
  DrawIterator iter;
  while (DrawTarget* destDT =
    BorrowDrawTargetForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_BLACK, &iter)) {
    bool isClippingCheap = IsClippingCheap(destDT, iter.mDrawRegion);
    if (isClippingCheap) {
      gfxUtils::ClipToRegion(destDT, iter.mDrawRegion);
    }

    aSource.DrawBufferWithRotation(destDT, BUFFER_BLACK, 1.0, CompositionOp::OP_SOURCE);
    if (isClippingCheap) {
      destDT->PopClip();
    }
    // Flush the destination before the sources become inaccessible (Unlock).
    destDT->Flush();
    ReturnDrawTargetToBuffer(destDT);
  }

  if (aSource.HaveBufferOnWhite()) {
    MOZ_ASSERT(HaveBufferOnWhite());
    DrawIterator whiteIter;
    while (DrawTarget* destDT =
      BorrowDrawTargetForQuadrantUpdate(aUpdateRegion.GetBounds(), BUFFER_WHITE, &whiteIter)) {
      bool isClippingCheap = IsClippingCheap(destDT, whiteIter.mDrawRegion);
      if (isClippingCheap) {
        gfxUtils::ClipToRegion(destDT, whiteIter.mDrawRegion);
      }

      aSource.DrawBufferWithRotation(destDT, BUFFER_WHITE, 1.0, CompositionOp::OP_SOURCE);
      if (isClippingCheap) {
        destDT->PopClip();
      }
      // Flush the destination before the sources become inaccessible (Unlock).
      destDT->Flush();
      ReturnDrawTargetToBuffer(destDT);
    }
  }
}
void
TiledLayerBufferComposite::Upload(const BasicTiledLayerBuffer* aMainMemoryTiledBuffer,
                                  const nsIntRegion& aNewValidRegion,
                                  const nsIntRegion& aInvalidateRegion,
                                  const gfxSize& aResolution)
{
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  printf_stderr("Upload %i, %i, %i, %i\n", aInvalidateRegion.GetBounds().x, aInvalidateRegion.GetBounds().y, aInvalidateRegion.GetBounds().width, aInvalidateRegion.GetBounds().height);
  long start = PR_IntervalNow();
#endif

  mFrameResolution = aResolution;
  mMainMemoryTiledBuffer = aMainMemoryTiledBuffer;
  Update(aNewValidRegion, aInvalidateRegion);
  mMainMemoryTiledBuffer = nullptr;
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  if (PR_IntervalNow() - start > 10) {
    printf_stderr("Time to upload %i\n", PR_IntervalNow() - start);
  }
#endif
}
void
TextureImageEGL::GetUpdateRegion(nsIntRegion& aForRegion)
{
    if (mTextureState != Valid) {
        // if the texture hasn't been initialized yet, force the
        // client to paint everything
        aForRegion = nsIntRect(nsIntPoint(0, 0), gfx::ThebesIntSize(mSize));
    }

    // We can only draw a rectangle, not subregions due to
    // the way that our texture upload functions work.  If
    // needed, we /could/ do multiple texture uploads if we have
    // non-overlapping rects, but that's a tradeoff.
    aForRegion = nsIntRegion(aForRegion.GetBounds());
}
Beispiel #16
0
void
BasicThebesLayerBuffer::SetBackingBufferAndUpdateFrom(
  gfxASurface* aBuffer,
  gfxASurface* aSource, const nsIntRect& aRect, const nsIntPoint& aRotation,
  const nsIntRegion& aUpdateRegion)
{
  SetBackingBuffer(aBuffer, aRect, aRotation);
  nsRefPtr<gfxContext> destCtx =
    GetContextForQuadrantUpdate(aUpdateRegion.GetBounds());
  destCtx->SetOperator(gfxContext::OPERATOR_SOURCE);
  if (IsClippingCheap(destCtx, aUpdateRegion)) {
    gfxUtils::ClipToRegion(destCtx, aUpdateRegion);
  }

  BasicThebesLayerBuffer srcBuffer(aSource, aRect, aRotation);
  srcBuffer.DrawBufferWithRotation(destCtx, 1.0);
}
Beispiel #17
0
void
Compositor::DrawDiagnostics(DiagnosticFlags aFlags,
                            const nsIntRegion& aVisibleRegion,
                            const gfx::IntRect& aClipRect,
                            const gfx::Matrix4x4& aTransform,
                            uint32_t aFlashCounter)
{
  if (!ShouldDrawDiagnostics(aFlags)) {
    return;
  }

  if (aVisibleRegion.GetNumRects() > 1) {
    for (auto iter = aVisibleRegion.RectIter(); !iter.Done(); iter.Next()) {
      DrawDiagnostics(aFlags | DiagnosticFlags::REGION_RECT,
                      IntRectToRect(iter.Get()), aClipRect, aTransform,
                      aFlashCounter);
    }
  }

  DrawDiagnostics(aFlags, IntRectToRect(aVisibleRegion.GetBounds()),
                  aClipRect, aTransform, aFlashCounter);
}
Beispiel #18
0
void
TiledContentHost::RenderLayerBuffer(TiledLayerBufferComposite& aLayerBuffer,
                                    const gfxRGBA* aBackgroundColor,
                                    EffectChain& aEffectChain,
                                    float aOpacity,
                                    const gfx::Filter& aFilter,
                                    const gfx::Rect& aClipRect,
                                    nsIntRegion aVisibleRegion,
                                    gfx::Matrix4x4 aTransform)
{
  if (!mCompositor) {
    NS_WARNING("Can't render tiled content host - no compositor");
    return;
  }
  float resolution = aLayerBuffer.GetResolution();
  gfx::Size layerScale(1, 1);

  // We assume that the current frame resolution is the one used in our high
  // precision layer buffer. Compensate for a changing frame resolution when
  // rendering the low precision buffer.
  if (aLayerBuffer.GetFrameResolution() != mTiledBuffer.GetFrameResolution()) {
    const CSSToParentLayerScale2D& layerResolution = aLayerBuffer.GetFrameResolution();
    const CSSToParentLayerScale2D& localResolution = mTiledBuffer.GetFrameResolution();
    layerScale.width = layerResolution.xScale / localResolution.xScale;
    layerScale.height = layerResolution.yScale / localResolution.yScale;
    aVisibleRegion.ScaleRoundOut(layerScale.width, layerScale.height);
  }

  // Make sure we don't render at low resolution where we have valid high
  // resolution content, to avoid overdraw and artifacts with semi-transparent
  // layers.
  nsIntRegion maskRegion;
  if (resolution != mTiledBuffer.GetResolution()) {
    maskRegion = mTiledBuffer.GetValidRegion();
    // XXX This should be ScaleRoundIn, but there is no such function on
    //     nsIntRegion.
    maskRegion.ScaleRoundOut(layerScale.width, layerScale.height);
  }

  // Make sure the resolution and difference in frame resolution are accounted
  // for in the layer transform.
  aTransform.PreScale(1/(resolution * layerScale.width),
                      1/(resolution * layerScale.height), 1);

  DiagnosticFlags componentAlphaDiagnostic = DiagnosticFlags::NO_DIAGNOSTIC;

  nsIntRegion compositeRegion = aLayerBuffer.GetValidRegion();
  compositeRegion.AndWith(aVisibleRegion);
  compositeRegion.SubOut(maskRegion);

  IntRect visibleRect = aVisibleRegion.GetBounds();

  if (compositeRegion.IsEmpty()) {
    return;
  }

  if (aBackgroundColor) {
    nsIntRegion backgroundRegion = compositeRegion;
    backgroundRegion.ScaleRoundOut(resolution, resolution);
    EffectChain effect;
    effect.mPrimaryEffect = new EffectSolidColor(ToColor(*aBackgroundColor));
    nsIntRegionRectIterator it(backgroundRegion);
    for (const IntRect* rect = it.Next(); rect != nullptr; rect = it.Next()) {
      Rect graphicsRect(rect->x, rect->y, rect->width, rect->height);
      mCompositor->DrawQuad(graphicsRect, aClipRect, effect, 1.0, aTransform);
    }
  }

  for (size_t i = 0; i < aLayerBuffer.GetTileCount(); ++i) {
    TileHost& tile = aLayerBuffer.GetTile(i);
    if (tile.IsPlaceholderTile()) {
      continue;
    }

    TileIntPoint tilePosition = aLayerBuffer.GetPlacement().TilePosition(i);
    // A sanity check that catches a lot of mistakes.
    MOZ_ASSERT(tilePosition.x == tile.mTilePosition.x && tilePosition.y == tile.mTilePosition.y);

    IntPoint tileOffset = aLayerBuffer.GetTileOffset(tilePosition);
    nsIntRegion tileDrawRegion = IntRect(tileOffset, aLayerBuffer.GetScaledTileSize());
    tileDrawRegion.AndWith(compositeRegion);

    if (tileDrawRegion.IsEmpty()) {
      continue;
    }

    tileDrawRegion.ScaleRoundOut(resolution, resolution);
    RenderTile(tile, aEffectChain, aOpacity,
               aTransform, aFilter, aClipRect, tileDrawRegion,
               tileOffset * resolution, aLayerBuffer.GetTileSize(),
               gfx::Rect(visibleRect.x, visibleRect.y,
                         visibleRect.width, visibleRect.height));
    if (tile.mTextureHostOnWhite) {
      componentAlphaDiagnostic = DiagnosticFlags::COMPONENT_ALPHA;
    }
  }

  gfx::Rect rect(visibleRect.x, visibleRect.y,
                 visibleRect.width, visibleRect.height);
  GetCompositor()->DrawDiagnostics(DiagnosticFlags::CONTENT | componentAlphaDiagnostic,
                                   rect, aClipRect, aTransform, mFlashCounter);
}
SimpleTiledLayerTile
SimpleTiledLayerBuffer::ValidateTile(SimpleTiledLayerTile aTile,
                                     const nsIntPoint& aTileOrigin,
                                     const nsIntRegion& aDirtyRegion)
{
  PROFILER_LABEL("SimpleTiledLayerBuffer", "ValidateTile");
  static gfx::IntSize kTileSize(gfxPrefs::LayersTileWidth(), gfxPrefs::LayersTileHeight());

  gfx::SurfaceFormat tileFormat = gfxPlatform::GetPlatform()->Optimal2DFormatForContent(GetContentType());

  // if this is true, we're using a separate buffer to do our drawing first
  bool doBufferedDrawing = true;
  bool fullPaint = false;

  RefPtr<TextureClient> textureClient = mManager->GetSimpleTileTexturePool(tileFormat)->GetTextureClientWithAutoRecycle();

  if (!textureClient) {
    NS_WARNING("TextureClient allocation failed");
    return SimpleTiledLayerTile();
  }

  if (!textureClient->Lock(OPEN_READ_WRITE)) {
    NS_WARNING("TextureClient lock failed");
    return SimpleTiledLayerTile();
  }

  if (!textureClient->CanExposeDrawTarget()) {
    doBufferedDrawing = false;
  }

  RefPtr<DrawTarget> drawTarget;

  unsigned char *bufferData = nullptr;

  // these are set/updated differently based on doBufferedDrawing
  nsIntRect drawBounds;
  nsIntRegion drawRegion;
  nsIntRegion invalidateRegion;

  RefPtr<DrawTarget> srcDT;
  uint8_t* srcData = nullptr;
  int32_t srcStride = 0;
  gfx::IntSize srcSize;
  gfx::SurfaceFormat srcFormat = gfx::SurfaceFormat::UNKNOWN;

  if (doBufferedDrawing) {
    // try to directly access the pixels of the TextureClient
    srcDT = textureClient->GetAsDrawTarget();
    if (srcDT->LockBits(&srcData, &srcSize, &srcStride, &srcFormat)) {
      if (!aTile.mCachedBuffer) {
        aTile.mCachedBuffer = SharedBuffer::Create(srcStride * srcSize.height);
        fullPaint = true;
      }
      bufferData = (unsigned char*) aTile.mCachedBuffer->Data();

      drawTarget = gfxPlatform::GetPlatform()->CreateDrawTargetForData(bufferData,
                                                                       kTileSize,
                                                                       srcStride,
                                                                       tileFormat);

      if (fullPaint) {
        drawBounds = nsIntRect(aTileOrigin.x, aTileOrigin.y, GetScaledTileSize().width, GetScaledTileSize().height);
        drawRegion = nsIntRegion(drawBounds);
      } else {
        drawBounds = aDirtyRegion.GetBounds();
        drawRegion = nsIntRegion(drawBounds);
        if (GetContentType() == gfxContentType::COLOR_ALPHA)
          drawTarget->ClearRect(Rect(drawBounds.x - aTileOrigin.x, drawBounds.y - aTileOrigin.y,
                                     drawBounds.width, drawBounds.height));
      }
    } else {
      // failed to obtain the client as an ImageSurface
      doBufferedDrawing = false;
    }
  }

  // this might get set above if we couldn't extract out a buffer
  if (!doBufferedDrawing) {
    drawTarget = textureClient->GetAsDrawTarget();

    fullPaint = true;
    drawBounds = nsIntRect(aTileOrigin.x, aTileOrigin.y, GetScaledTileSize().width, GetScaledTileSize().height);
    drawRegion = nsIntRegion(drawBounds);

    if (GetContentType() == gfxContentType::COLOR_ALPHA)
      drawTarget->ClearRect(Rect(0, 0, drawBounds.width, drawBounds.height));
  }

  // do the drawing
  RefPtr<gfxContext> ctxt = new gfxContext(drawTarget);

  ctxt->Scale(mResolution, mResolution);
  ctxt->Translate(gfxPoint(-aTileOrigin.x, -aTileOrigin.y));

  mCallback(mThebesLayer, ctxt,
            drawRegion,
            fullPaint ? DrawRegionClip::CLIP_NONE : DrawRegionClip::DRAW_SNAPPED, // XXX DRAW or DRAW_SNAPPED?
            invalidateRegion,
            mCallbackData);

  ctxt = nullptr;

  if (doBufferedDrawing) {
    memcpy(srcData, bufferData, srcSize.height * srcStride);
    bufferData = nullptr;
    srcDT->ReleaseBits(srcData);
    srcDT = nullptr;
  }

  drawTarget = nullptr;
  textureClient->Unlock();

  if (!mCompositableClient->AddTextureClient(textureClient)) {
    NS_WARNING("Failed to add tile TextureClient [simple]");
    return SimpleTiledLayerTile();
  }

  // aTile.mCachedBuffer was set earlier
  aTile.mTileBuffer = textureClient;
  aTile.mManager = mManager;
  aTile.mLastUpdate = TimeStamp::Now();

  return aTile;
}
void
ClientSingleTiledLayerBuffer::PaintThebes(const nsIntRegion& aNewValidRegion,
                                          const nsIntRegion& aPaintRegion,
                                          const nsIntRegion& aDirtyRegion,
                                          LayerManager::DrawPaintedLayerCallback aCallback,
                                          void* aCallbackData,
                                          bool aIsProgressive)
{
  mWasLastPaintProgressive = aIsProgressive;

  // Compare layer valid region size to current backbuffer size, discard if not matching.
  gfx::IntSize size = aNewValidRegion.GetBounds().Size();
  gfx::IntPoint origin = aNewValidRegion.GetBounds().TopLeft();
  nsIntRegion paintRegion = aPaintRegion;

  RefPtr<TextureClient> discardedFrontBuffer = nullptr;
  RefPtr<TextureClient> discardedFrontBufferOnWhite = nullptr;
  nsIntRegion discardedValidRegion;

  if (mSize != size ||
      mTilingOrigin != origin) {
    discardedFrontBuffer = mTile.mFrontBuffer;
    discardedFrontBufferOnWhite = mTile.mFrontBufferOnWhite;
    discardedValidRegion = mValidRegion;

    TILING_LOG("TILING %p: Single-tile valid region changed. Discarding buffers.\n", &mPaintedLayer)
;
    ResetPaintedAndValidState();
    mSize = size;
    mTilingOrigin = origin;
    paintRegion = aNewValidRegion;
  }

  SurfaceMode mode;
  gfxContentType content = GetContentType(&mode);
  mFormat = gfxPlatform::GetPlatform()->OptimalFormatForContent(content);

  if (mTile.IsPlaceholderTile()) {
    mTile.SetTextureAllocator(this);
  }

  // The dirty region relative to the top-left of the tile.
  nsIntRegion tileDirtyRegion = paintRegion.MovedBy(-mTilingOrigin);

  nsIntRegion extraPainted;
  RefPtr<TextureClient> backBufferOnWhite;
  RefPtr<TextureClient> backBuffer =
    mTile.GetBackBuffer(mCompositableClient,
                        tileDirtyRegion,
                        content, mode,
                        extraPainted,
                        &backBufferOnWhite);

  mTile.mUpdateRect = tileDirtyRegion.GetBounds().Union(extraPainted.GetBounds());

  extraPainted.MoveBy(mTilingOrigin);
  extraPainted.And(extraPainted, aNewValidRegion);
  mPaintedRegion.OrWith(paintRegion);
  mPaintedRegion.OrWith(extraPainted);

  if (!backBuffer) {
    return;
  }

  RefPtr<gfx::DrawTarget> dt = backBuffer->BorrowDrawTarget();
  RefPtr<gfx::DrawTarget> dtOnWhite;
  if (backBufferOnWhite) {
    dtOnWhite = backBufferOnWhite->BorrowDrawTarget();
  }

  if (mode != SurfaceMode::SURFACE_OPAQUE) {
    for (auto iter = tileDirtyRegion.RectIter(); !iter.Done(); iter.Next()) {
      const gfx::IntRect& rect = iter.Get();
      if (dtOnWhite) {
        dt->FillRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height),
                     gfx::ColorPattern(gfx::Color(0.0, 0.0, 0.0, 1.0)));
        dtOnWhite->FillRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height),
                            gfx::ColorPattern(gfx::Color(1.0, 1.0, 1.0, 1.0)));
      } else {
        dt->ClearRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height));
      }
    }
  }

  // If the old frontbuffer was discarded then attempt to copy what we
  // can from it to the new backbuffer.
  if (discardedFrontBuffer) {
    nsIntRegion copyableRegion;
    copyableRegion.And(aNewValidRegion, discardedValidRegion);
    copyableRegion.SubOut(aDirtyRegion);

    if (!copyableRegion.IsEmpty()) {
      TextureClientAutoLock frontLock(discardedFrontBuffer,
                                      OpenMode::OPEN_READ);
      if (frontLock.Succeeded()) {
        for (auto iter = copyableRegion.RectIter(); !iter.Done(); iter.Next()) {
          const gfx::IntRect rect = iter.Get() - discardedValidRegion.GetBounds().TopLeft();
          const gfx::IntPoint dest = iter.Get().TopLeft() - mTilingOrigin;
          discardedFrontBuffer->CopyToTextureClient(backBuffer, &rect, &dest);
        }
      }

      if (discardedFrontBufferOnWhite && backBufferOnWhite) {
        TextureClientAutoLock frontOnWhiteLock(discardedFrontBufferOnWhite,
                                               OpenMode::OPEN_READ);
        if (frontOnWhiteLock.Succeeded()) {
          for (auto iter = copyableRegion.RectIter(); !iter.Done(); iter.Next()) {
            const gfx::IntRect rect = iter.Get() - discardedValidRegion.GetBounds().TopLeft();
            const gfx::IntPoint dest = iter.Get().TopLeft() - mTilingOrigin;

            discardedFrontBufferOnWhite->CopyToTextureClient(backBufferOnWhite,
                                                             &rect, &dest);
          }
        }
      }

      TILING_LOG("TILING %p: Region copied from discarded frontbuffer %s\n", &mPaintedLayer, Stringify(copyableRegion).c_str());

      // We don't need to repaint valid content that was just copied.
      paintRegion.SubOut(copyableRegion);
    }
  }

  if (dtOnWhite) {
    dt = gfx::Factory::CreateDualDrawTarget(dt, dtOnWhite);
    dtOnWhite = nullptr;
  }

  {
    RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(dt);
    if (!ctx) {
      gfxDevCrash(gfx::LogReason::InvalidContext) << "SingleTiledContextClient context problem " << gfx::hexa(dt);
      return;
    }
    ctx->SetMatrix(ctx->CurrentMatrix().Translate(-mTilingOrigin.x, -mTilingOrigin.y));

    aCallback(&mPaintedLayer, ctx, paintRegion, paintRegion, DrawRegionClip::DRAW, nsIntRegion(), aCallbackData);
  }

  // Mark the area we just drew into the back buffer as invalid in the front buffer as they're
  // now out of sync.
  mTile.mInvalidFront.OrWith(tileDirtyRegion);

  // The new buffer is now validated, remove the dirty region from it.
  mTile.mInvalidBack.SubOut(tileDirtyRegion);

  dt = nullptr;

  mTile.Flip();
  UnlockTile(mTile);

  if (backBuffer->HasIntermediateBuffer()) {
    // If our new buffer has an internal buffer, we don't want to keep another
    // TextureClient around unnecessarily, so discard the back-buffer.
    mTile.DiscardBackBuffer();
  }

  mValidRegion = aNewValidRegion;
  mLastPaintSurfaceMode = mode;
  mLastPaintContentType = content;
}
SimpleTiledLayerTile
SimpleTiledLayerBuffer::ValidateTile(SimpleTiledLayerTile aTile,
                                     const nsIntPoint& aTileOrigin,
                                     const nsIntRegion& aDirtyRegion)
{
  PROFILER_LABEL("SimpleTiledLayerBuffer", "ValidateTile");
  static gfx::IntSize kTileSize(TILEDLAYERBUFFER_TILE_SIZE, TILEDLAYERBUFFER_TILE_SIZE);

  gfx::SurfaceFormat tileFormat = gfxPlatform::GetPlatform()->Optimal2DFormatForContent(GetContentType());

  // if this is true, we're using a separate buffer to do our drawing first
  bool doBufferedDrawing = true;
  bool fullPaint = false;

  RefPtr<TextureClient> textureClient = mManager->GetSimpleTileTexturePool(tileFormat)->GetTextureClientWithAutoRecycle();

  if (!textureClient) {
    NS_WARNING("TextureClient allocation failed");
    return SimpleTiledLayerTile();
  }

  if (!textureClient->Lock(OPEN_WRITE)) {
    NS_WARNING("TextureClient lock failed");
    return SimpleTiledLayerTile();
  }

  TextureClientSurface *textureClientSurf = textureClient->AsTextureClientSurface();
  if (!textureClientSurf) {
    doBufferedDrawing = false;
  }

  RefPtr<DrawTarget> drawTarget;

  nsRefPtr<gfxImageSurface> clientAsImageSurface;
  unsigned char *bufferData = nullptr;

  // these are set/updated differently based on doBufferedDrawing
  nsIntRect drawBounds;
  nsIntRegion drawRegion;
  nsIntRegion invalidateRegion;

  if (doBufferedDrawing) {
    // try to obtain the TextureClient as an ImageSurface, so that we can
    // access the pixels directly
    nsRefPtr<gfxASurface> asurf = textureClientSurf->GetAsSurface();
    clientAsImageSurface = asurf ? asurf->GetAsImageSurface() : nullptr;
    if (clientAsImageSurface) {
      int32_t bufferStride = clientAsImageSurface->Stride();

      if (!aTile.mCachedBuffer) {
        aTile.mCachedBuffer = SharedBuffer::Create(clientAsImageSurface->GetDataSize());
        fullPaint = true;
      }
      bufferData = (unsigned char*) aTile.mCachedBuffer->Data();

      drawTarget = gfxPlatform::GetPlatform()->CreateDrawTargetForData(bufferData,
                                                                       kTileSize,
                                                                       bufferStride,
                                                                       tileFormat);

      if (fullPaint) {
        drawBounds = nsIntRect(aTileOrigin.x, aTileOrigin.y, GetScaledTileLength(), GetScaledTileLength());
        drawRegion = nsIntRegion(drawBounds);
      } else {
        drawBounds = aDirtyRegion.GetBounds();
        drawRegion = nsIntRegion(drawBounds);
        if (GetContentType() == gfxContentType::COLOR_ALPHA)
          drawTarget->ClearRect(Rect(drawBounds.x - aTileOrigin.x, drawBounds.y - aTileOrigin.y,
                                     drawBounds.width, drawBounds.height));
      }
    } else {
      // failed to obtain the client as an ImageSurface
      doBufferedDrawing = false;
    }
  }

  // this might get set above if we couldn't extract out a buffer
  if (!doBufferedDrawing) {
    drawTarget = textureClient->AsTextureClientDrawTarget()->GetAsDrawTarget();

    fullPaint = true;
    drawBounds = nsIntRect(aTileOrigin.x, aTileOrigin.y, GetScaledTileLength(), GetScaledTileLength());
    drawRegion = nsIntRegion(drawBounds);

    if (GetContentType() == gfxContentType::COLOR_ALPHA)
      drawTarget->ClearRect(Rect(0, 0, drawBounds.width, drawBounds.height));
  }

  // do the drawing
  RefPtr<gfxContext> ctxt = new gfxContext(drawTarget);

  ctxt->Scale(mResolution, mResolution);
  ctxt->Translate(gfxPoint(-aTileOrigin.x, -aTileOrigin.y));

  mCallback(mThebesLayer, ctxt,
            drawRegion,
            fullPaint ? DrawRegionClip::CLIP_NONE : DrawRegionClip::DRAW_SNAPPED, // XXX DRAW or DRAW_SNAPPED?
            invalidateRegion,
            mCallbackData);

  ctxt = nullptr;
  drawTarget = nullptr;

  if (doBufferedDrawing) {
    memcpy(clientAsImageSurface->Data(), bufferData, clientAsImageSurface->GetDataSize());
    clientAsImageSurface = nullptr;
    bufferData = nullptr;
  }

  textureClient->Unlock();

  if (!mCompositableClient->AddTextureClient(textureClient)) {
    NS_WARNING("Failed to add tile TextureClient [simple]");
    return SimpleTiledLayerTile();
  }

  // aTile.mCachedBuffer was set earlier
  aTile.mTileBuffer = textureClient;
  aTile.mManager = mManager;
  aTile.mLastUpdate = TimeStamp::Now();

  return aTile;
}
void
TiledContentHost::RenderLayerBuffer(TiledLayerBufferComposite& aLayerBuffer,
                                    const gfxRGBA* aBackgroundColor,
                                    EffectChain& aEffectChain,
                                    float aOpacity,
                                    const gfx::Filter& aFilter,
                                    const gfx::Rect& aClipRect,
                                    nsIntRegion aVisibleRegion,
                                    gfx::Matrix4x4 aTransform)
{
  if (!mCompositor) {
    NS_WARNING("Can't render tiled content host - no compositor");
    return;
  }
  float resolution = aLayerBuffer.GetResolution();
  gfx::Size layerScale(1, 1);

  // We assume that the current frame resolution is the one used in our high
  // precision layer buffer. Compensate for a changing frame resolution when
  // rendering the low precision buffer.
  if (aLayerBuffer.GetFrameResolution() != mTiledBuffer.GetFrameResolution()) {
    const CSSToParentLayerScale& layerResolution = aLayerBuffer.GetFrameResolution();
    const CSSToParentLayerScale& localResolution = mTiledBuffer.GetFrameResolution();
    layerScale.width = layerScale.height = layerResolution.scale / localResolution.scale;
    aVisibleRegion.ScaleRoundOut(layerScale.width, layerScale.height);
  }

  // If we're drawing the low precision buffer, make sure the high precision
  // buffer is masked out to avoid overdraw and rendering artifacts with
  // non-opaque layers.
  nsIntRegion maskRegion;
  if (resolution != mTiledBuffer.GetResolution()) {
    maskRegion = mTiledBuffer.GetValidRegion();
    // XXX This should be ScaleRoundIn, but there is no such function on
    //     nsIntRegion.
    maskRegion.ScaleRoundOut(layerScale.width, layerScale.height);
  }

  // Make sure the resolution and difference in frame resolution are accounted
  // for in the layer transform.
  aTransform.PreScale(1/(resolution * layerScale.width),
                      1/(resolution * layerScale.height), 1);

  uint32_t rowCount = 0;
  uint32_t tileX = 0;
  nsIntRect visibleRect = aVisibleRegion.GetBounds();
  gfx::IntSize scaledTileSize = aLayerBuffer.GetScaledTileSize();
  for (int32_t x = visibleRect.x; x < visibleRect.x + visibleRect.width;) {
    rowCount++;
    int32_t tileStartX = aLayerBuffer.GetTileStart(x, scaledTileSize.width);
    int32_t w = scaledTileSize.width - tileStartX;
    if (x + w > visibleRect.x + visibleRect.width) {
      w = visibleRect.x + visibleRect.width - x;
    }
    int tileY = 0;
    for (int32_t y = visibleRect.y; y < visibleRect.y + visibleRect.height;) {
      int32_t tileStartY = aLayerBuffer.GetTileStart(y, scaledTileSize.height);
      int32_t h = scaledTileSize.height - tileStartY;
      if (y + h > visibleRect.y + visibleRect.height) {
        h = visibleRect.y + visibleRect.height - y;
      }

      TileHost tileTexture = aLayerBuffer.
        GetTile(nsIntPoint(aLayerBuffer.RoundDownToTileEdge(x, scaledTileSize.width),
                           aLayerBuffer.RoundDownToTileEdge(y, scaledTileSize.height)));
      if (tileTexture != aLayerBuffer.GetPlaceholderTile()) {
        nsIntRegion tileDrawRegion;
        tileDrawRegion.And(nsIntRect(x, y, w, h), aLayerBuffer.GetValidRegion());
        tileDrawRegion.And(tileDrawRegion, aVisibleRegion);
        tileDrawRegion.Sub(tileDrawRegion, maskRegion);

        if (!tileDrawRegion.IsEmpty()) {
          tileDrawRegion.ScaleRoundOut(resolution, resolution);
          nsIntPoint tileOffset((x - tileStartX) * resolution,
                                (y - tileStartY) * resolution);
          gfx::IntSize tileSize = aLayerBuffer.GetTileSize();
          RenderTile(tileTexture, aBackgroundColor, aEffectChain, aOpacity, aTransform,
                     aFilter, aClipRect, tileDrawRegion, tileOffset,
                     nsIntSize(tileSize.width, tileSize.height));
        }
      }
      tileY++;
      y += h;
    }
    tileX++;
    x += w;
  }
  gfx::Rect rect(visibleRect.x, visibleRect.y,
                 visibleRect.width, visibleRect.height);
  GetCompositor()->DrawDiagnostics(DiagnosticFlags::CONTENT,
                                   rect, aClipRect, aTransform, mFlashCounter);
}
Beispiel #23
0
void
PaintedLayerD3D9::DrawRegion(nsIntRegion &aRegion, SurfaceMode aMode,
                            const nsTArray<ReadbackProcessor::Update>& aReadbackUpdates)
{
  nsIntRect visibleRect = mVisibleRegion.GetBounds();

  nsRefPtr<gfxASurface> destinationSurface;
  nsIntRect bounds = aRegion.GetBounds();
  nsRefPtr<IDirect3DTexture9> tmpTexture;
  OpaqueRenderer opaqueRenderer(aRegion);
  TransparentRenderer transparentRenderer(aRegion);
  OpaqueRenderer opaqueRendererOnWhite(aRegion);

  switch (aMode)
  {
    case SurfaceMode::SURFACE_OPAQUE:
      destinationSurface = opaqueRenderer.Begin(this);
      break;

    case SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA: {
	  destinationSurface = transparentRenderer.Begin(this);
      // If the contents of this layer don't require component alpha in the
      // end of rendering, it's safe to enable Cleartype since all the Cleartype
      // glyphs must be over (or under) opaque pixels.
      destinationSurface->SetSubpixelAntialiasingEnabled(!(mContentFlags & CONTENT_COMPONENT_ALPHA));
      break;
    }

    case SurfaceMode::SURFACE_COMPONENT_ALPHA: {
      nsRefPtr<gfxWindowsSurface> onBlack = opaqueRenderer.Begin(this);
      nsRefPtr<gfxWindowsSurface> onWhite = opaqueRendererOnWhite.Begin(this);
      if (onBlack && onWhite) {
        FillSurface(onBlack, aRegion, bounds.TopLeft(), gfxRGBA(0.0, 0.0, 0.0, 1.0));
        FillSurface(onWhite, aRegion, bounds.TopLeft(), gfxRGBA(1.0, 1.0, 1.0, 1.0));
        gfxASurface* surfaces[2] = { onBlack.get(), onWhite.get() };
        destinationSurface = new gfxTeeSurface(surfaces, ArrayLength(surfaces));
        // Using this surface as a source will likely go horribly wrong, since
        // only the onBlack surface will really be used, so alpha information will
        // be incorrect.
        destinationSurface->SetAllowUseAsSource(false);
      }
      break;
    }
  }

  if (!destinationSurface)
    return;

  MOZ_ASSERT(gfxPlatform::GetPlatform()->SupportsAzureContentForType(BackendType::CAIRO));
  RefPtr<DrawTarget> dt =
    gfxPlatform::GetPlatform()->CreateDrawTargetForSurface(destinationSurface,
                                                           IntSize(destinationSurface->GetSize().width,
                                                                   destinationSurface->GetSize().height));

  nsRefPtr<gfxContext> context = new gfxContext(dt);

  context->SetMatrix(context->CurrentMatrix().Translate(-bounds.x, -bounds.y));
  LayerManagerD3D9::CallbackInfo cbInfo = mD3DManager->GetCallbackInfo();
  cbInfo.Callback(this, context, aRegion, DrawRegionClip::CLIP_NONE, nsIntRegion(), cbInfo.CallbackData);

  for (uint32_t i = 0; i < aReadbackUpdates.Length(); ++i) {
    NS_ASSERTION(aMode == SurfaceMode::SURFACE_OPAQUE,
                 "Transparent surfaces should not be used for readback");
    const ReadbackProcessor::Update& update = aReadbackUpdates[i];
    nsIntPoint offset = update.mLayer->GetBackgroundLayerOffset();
    nsRefPtr<gfxContext> ctx =
        update.mLayer->GetSink()->BeginUpdate(update.mUpdateRect + offset,
                                              update.mSequenceCounter);
    if (ctx) {
      ctx->SetMatrix(ctx->CurrentMatrix().Translate(offset.x, offset.y));
      ctx->SetSource(destinationSurface, gfxPoint(bounds.x, bounds.y));
      ctx->Paint();
      update.mLayer->GetSink()->EndUpdate(ctx, update.mUpdateRect + offset);
    }
  }

  // Release the cairo d3d9 surface before we try to composite it
  context = nullptr;

  nsAutoTArray<IDirect3DTexture9*,2> srcTextures;
  nsAutoTArray<IDirect3DTexture9*,2> destTextures;
  switch (aMode)
  {
    case SurfaceMode::SURFACE_OPAQUE:
      // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      opaqueRenderer.End();
      srcTextures.AppendElement(opaqueRenderer.GetTexture());
      destTextures.AppendElement(mTexture);
      break;

    case SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA:
	  // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      transparentRenderer.End();
      srcTextures.AppendElement(transparentRenderer.GetTexture());
      destTextures.AppendElement(mTexture);
      break;

    case SurfaceMode::SURFACE_COMPONENT_ALPHA: {
      // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      opaqueRenderer.End();
      opaqueRendererOnWhite.End();
      srcTextures.AppendElement(opaqueRenderer.GetTexture());
      destTextures.AppendElement(mTexture);
      srcTextures.AppendElement(opaqueRendererOnWhite.GetTexture());
      destTextures.AppendElement(mTextureOnWhite);
      break;
    }
  }
  NS_ASSERTION(srcTextures.Length() == destTextures.Length(), "Mismatched lengths");
  

  // Copy to the texture.
  for (uint32_t i = 0; i < srcTextures.Length(); ++i) {
    nsRefPtr<IDirect3DSurface9> srcSurface;
    nsRefPtr<IDirect3DSurface9> dstSurface;

    destTextures[i]->GetSurfaceLevel(0, getter_AddRefs(dstSurface));
    srcTextures[i]->GetSurfaceLevel(0, getter_AddRefs(srcSurface));

    nsIntRegionRectIterator iter(aRegion);
    const nsIntRect *iterRect;
    while ((iterRect = iter.Next())) {
      RECT rect;
      rect.left = iterRect->x - bounds.x;
      rect.top = iterRect->y - bounds.y;
      rect.right = iterRect->XMost() - bounds.x;
      rect.bottom = iterRect->YMost() - bounds.y;

      POINT point;
      point.x = iterRect->x - visibleRect.x;
      point.y = iterRect->y - visibleRect.y;
      device()->UpdateSurface(srcSurface, &rect, dstSurface, &point);
    }
  }
}
Beispiel #24
0
SurfaceFormat
UploadImageDataToTexture(GLContext* gl,
                         unsigned char* aData,
                         int32_t aStride,
                         gfxImageFormat aFormat,
                         const nsIntRegion& aDstRegion,
                         GLuint& aTexture,
                         bool aOverwrite,
                         bool aPixelBuffer,
                         GLenum aTextureUnit,
                         GLenum aTextureTarget)
{
    bool textureInited = aOverwrite ? false : true;
    gl->MakeCurrent();
    gl->fActiveTexture(aTextureUnit);

    if (!aTexture) {
        gl->fGenTextures(1, &aTexture);
        gl->fBindTexture(aTextureTarget, aTexture);
        gl->fTexParameteri(aTextureTarget,
                           LOCAL_GL_TEXTURE_MIN_FILTER,
                           LOCAL_GL_LINEAR);
        gl->fTexParameteri(aTextureTarget,
                           LOCAL_GL_TEXTURE_MAG_FILTER,
                           LOCAL_GL_LINEAR);
        gl->fTexParameteri(aTextureTarget,
                           LOCAL_GL_TEXTURE_WRAP_S,
                           LOCAL_GL_CLAMP_TO_EDGE);
        gl->fTexParameteri(aTextureTarget,
                           LOCAL_GL_TEXTURE_WRAP_T,
                           LOCAL_GL_CLAMP_TO_EDGE);
        textureInited = false;
    } else {
        gl->fBindTexture(aTextureTarget, aTexture);
    }

    nsIntRegion paintRegion;
    if (!textureInited) {
        paintRegion = nsIntRegion(aDstRegion.GetBounds());
    } else {
        paintRegion = aDstRegion;
    }

    GLenum format;
    GLenum internalFormat;
    GLenum type;
    int32_t pixelSize = gfxASurface::BytePerPixelFromFormat(aFormat);
    SurfaceFormat surfaceFormat;

    MOZ_ASSERT(gl->GetPreferredARGB32Format() == LOCAL_GL_BGRA ||
               gl->GetPreferredARGB32Format() == LOCAL_GL_RGBA);
    switch (aFormat) {
        case gfxImageFormatARGB32:
            if (gl->GetPreferredARGB32Format() == LOCAL_GL_BGRA) {
              format = LOCAL_GL_BGRA;
              surfaceFormat = gfx::FORMAT_R8G8B8A8;
              type = LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV;
            } else {
              format = LOCAL_GL_RGBA;
              surfaceFormat = gfx::FORMAT_B8G8R8A8;
              type = LOCAL_GL_UNSIGNED_BYTE;
            }
            internalFormat = LOCAL_GL_RGBA;
            break;
        case gfxImageFormatRGB24:
            // Treat RGB24 surfaces as RGBA32 except for the surface
            // format used.
            if (gl->GetPreferredARGB32Format() == LOCAL_GL_BGRA) {
              format = LOCAL_GL_BGRA;
              surfaceFormat = gfx::FORMAT_R8G8B8X8;
              type = LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV;
            } else {
              format = LOCAL_GL_RGBA;
              surfaceFormat = gfx::FORMAT_B8G8R8X8;
              type = LOCAL_GL_UNSIGNED_BYTE;
            }
            internalFormat = LOCAL_GL_RGBA;
            break;
        case gfxImageFormatRGB16_565:
            internalFormat = format = LOCAL_GL_RGB;
            type = LOCAL_GL_UNSIGNED_SHORT_5_6_5;
            surfaceFormat = gfx::FORMAT_R5G6B5;
            break;
        case gfxImageFormatA8:
            internalFormat = format = LOCAL_GL_LUMINANCE;
            type = LOCAL_GL_UNSIGNED_BYTE;
            // We don't have a specific luminance shader
            surfaceFormat = gfx::FORMAT_A8;
            break;
        default:
            NS_ASSERTION(false, "Unhandled image surface format!");
            format = 0;
            type = 0;
            surfaceFormat = gfx::FORMAT_UNKNOWN;
    }

    nsIntRegionRectIterator iter(paintRegion);
    const nsIntRect *iterRect;

    // Top left point of the region's bounding rectangle.
    nsIntPoint topLeft = paintRegion.GetBounds().TopLeft();

    while ((iterRect = iter.Next())) {
        // The inital data pointer is at the top left point of the region's
        // bounding rectangle. We need to find the offset of this rect
        // within the region and adjust the data pointer accordingly.
        unsigned char *rectData =
            aData + DataOffset(iterRect->TopLeft() - topLeft, aStride, aFormat);

        NS_ASSERTION(textureInited || (iterRect->x == 0 && iterRect->y == 0),
                     "Must be uploading to the origin when we don't have an existing texture");

        if (textureInited && CanUploadSubTextures(gl)) {
            TexSubImage2DHelper(gl,
                                aTextureTarget,
                                0,
                                iterRect->x,
                                iterRect->y,
                                iterRect->width,
                                iterRect->height,
                                aStride,
                                pixelSize,
                                format,
                                type,
                                rectData);
        } else {
            TexImage2DHelper(gl,
                             aTextureTarget,
                             0,
                             internalFormat,
                             iterRect->width,
                             iterRect->height,
                             aStride,
                             pixelSize,
                             0,
                             format,
                             type,
                             rectData);
        }

    }

    return surfaceFormat;
}
void
ClientSingleTiledLayerBuffer::PaintThebes(const nsIntRegion& aNewValidRegion,
                                          const nsIntRegion& aPaintRegion,
                                          const nsIntRegion& aDirtyRegion,
                                          LayerManager::DrawPaintedLayerCallback aCallback,
                                          void* aCallbackData)
{
  // Compare layer valid region size to current backbuffer size, discard if not matching.
  gfx::IntSize size = aNewValidRegion.GetBounds().Size();
  gfx::IntPoint origin = aNewValidRegion.GetBounds().TopLeft();
  nsIntRegion paintRegion = aPaintRegion;
  if (mSize != size ||
      mTilingOrigin != origin) {
    ResetPaintedAndValidState();
    mSize = size;
    mTilingOrigin = origin;
    paintRegion = aNewValidRegion;
  }

  SurfaceMode mode;
  gfxContentType content = GetContentType(&mode);
  mFormat = gfxPlatform::GetPlatform()->OptimalFormatForContent(content);

  if (mTile.IsPlaceholderTile()) {
    mTile.SetLayerManager(mManager);
    mTile.SetTextureAllocator(this);
  }
  mTile.SetCompositableClient(mCompositableClient);

  // The dirty region relative to the top-left of the tile.
  nsIntRegion tileDirtyRegion = paintRegion.MovedBy(-mTilingOrigin);

  nsIntRegion extraPainted;
  RefPtr<TextureClient> backBufferOnWhite;
  RefPtr<TextureClient> backBuffer =
    mTile.GetBackBuffer(tileDirtyRegion,
                        content, mode,
                        extraPainted,
                        &backBufferOnWhite);

  mTile.mUpdateRect = tileDirtyRegion.GetBounds().Union(extraPainted.GetBounds());

  extraPainted.MoveBy(mTilingOrigin);
  extraPainted.And(extraPainted, aNewValidRegion);
  mPaintedRegion.OrWith(paintRegion);
  mPaintedRegion.OrWith(extraPainted);

  if (!backBuffer) {
    return;
  }

  RefPtr<gfx::DrawTarget> dt = backBuffer->BorrowDrawTarget();
  RefPtr<gfx::DrawTarget> dtOnWhite;
  if (backBufferOnWhite) {
    dtOnWhite = backBufferOnWhite->BorrowDrawTarget();
  }

  if (mode != SurfaceMode::SURFACE_OPAQUE) {
    for (auto iter = tileDirtyRegion.RectIter(); !iter.Done(); iter.Next()) {
      const gfx::IntRect& rect = iter.Get();
      if (dtOnWhite) {
        dt->FillRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height),
                     gfx::ColorPattern(gfx::Color(0.0, 0.0, 0.0, 1.0)));
        dtOnWhite->FillRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height),
                            gfx::ColorPattern(gfx::Color(1.0, 1.0, 1.0, 1.0)));
      } else {
        dt->ClearRect(gfx::Rect(rect.x, rect.y, rect.width, rect.height));
      }
    }
  }

  if (dtOnWhite) {
    dt = gfx::Factory::CreateDualDrawTarget(dt, dtOnWhite);
    dtOnWhite = nullptr;
  }

  {
    RefPtr<gfxContext> ctx = new gfxContext(dt);
    ctx->SetMatrix(ctx->CurrentMatrix().Translate(-mTilingOrigin.x, -mTilingOrigin.y));

    aCallback(mPaintedLayer, ctx, paintRegion, paintRegion, DrawRegionClip::DRAW, nsIntRegion(), aCallbackData);
  }

  // Mark the area we just drew into the back buffer as invalid in the front buffer as they're
  // now out of sync.
  mTile.mInvalidFront.OrWith(tileDirtyRegion);

  // The new buffer is now validated, remove the dirty region from it.
  mTile.mInvalidBack.SubOut(tileDirtyRegion);

  dt = nullptr;

  mTile.Flip();
  UnlockTile(mTile);

  if (backBuffer->HasIntermediateBuffer()) {
    // If our new buffer has an internal buffer, we don't want to keep another
    // TextureClient around unnecessarily, so discard the back-buffer.
    mTile.DiscardBackBuffer();
  }

  mValidRegion = aNewValidRegion;
  mLastPaintSurfaceMode = mode;
  mLastPaintContentType = content;
}
void ClientSingleTiledLayerBuffer::PaintThebes(
    const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion,
    const nsIntRegion& aDirtyRegion,
    LayerManager::DrawPaintedLayerCallback aCallback, void* aCallbackData,
    TilePaintFlags aFlags) {
  mWasLastPaintProgressive = !!(aFlags & TilePaintFlags::Progressive);
  bool asyncPaint = !!(aFlags & TilePaintFlags::Async);

  // Compare layer valid region size to current backbuffer size, discard if not
  // matching.
  gfx::IntSize size = aNewValidRegion.GetBounds().Size();
  gfx::IntPoint origin = aNewValidRegion.GetBounds().TopLeft();
  nsIntRegion paintRegion = aPaintRegion;

  RefPtr<TextureClient> discardedFrontBuffer = nullptr;
  RefPtr<TextureClient> discardedFrontBufferOnWhite = nullptr;
  nsIntRegion discardedValidRegion;

  if (mSize != size || mTilingOrigin != origin) {
    discardedFrontBuffer = mTile.mFrontBuffer;
    discardedFrontBufferOnWhite = mTile.mFrontBufferOnWhite;
    discardedValidRegion = mValidRegion;

    TILING_LOG(
        "TILING %p: Single-tile valid region changed. Discarding buffers.\n",
        &mPaintedLayer);
    ResetPaintedAndValidState();
    mSize = size;
    mTilingOrigin = origin;
    paintRegion = aNewValidRegion;
  }

  SurfaceMode mode;
  gfxContentType content = GetContentType(&mode);
  mFormat = gfxPlatform::GetPlatform()->OptimalFormatForContent(content);

  if (mTile.IsPlaceholderTile()) {
    mTile.SetTextureAllocator(this);
  }

  if (mManager->AsShadowForwarder()->SupportsTextureDirectMapping()) {
    AutoTArray<uint64_t, 2> syncTextureSerials;
    mTile.GetSyncTextureSerials(mode, syncTextureSerials);
    if (syncTextureSerials.Length() > 0) {
      mManager->AsShadowForwarder()->SyncTextures(syncTextureSerials);
    }
  }

  // The dirty region relative to the top-left of the tile.
  nsIntRegion tileVisibleRegion = aNewValidRegion.MovedBy(-mTilingOrigin);
  nsIntRegion tileDirtyRegion = paintRegion.MovedBy(-mTilingOrigin);

  Maybe<AcquiredBackBuffer> backBuffer =
      mTile.AcquireBackBuffer(mCompositableClient, tileDirtyRegion,
                              tileVisibleRegion, content, mode, aFlags);

  if (!backBuffer) {
    return;
  }

  // Mark the area we need to paint in the back buffer as invalid in the
  // front buffer as they will become out of sync.
  mTile.mInvalidFront.OrWith(tileDirtyRegion);

  // Add backbuffer's invalid region to the dirty region to be painted.
  // This will be empty if we were able to copy from the front in to the back.
  nsIntRegion tileInvalidRegion = mTile.mInvalidBack;
  tileInvalidRegion.AndWith(tileVisibleRegion);

  paintRegion.OrWith(tileInvalidRegion.MovedBy(mTilingOrigin));
  tileDirtyRegion.OrWith(tileInvalidRegion);

  // Mark the region we will be painting and the region we copied from the front
  // buffer as needing to be uploaded to the compositor
  mTile.mUpdateRect =
      tileDirtyRegion.GetBounds().Union(backBuffer->mUpdatedRect);

  // If the old frontbuffer was discarded then attempt to copy what we
  // can from it to the new backbuffer.
  if (discardedFrontBuffer) {
    nsIntRegion copyableRegion;
    copyableRegion.And(aNewValidRegion, discardedValidRegion);
    copyableRegion.SubOut(aDirtyRegion);

    OpenMode readMode =
        asyncPaint ? OpenMode::OPEN_READ_ASYNC : OpenMode::OPEN_READ;

    DualTextureClientAutoLock discardedBuffer(
        discardedFrontBuffer, discardedFrontBufferOnWhite, readMode);

    if (discardedBuffer.Succeeded()) {
      RefPtr<gfx::SourceSurface> discardedSurface = discardedBuffer->Snapshot();

      for (auto iter = copyableRegion.RectIter(); !iter.Done(); iter.Next()) {
        const gfx::IntRect src =
            iter.Get() - discardedValidRegion.GetBounds().TopLeft();
        const gfx::IntPoint dest = iter.Get().TopLeft() - mTilingOrigin;

        backBuffer->mTarget->CopySurface(discardedSurface, src, dest);
      }

      TILING_LOG("TILING %p: Region copied from discarded frontbuffer %s\n",
                 &mPaintedLayer, Stringify(copyableRegion).c_str());

      // We don't need to repaint valid content that was just copied.
      paintRegion.SubOut(copyableRegion);
      copyableRegion.MoveBy(-mTilingOrigin);
      tileDirtyRegion.SubOut(copyableRegion);
    } else {
      gfxWarning() << "[Tiling:Client] Failed to aquire the discarded front "
                      "buffer's draw target";
    }
  }

  if (mode != SurfaceMode::SURFACE_OPAQUE) {
    for (auto iter = tileDirtyRegion.RectIter(); !iter.Done(); iter.Next()) {
      const gfx::Rect drawRect(iter.Get().X(), iter.Get().Y(),
                               iter.Get().Width(), iter.Get().Height());
      backBuffer->mTarget->ClearRect(drawRect);
    }
  }

  // Paint into the target
  {
    RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(backBuffer->mTarget);
    if (!ctx) {
      gfxDevCrash(gfx::LogReason::InvalidContext)
          << "SingleTiledContextClient context problem "
          << gfx::hexa(backBuffer->mTarget);
      return;
    }
    ctx->SetMatrix(
        ctx->CurrentMatrix().PreTranslate(-mTilingOrigin.x, -mTilingOrigin.y));

    aCallback(&mPaintedLayer, ctx, paintRegion, paintRegion,
              DrawRegionClip::DRAW, nsIntRegion(), aCallbackData);
  }

  if (asyncPaint) {
    if (!backBuffer->mCapture->IsEmpty()) {
      UniquePtr<PaintTask> task(new PaintTask());
      task->mCapture = backBuffer->mCapture;
      task->mTarget = backBuffer->mBackBuffer;
      task->mClients = std::move(backBuffer->mTextureClients);
      if (discardedFrontBuffer) {
        task->mClients.AppendElement(discardedFrontBuffer);
      }
      if (discardedFrontBufferOnWhite) {
        task->mClients.AppendElement(discardedFrontBufferOnWhite);
      }

      // The target is an alias for the capture, and the paint thread expects
      // to be the only one with a reference to the capture
      backBuffer->mTarget = nullptr;
      backBuffer->mCapture = nullptr;

      PaintThread::Get()->QueuePaintTask(std::move(task));
      mManager->SetQueuedAsyncPaints();
    }
  } else {
    MOZ_ASSERT(backBuffer->mTarget == backBuffer->mBackBuffer);
    MOZ_ASSERT(!backBuffer->mCapture);
  }

  // The new buffer is now validated, remove the dirty region from it.
  mTile.mInvalidBack.SubOut(tileDirtyRegion);

  backBuffer = Nothing();

  mTile.Flip();
  UnlockTile(mTile);

  mValidRegion = aNewValidRegion;
  mLastPaintSurfaceMode = mode;
  mLastPaintContentType = content;
}
bool
HwcComposer2D::PrepareLayerList(Layer* aLayer,
                                const nsIntRect& aClip,
                                const Matrix& aParentTransform,
                                bool aFindSidebandStreams)
{
    // NB: we fall off this path whenever there are container layers
    // that require intermediate surfaces.  That means all the
    // GetEffective*() coordinates are relative to the framebuffer.

    bool fillColor = false;

    const nsIntRegion visibleRegion = aLayer->GetLocalVisibleRegion().ToUnknownRegion();
    if (visibleRegion.IsEmpty()) {
        return true;
    }

    uint8_t opacity = std::min(0xFF, (int)(aLayer->GetEffectiveOpacity() * 256.0));
    if (opacity == 0) {
        LOGD("%s Layer has zero opacity; skipping", aLayer->Name());
        return true;
    }

    if (!mHal->SupportTransparency() && opacity < 0xFF && !aFindSidebandStreams) {
        LOGD("%s Layer has planar semitransparency which is unsupported by hwcomposer", aLayer->Name());
        return false;
    }

    if (aLayer->GetMaskLayer() && !aFindSidebandStreams) {
        LOGD("%s Layer has MaskLayer which is unsupported by hwcomposer", aLayer->Name());
        return false;
    }

    nsIntRect clip;
    nsIntRect layerClip = aLayer->GetLocalClipRect().valueOr(ParentLayerIntRect()).ToUnknownRect();
    nsIntRect* layerClipPtr = aLayer->GetLocalClipRect() ? &layerClip : nullptr;
    if (!HwcUtils::CalculateClipRect(aParentTransform,
                                     layerClipPtr,
                                     aClip,
                                     &clip))
    {
        LOGD("%s Clip rect is empty. Skip layer", aLayer->Name());
        return true;
    }

    // HWC supports only the following 2D transformations:
    //
    // Scaling via the sourceCrop and displayFrame in HwcLayer
    // Translation via the sourceCrop and displayFrame in HwcLayer
    // Rotation (in square angles only) via the HWC_TRANSFORM_ROT_* flags
    // Reflection (horizontal and vertical) via the HWC_TRANSFORM_FLIP_* flags
    //
    // A 2D transform with PreservesAxisAlignedRectangles() has all the attributes
    // above
    Matrix layerTransform;
    if (!aLayer->GetEffectiveTransform().Is2D(&layerTransform) ||
        !layerTransform.PreservesAxisAlignedRectangles()) {
        LOGD("Layer EffectiveTransform has a 3D transform or a non-square angle rotation");
        return false;
    }

    Matrix layerBufferTransform;
    if (!aLayer->GetEffectiveTransformForBuffer().Is2D(&layerBufferTransform) ||
        !layerBufferTransform.PreservesAxisAlignedRectangles()) {
        LOGD("Layer EffectiveTransformForBuffer has a 3D transform or a non-square angle rotation");
      return false;
    }

    if (ContainerLayer* container = aLayer->AsContainerLayer()) {
        if (container->UseIntermediateSurface() && !aFindSidebandStreams) {
            LOGD("Container layer needs intermediate surface");
            return false;
        }
        AutoTArray<Layer*, 12> children;
        container->SortChildrenBy3DZOrder(children);

        for (uint32_t i = 0; i < children.Length(); i++) {
            if (!PrepareLayerList(children[i], clip, layerTransform, aFindSidebandStreams) &&
                !aFindSidebandStreams) {
                return false;
            }
        }
        return true;
    }

    LayerRenderState state = aLayer->GetRenderState();

#if ANDROID_VERSION >= 21
    if (!state.GetGrallocBuffer() && !state.GetSidebandStream().IsValid()) {
#else
    if (!state.GetGrallocBuffer()) {
#endif
        if (aLayer->AsColorLayer() && mColorFill) {
            fillColor = true;
        } else {
            LOGD("%s Layer doesn't have a gralloc buffer", aLayer->Name());
            return false;
        }
    }

    nsIntRect visibleRect = visibleRegion.GetBounds();

    nsIntRect bufferRect;
    if (fillColor) {
        bufferRect = nsIntRect(visibleRect);
    } else {
        nsIntRect layerRect;
        if (state.mHasOwnOffset) {
            bufferRect = nsIntRect(state.mOffset.x, state.mOffset.y,
                                   state.mSize.width, state.mSize.height);
            layerRect = bufferRect;
        } else {
            //Since the buffer doesn't have its own offset, assign the whole
            //surface size as its buffer bounds
            bufferRect = nsIntRect(0, 0, state.mSize.width, state.mSize.height);
            layerRect = bufferRect;
            if (aLayer->GetType() == Layer::TYPE_IMAGE) {
                ImageLayer* imageLayer = static_cast<ImageLayer*>(aLayer);
                if(imageLayer->GetScaleMode() != ScaleMode::SCALE_NONE) {
                  layerRect = nsIntRect(0, 0, imageLayer->GetScaleToSize().width, imageLayer->GetScaleToSize().height);
                }
            }
        }
        // In some cases the visible rect assigned to the layer can be larger
        // than the layer's surface, e.g., an ImageLayer with a small Image
        // in it.
        visibleRect.IntersectRect(visibleRect, layerRect);
    }

    // Buffer rotation is not to be confused with the angled rotation done by a transform matrix
    // It's a fancy PaintedLayer feature used for scrolling
    if (state.BufferRotated()) {
        LOGD("%s Layer has a rotated buffer", aLayer->Name());
        return false;
    }

    const bool needsYFlip = state.OriginBottomLeft() ? true
                                                     : false;

    hwc_rect_t sourceCrop, displayFrame;
    if(!HwcUtils::PrepareLayerRects(visibleRect,
                          layerTransform,
                          layerBufferTransform,
                          clip,
                          bufferRect,
                          needsYFlip,
                          &(sourceCrop),
                          &(displayFrame)))
    {
        return true;
    }

    // OK!  We can compose this layer with hwc.
    int current = mList ? mList->numHwLayers : 0;

    // Do not compose any layer below full-screen Opaque layer
    // Note: It can be generalized to non-fullscreen Opaque layers.
    bool isOpaque = opacity == 0xFF &&
        (state.mFlags & LayerRenderStateFlags::OPAQUE);
    // Currently we perform opacity calculation using the *bounds* of the layer.
    // We can only make this assumption if we're not dealing with a complex visible region.
    bool isSimpleVisibleRegion = visibleRegion.Contains(visibleRect);
    if (current && isOpaque && isSimpleVisibleRegion) {
        nsIntRect displayRect = nsIntRect(displayFrame.left, displayFrame.top,
            displayFrame.right - displayFrame.left, displayFrame.bottom - displayFrame.top);
        if (displayRect.Contains(mScreenRect)) {
            // In z-order, all previous layers are below
            // the current layer. We can ignore them now.
            mList->numHwLayers = current = 0;
            mHwcLayerMap.Clear();
        }
    }

    if (!mList || current >= mMaxLayerCount) {
        if (!ReallocLayerList() || current >= mMaxLayerCount) {
            LOGE("PrepareLayerList failed! Could not increase the maximum layer count");
            return false;
        }
    }

    HwcLayer& hwcLayer = mList->hwLayers[current];
    hwcLayer.displayFrame = displayFrame;
    mHal->SetCrop(hwcLayer, sourceCrop);
    buffer_handle_t handle = nullptr;
#if ANDROID_VERSION >= 21
    if (state.GetSidebandStream().IsValid()) {
        handle = state.GetSidebandStream().GetRawNativeHandle();
    } else if (state.GetGrallocBuffer()) {
        handle = state.GetGrallocBuffer()->getNativeBuffer()->handle;
    }
#else
    if (state.GetGrallocBuffer()) {
        handle = state.GetGrallocBuffer()->getNativeBuffer()->handle;
    }
#endif
    hwcLayer.handle = handle;

    hwcLayer.flags = 0;
    hwcLayer.hints = 0;
    hwcLayer.blending = isOpaque ? HWC_BLENDING_NONE : HWC_BLENDING_PREMULT;
#if ANDROID_VERSION >= 17
    hwcLayer.compositionType = HWC_FRAMEBUFFER;
#if ANDROID_VERSION >= 21
    if (state.GetSidebandStream().IsValid()) {
        hwcLayer.compositionType = HWC_SIDEBAND;
    }
#endif
    hwcLayer.acquireFenceFd = -1;
    hwcLayer.releaseFenceFd = -1;
#if ANDROID_VERSION >= 18
    hwcLayer.planeAlpha = opacity;
#endif
#else
    hwcLayer.compositionType = HwcUtils::HWC_USE_COPYBIT;
#endif

    if (!fillColor) {
        if (state.FormatRBSwapped()) {
            if (!mRBSwapSupport) {
                LOGD("No R/B swap support in H/W Composer");
                return false;
            }
            hwcLayer.flags |= HwcUtils::HWC_FORMAT_RB_SWAP;
        }

        // Translation and scaling have been addressed in PrepareLayerRects().
        // Given the above and that we checked for PreservesAxisAlignedRectangles()
        // the only possible transformations left to address are
        // square angle rotation and horizontal/vertical reflection.
        //
        // The rotation and reflection permutations total 16 but can be
        // reduced to 8 transformations after eliminating redundancies.
        //
        // All matrices represented here are in the form
        //
        // | xx  xy |
        // | yx  yy |
        //
        // And ignore scaling.
        //
        // Reflection is applied before rotation
        gfx::Matrix rotation = layerTransform;
        // Compute fuzzy zero like PreservesAxisAlignedRectangles()
        if (fabs(rotation._11) < 1e-6) {
            if (rotation._21 < 0) {
                if (rotation._12 > 0) {
                    // 90 degree rotation
                    //
                    // |  0  -1  |
                    // |  1   0  |
                    //
                    hwcLayer.transform = HWC_TRANSFORM_ROT_90;
                    LOGD("Layer rotated 90 degrees");
                }
                else {
                    // Horizontal reflection then 90 degree rotation
                    //
                    // |  0  -1  | | -1   0  | = |  0  -1  |
                    // |  1   0  | |  0   1  |   | -1   0  |
                    //
                    // same as vertical reflection then 270 degree rotation
                    //
                    // |  0   1  | |  1   0  | = |  0  -1  |
                    // | -1   0  | |  0  -1  |   | -1   0  |
                    //
                    hwcLayer.transform = HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_FLIP_H;
                    LOGD("Layer vertically reflected then rotated 270 degrees");
                }
            } else {
                if (rotation._12 < 0) {
                    // 270 degree rotation
                    //
                    // |  0   1  |
                    // | -1   0  |
                    //
                    hwcLayer.transform = HWC_TRANSFORM_ROT_270;
                    LOGD("Layer rotated 270 degrees");
                }
                else {
                    // Vertical reflection then 90 degree rotation
                    //
                    // |  0   1  | | -1   0  | = |  0   1  |
                    // | -1   0  | |  0   1  |   |  1   0  |
                    //
                    // Same as horizontal reflection then 270 degree rotation
                    //
                    // |  0  -1  | |  1   0  | = |  0   1  |
                    // |  1   0  | |  0  -1  |   |  1   0  |
                    //
                    hwcLayer.transform = HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_FLIP_V;
                    LOGD("Layer horizontally reflected then rotated 270 degrees");
                }
            }
        } else if (rotation._11 < 0) {
            if (rotation._22 > 0) {
                // Horizontal reflection
                //
                // | -1   0  |
                // |  0   1  |
                //
                hwcLayer.transform = HWC_TRANSFORM_FLIP_H;
                LOGD("Layer rotated 180 degrees");
            }
            else {
                // 180 degree rotation
                //
                // | -1   0  |
                // |  0  -1  |
                //
                // Same as horizontal and vertical reflection
                //
                // | -1   0  | |  1   0  | = | -1   0  |
                // |  0   1  | |  0  -1  |   |  0  -1  |
                //
                hwcLayer.transform = HWC_TRANSFORM_ROT_180;
                LOGD("Layer rotated 180 degrees");
            }
        } else {
            if (rotation._22 < 0) {
                // Vertical reflection
                //
                // |  1   0  |
                // |  0  -1  |
                //
                hwcLayer.transform = HWC_TRANSFORM_FLIP_V;
                LOGD("Layer rotated 180 degrees");
            }
            else {
                // No rotation or reflection
                //
                // |  1   0  |
                // |  0   1  |
                //
                hwcLayer.transform = 0;
            }
        }

        const bool needsYFlip = state.OriginBottomLeft() ? true
                                                         : false;

        if (needsYFlip) {
           // Invert vertical reflection flag if it was already set
           hwcLayer.transform ^= HWC_TRANSFORM_FLIP_V;
        }
        hwc_region_t region;
        if (visibleRegion.GetNumRects() > 1) {
            mVisibleRegions.push_back(HwcUtils::RectVector());
            HwcUtils::RectVector* visibleRects = &(mVisibleRegions.back());
            bool isVisible = false;
            if(!HwcUtils::PrepareVisibleRegion(visibleRegion,
                                     layerTransform,
                                     layerBufferTransform,
                                     clip,
                                     bufferRect,
                                     visibleRects,
                                     isVisible)) {
                LOGD("A region of layer is too small to be rendered by HWC");
                return false;
            }
            if (!isVisible) {
                // Layer is not visible, no need to render it
                return true;
            }
            region.numRects = visibleRects->size();
            region.rects = &((*visibleRects)[0]);
        } else {
            region.numRects = 1;
            region.rects = &(hwcLayer.displayFrame);
        }
        hwcLayer.visibleRegionScreen = region;
    } else {
        hwcLayer.flags |= HwcUtils::HWC_COLOR_FILL;
        ColorLayer* colorLayer = aLayer->AsColorLayer();
        if (colorLayer->GetColor().a < 1.0) {
            LOGD("Color layer has semitransparency which is unsupported");
            return false;
        }
        hwcLayer.transform = colorLayer->GetColor().ToABGR();
    }

#if ANDROID_VERSION >= 21
    if (aFindSidebandStreams && hwcLayer.compositionType == HWC_SIDEBAND) {
        mCachedSidebandLayers.AppendElement(hwcLayer);
    }
#endif

    mHwcLayerMap.AppendElement(static_cast<LayerComposite*>(aLayer->ImplData()));
    mList->numHwLayers++;
    return true;
}


#if ANDROID_VERSION >= 17
bool
HwcComposer2D::TryHwComposition(nsScreenGonk* aScreen)
{
    DisplaySurface* dispSurface = aScreen->GetDisplaySurface();

    if (!(dispSurface && dispSurface->lastHandle)) {
        LOGD("H/W Composition failed. DispSurface not initialized.");
        return false;
    }

    // Add FB layer
    int idx = mList->numHwLayers++;
    if (idx >= mMaxLayerCount) {
        if (!ReallocLayerList() || idx >= mMaxLayerCount) {
            LOGE("TryHwComposition failed! Could not add FB layer");
            return false;
        }
    }

    Prepare(dispSurface->lastHandle, -1, aScreen);

    /* Possible composition paths, after hwc prepare:
    1. GPU Composition
    2. BLIT Composition
    3. Full OVERLAY Composition
    4. Partial OVERLAY Composition (GPU + OVERLAY) */

    bool gpuComposite = false;
    bool blitComposite = false;
    bool overlayComposite = true;

    for (int j=0; j < idx; j++) {
        if (mList->hwLayers[j].compositionType == HWC_FRAMEBUFFER ||
            mList->hwLayers[j].compositionType == HWC_BLIT) {
            // Full OVERLAY composition is not possible on this frame
            // It is either GPU / BLIT / partial OVERLAY composition.
            overlayComposite = false;
            break;
        }
    }

    if (!overlayComposite) {
        for (int k=0; k < idx; k++) {
            switch (mList->hwLayers[k].compositionType) {
                case HWC_FRAMEBUFFER:
                    gpuComposite = true;
                    break;
                case HWC_BLIT:
                    blitComposite = true;
                    break;
#if ANDROID_VERSION >= 21
                case HWC_SIDEBAND:
#endif
                case HWC_OVERLAY: {
                    // HWC will compose HWC_OVERLAY layers in partial
                    // Overlay Composition, set layer composition flag
                    // on mapped LayerComposite to skip GPU composition
                    mHwcLayerMap[k]->SetLayerComposited(true);

                    uint8_t opacity = std::min(0xFF, (int)(mHwcLayerMap[k]->GetLayer()->GetEffectiveOpacity() * 256.0));
                    if ((mList->hwLayers[k].hints & HWC_HINT_CLEAR_FB) &&
                        (opacity == 0xFF)) {
                        // Clear visible rect on FB with transparent pixels.
                        hwc_rect_t r = mList->hwLayers[k].displayFrame;
                        mHwcLayerMap[k]->SetClearRect(nsIntRect(r.left, r.top,
                                                                r.right - r.left,
                                                                r.bottom - r.top));
                    }
                    break;
                }
                default:
                    break;
            }
        }

        if (gpuComposite) {
            // GPU or partial OVERLAY Composition
            return false;
        } else if (blitComposite) {
            // BLIT Composition, flip DispSurface target
            GetGonkDisplay()->UpdateDispSurface(aScreen->GetEGLDisplay(), aScreen->GetEGLSurface());
            DisplaySurface* dispSurface = aScreen->GetDisplaySurface();
            if (!dispSurface) {
                LOGE("H/W Composition failed. NULL DispSurface.");
                return false;
            }
            mList->hwLayers[idx].handle = dispSurface->lastHandle;
            mList->hwLayers[idx].acquireFenceFd = dispSurface->GetPrevDispAcquireFd();
        }
    }

    // BLIT or full OVERLAY Composition
    return Commit(aScreen);
}
Beispiel #28
0
void
ThebesLayerD3D9::DrawRegion(const nsIntRegion &aRegion)
{
  HRESULT hr;
  nsIntRect visibleRect = mVisibleRegion.GetBounds();
  nsRefPtr<gfxContext> context;

#ifdef CAIRO_HAS_D2D_SURFACE
  if (mD2DSurface) {
    context = new gfxContext(mD2DSurface);
    nsIntRegionRectIterator iter(aRegion);
    context->Translate(gfxPoint(-visibleRect.x, -visibleRect.y));
    context->NewPath();
    const nsIntRect *iterRect;
    while ((iterRect = iter.Next())) {
      context->Rectangle(gfxRect(iterRect->x, iterRect->y, iterRect->width, iterRect->height));      
    }
    context->Clip();
    if (mD2DSurface->GetContentType() != gfxASurface::CONTENT_COLOR) {
      context->SetOperator(gfxContext::OPERATOR_CLEAR);
      context->Paint();
      context->SetOperator(gfxContext::OPERATOR_OVER);
    }
    LayerManagerD3D9::CallbackInfo cbInfo = mD3DManager->GetCallbackInfo();
    cbInfo.Callback(this, context, aRegion, nsIntRegion(), cbInfo.CallbackData);
    mD2DSurface->Flush();

    // XXX - This call is quite expensive, we may want to consider doing our
    // drawing in a seperate 'validation' iteration. And then flushing once for
    // all the D2D surfaces we might have drawn, before doing our D3D9 rendering
    // loop.
    cairo_d2d_finish_device(gfxWindowsPlatform::GetPlatform()->GetD2DDevice());
    return;
  }
#endif

  D3DFORMAT fmt = UseOpaqueSurface(this) ? D3DFMT_X8R8G8B8 : D3DFMT_A8R8G8B8;
  nsIntRect bounds = aRegion.GetBounds();

  gfxASurface::gfxImageFormat imageFormat = gfxASurface::ImageFormatARGB32;
  nsRefPtr<gfxASurface> destinationSurface;

  nsRefPtr<IDirect3DTexture9> tmpTexture;
  device()->CreateTexture(bounds.width, bounds.height, 1,
                          0, fmt,
                          D3DPOOL_SYSTEMMEM, getter_AddRefs(tmpTexture), NULL);

  nsRefPtr<IDirect3DSurface9> surf;
  HDC dc;
  if (UseOpaqueSurface(this)) {
    hr = tmpTexture->GetSurfaceLevel(0, getter_AddRefs(surf));

    if (FAILED(hr)) {
      // Uh-oh, bail.
      NS_WARNING("Failed to get texture surface level.");
      return;
    }

    hr = surf->GetDC(&dc);

    if (FAILED(hr)) {
      NS_WARNING("Failed to get device context for texture surface.");
      return;
    }

    destinationSurface = new gfxWindowsSurface(dc);
  } else {
    // XXX - We may consider retaining a SYSTEMMEM texture texture the size
    // of our DEFAULT texture and then use UpdateTexture and add dirty rects
    // to update in a single call.
    destinationSurface =
    gfxPlatform::GetPlatform()->
      CreateOffscreenSurface(gfxIntSize(bounds.width,
                                        bounds.height),
                             imageFormat);
  }

  context = new gfxContext(destinationSurface);
  context->Translate(gfxPoint(-bounds.x, -bounds.y));
  LayerManagerD3D9::CallbackInfo cbInfo = mD3DManager->GetCallbackInfo();
  cbInfo.Callback(this, context, aRegion, nsIntRegion(), cbInfo.CallbackData);

  if (UseOpaqueSurface(this)) {
    surf->ReleaseDC(dc);
  } else {
    D3DLOCKED_RECT r;
    tmpTexture->LockRect(0, &r, NULL, 0);

    nsRefPtr<gfxImageSurface> imgSurface =
    new gfxImageSurface((unsigned char *)r.pBits,
                        gfxIntSize(bounds.width,
                                   bounds.height),
                        r.Pitch,
                        imageFormat);

    context = new gfxContext(imgSurface);
    context->SetSource(destinationSurface);
    context->SetOperator(gfxContext::OPERATOR_SOURCE);
    context->Paint();

    imgSurface = NULL;

    tmpTexture->UnlockRect(0);
  }

  nsRefPtr<IDirect3DSurface9> srcSurface;
  nsRefPtr<IDirect3DSurface9> dstSurface;

  mTexture->GetSurfaceLevel(0, getter_AddRefs(dstSurface));
  tmpTexture->GetSurfaceLevel(0, getter_AddRefs(srcSurface));

  nsIntRegionRectIterator iter(aRegion);
  const nsIntRect *iterRect;
  while ((iterRect = iter.Next())) {
    RECT rect;
    rect.left = iterRect->x - bounds.x;
    rect.top = iterRect->y - bounds.y;
    rect.right = rect.left + iterRect->width;
    rect.bottom = rect.top + iterRect->height;
    POINT point;
    point.x = iterRect->x - visibleRect.x;
    point.y = iterRect->y - visibleRect.y;
    device()->UpdateSurface(srcSurface, &rect, dstSurface, &point);
  }
}
void
ThebesLayerD3D9::DrawRegion(nsIntRegion &aRegion, SurfaceMode aMode,
                            const nsTArray<ReadbackProcessor::Update>& aReadbackUpdates)
{
  HRESULT hr;
  nsIntRect visibleRect = mVisibleRegion.GetBounds();

  nsRefPtr<gfxASurface> destinationSurface;
  nsIntRect bounds = aRegion.GetBounds();
  nsRefPtr<IDirect3DTexture9> tmpTexture;
  OpaqueRenderer opaqueRenderer(aRegion);
  OpaqueRenderer opaqueRendererOnWhite(aRegion);

  switch (aMode)
  {
    case SurfaceMode::SURFACE_OPAQUE:
      destinationSurface = opaqueRenderer.Begin(this);
      break;

    case SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA: {
      hr = device()->CreateTexture(bounds.width, bounds.height, 1,
                                   0, D3DFMT_A8R8G8B8,
                                   D3DPOOL_SYSTEMMEM, getter_AddRefs(tmpTexture), nullptr);

      if (FAILED(hr)) {
        ReportFailure(NS_LITERAL_CSTRING("Failed to create temporary texture in system memory."), hr);
        return;
      }

      // XXX - We may consider retaining a SYSTEMMEM texture texture the size
      // of our DEFAULT texture and then use UpdateTexture and add dirty rects
      // to update in a single call.
      nsRefPtr<gfxWindowsSurface> dest = new gfxWindowsSurface(
          gfxIntSize(bounds.width, bounds.height), gfxImageFormat::ARGB32);
      // If the contents of this layer don't require component alpha in the
      // end of rendering, it's safe to enable Cleartype since all the Cleartype
      // glyphs must be over (or under) opaque pixels.
      dest->SetSubpixelAntialiasingEnabled(!(mContentFlags & CONTENT_COMPONENT_ALPHA));
      destinationSurface = dest.forget();
      break;
    }

    case SurfaceMode::SURFACE_COMPONENT_ALPHA: {
      nsRefPtr<gfxWindowsSurface> onBlack = opaqueRenderer.Begin(this);
      nsRefPtr<gfxWindowsSurface> onWhite = opaqueRendererOnWhite.Begin(this);
      if (onBlack && onWhite) {
        FillSurface(onBlack, aRegion, bounds.TopLeft(), gfxRGBA(0.0, 0.0, 0.0, 1.0));
        FillSurface(onWhite, aRegion, bounds.TopLeft(), gfxRGBA(1.0, 1.0, 1.0, 1.0));
        gfxASurface* surfaces[2] = { onBlack.get(), onWhite.get() };
        destinationSurface = new gfxTeeSurface(surfaces, ArrayLength(surfaces));
        // Using this surface as a source will likely go horribly wrong, since
        // only the onBlack surface will really be used, so alpha information will
        // be incorrect.
        destinationSurface->SetAllowUseAsSource(false);
      }
      break;
    }
  }

  if (!destinationSurface)
    return;

  nsRefPtr<gfxContext> context;
  if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(BackendType::CAIRO)) {
     RefPtr<DrawTarget> dt =
        gfxPlatform::GetPlatform()->CreateDrawTargetForSurface(destinationSurface,
                                                               IntSize(destinationSurface->GetSize().width,
                                                                       destinationSurface->GetSize().height));

    context = new gfxContext(dt);
  } else {
    context = new gfxContext(destinationSurface);
  }

  context->Translate(gfxPoint(-bounds.x, -bounds.y));
  LayerManagerD3D9::CallbackInfo cbInfo = mD3DManager->GetCallbackInfo();
  cbInfo.Callback(this, context, aRegion, DrawRegionClip::CLIP_NONE, nsIntRegion(), cbInfo.CallbackData);

  for (uint32_t i = 0; i < aReadbackUpdates.Length(); ++i) {
    NS_ASSERTION(aMode == SurfaceMode::SURFACE_OPAQUE,
                 "Transparent surfaces should not be used for readback");
    const ReadbackProcessor::Update& update = aReadbackUpdates[i];
    nsIntPoint offset = update.mLayer->GetBackgroundLayerOffset();
    nsRefPtr<gfxContext> ctx =
        update.mLayer->GetSink()->BeginUpdate(update.mUpdateRect + offset,
                                              update.mSequenceCounter);
    if (ctx) {
      ctx->Translate(gfxPoint(offset.x, offset.y));
      ctx->SetSource(destinationSurface, gfxPoint(bounds.x, bounds.y));
      ctx->Paint();
      update.mLayer->GetSink()->EndUpdate(ctx, update.mUpdateRect + offset);
    }
  }

  // Release the cairo d3d9 surface before we try to composite it
  context = nullptr;

  nsAutoTArray<IDirect3DTexture9*,2> srcTextures;
  nsAutoTArray<IDirect3DTexture9*,2> destTextures;
  switch (aMode)
  {
    case SurfaceMode::SURFACE_OPAQUE:
      // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      opaqueRenderer.End();
      srcTextures.AppendElement(opaqueRenderer.GetTexture());
      destTextures.AppendElement(mTexture);
      break;

    case SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA: {
      LockTextureRectD3D9 textureLock(tmpTexture);
      if (!textureLock.HasLock()) {
        NS_WARNING("Failed to lock ThebesLayer tmpTexture texture.");
        return;
      }

      D3DLOCKED_RECT r = textureLock.GetLockRect();

      nsRefPtr<gfxImageSurface> imgSurface =
        new gfxImageSurface((unsigned char *)r.pBits,
                            bounds.Size(),
                            r.Pitch,
                            gfxImageFormat::ARGB32);

      if (destinationSurface) {
        nsRefPtr<gfxContext> context = new gfxContext(imgSurface);
        context->SetSource(destinationSurface);
        context->SetOperator(gfxContext::OPERATOR_SOURCE);
        context->Paint();
      }

      // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      imgSurface = nullptr;

      srcTextures.AppendElement(tmpTexture);
      destTextures.AppendElement(mTexture);
      break;
    }

    case SurfaceMode::SURFACE_COMPONENT_ALPHA: {
      // Must release reference to dest surface before ending drawing
      destinationSurface = nullptr;
      opaqueRenderer.End();
      opaqueRendererOnWhite.End();
      srcTextures.AppendElement(opaqueRenderer.GetTexture());
      destTextures.AppendElement(mTexture);
      srcTextures.AppendElement(opaqueRendererOnWhite.GetTexture());
      destTextures.AppendElement(mTextureOnWhite);
      break;
    }
  }
  NS_ASSERTION(srcTextures.Length() == destTextures.Length(), "Mismatched lengths");
  

  // Copy to the texture.
  for (uint32_t i = 0; i < srcTextures.Length(); ++i) {
    nsRefPtr<IDirect3DSurface9> srcSurface;
    nsRefPtr<IDirect3DSurface9> dstSurface;

    destTextures[i]->GetSurfaceLevel(0, getter_AddRefs(dstSurface));
    srcTextures[i]->GetSurfaceLevel(0, getter_AddRefs(srcSurface));

    nsIntRegionRectIterator iter(aRegion);
    const nsIntRect *iterRect;
    while ((iterRect = iter.Next())) {
      RECT rect;
      rect.left = iterRect->x - bounds.x;
      rect.top = iterRect->y - bounds.y;
      rect.right = iterRect->XMost() - bounds.x;
      rect.bottom = iterRect->YMost() - bounds.y;

      POINT point;
      point.x = iterRect->x - visibleRect.x;
      point.y = iterRect->y - visibleRect.y;
      device()->UpdateSurface(srcSurface, &rect, dstSurface, &point);
    }
  }
}
bool
ClientTiledLayerBuffer::ComputeProgressiveUpdateRegion(const nsIntRegion& aInvalidRegion,
                                                      const nsIntRegion& aOldValidRegion,
                                                      nsIntRegion& aRegionToPaint,
                                                      BasicTiledLayerPaintData* aPaintData,
                                                      bool aIsRepeated)
{
  aRegionToPaint = aInvalidRegion;

  // If the composition bounds rect is empty, we can't make any sensible
  // decision about how to update coherently. In this case, just update
  // everything in one transaction.
  if (aPaintData->mCompositionBounds.IsEmpty()) {
    aPaintData->mPaintFinished = true;
    return false;
  }

  // If this is a low precision buffer, we force progressive updates. The
  // assumption is that the contents is less important, so visual coherency
  // is lower priority than speed.
  bool drawingLowPrecision = IsLowPrecision();

  // Find out if we have any non-stale content to update.
  nsIntRegion staleRegion;
  staleRegion.And(aInvalidRegion, aOldValidRegion);

  // Find out the current view transform to determine which tiles to draw
  // first, and see if we should just abort this paint. Aborting is usually
  // caused by there being an incoming, more relevant paint.
  ParentLayerRect compositionBounds;
  CSSToParentLayerScale zoom;
#if defined(MOZ_WIDGET_ANDROID)
  bool abortPaint = mManager->ProgressiveUpdateCallback(!staleRegion.Contains(aInvalidRegion),
                                                        compositionBounds, zoom,
                                                        !drawingLowPrecision);
#else
  MOZ_ASSERT(mSharedFrameMetricsHelper);

  ContainerLayer* parent = mThebesLayer->AsLayer()->GetParent();

  bool abortPaint =
    mSharedFrameMetricsHelper->UpdateFromCompositorFrameMetrics(
      parent,
      !staleRegion.Contains(aInvalidRegion),
      drawingLowPrecision,
      compositionBounds,
      zoom);
#endif

  if (abortPaint) {
    // We ignore if front-end wants to abort if this is the first,
    // non-low-precision paint, as in that situation, we're about to override
    // front-end's page/viewport metrics.
    if (!aPaintData->mFirstPaint || drawingLowPrecision) {
      PROFILER_LABEL("ContentClient", "Abort painting");
      aRegionToPaint.SetEmpty();
      return aIsRepeated;
    }
  }

  // Transform the screen coordinates into transformed layout device coordinates.
  LayoutDeviceRect transformedCompositionBounds =
    TransformCompositionBounds(compositionBounds, zoom, aPaintData->mScrollOffset,
                               aPaintData->mResolution, aPaintData->mTransformParentLayerToLayout);

  // Paint tiles that have stale content or that intersected with the screen
  // at the time of issuing the draw command in a single transaction first.
  // This is to avoid rendering glitches on animated page content, and when
  // layers change size/shape.
  LayoutDeviceRect coherentUpdateRect =
    transformedCompositionBounds.Intersect(aPaintData->mCompositionBounds);

  nsIntRect roundedCoherentUpdateRect =
    LayoutDeviceIntRect::ToUntyped(RoundedOut(coherentUpdateRect));

  aRegionToPaint.And(aInvalidRegion, roundedCoherentUpdateRect);
  aRegionToPaint.Or(aRegionToPaint, staleRegion);
  bool drawingStale = !aRegionToPaint.IsEmpty();
  if (!drawingStale) {
    aRegionToPaint = aInvalidRegion;
  }

  // Prioritise tiles that are currently visible on the screen.
  bool paintVisible = false;
  if (aRegionToPaint.Intersects(roundedCoherentUpdateRect)) {
    aRegionToPaint.And(aRegionToPaint, roundedCoherentUpdateRect);
    paintVisible = true;
  }

  // Paint area that's visible and overlaps previously valid content to avoid
  // visible glitches in animated elements, such as gifs.
  bool paintInSingleTransaction = paintVisible && (drawingStale || aPaintData->mFirstPaint);

  // The following code decides what order to draw tiles in, based on the
  // current scroll direction of the primary scrollable layer.
  NS_ASSERTION(!aRegionToPaint.IsEmpty(), "Unexpectedly empty paint region!");
  nsIntRect paintBounds = aRegionToPaint.GetBounds();

  int startX, incX, startY, incY;
  int tileLength = GetScaledTileLength();
  if (aPaintData->mScrollOffset.x >= aPaintData->mLastScrollOffset.x) {
    startX = RoundDownToTileEdge(paintBounds.x);
    incX = tileLength;
  } else {
    startX = RoundDownToTileEdge(paintBounds.XMost() - 1);
    incX = -tileLength;
  }

  if (aPaintData->mScrollOffset.y >= aPaintData->mLastScrollOffset.y) {
    startY = RoundDownToTileEdge(paintBounds.y);
    incY = tileLength;
  } else {
    startY = RoundDownToTileEdge(paintBounds.YMost() - 1);
    incY = -tileLength;
  }

  // Find a tile to draw.
  nsIntRect tileBounds(startX, startY, tileLength, tileLength);
  int32_t scrollDiffX = aPaintData->mScrollOffset.x - aPaintData->mLastScrollOffset.x;
  int32_t scrollDiffY = aPaintData->mScrollOffset.y - aPaintData->mLastScrollOffset.y;
  // This loop will always terminate, as there is at least one tile area
  // along the first/last row/column intersecting with regionToPaint, or its
  // bounds would have been smaller.
  while (true) {
    aRegionToPaint.And(aInvalidRegion, tileBounds);
    if (!aRegionToPaint.IsEmpty()) {
      break;
    }
    if (Abs(scrollDiffY) >= Abs(scrollDiffX)) {
      tileBounds.x += incX;
    } else {
      tileBounds.y += incY;
    }
  }

  if (!aRegionToPaint.Contains(aInvalidRegion)) {
    // The region needed to paint is larger then our progressive chunk size
    // therefore update what we want to paint and ask for a new paint transaction.

    // If we need to draw more than one tile to maintain coherency, make
    // sure it happens in the same transaction by requesting this work be
    // repeated immediately.
    // If this is unnecessary, the remaining work will be done tile-by-tile in
    // subsequent transactions.
    if (!drawingLowPrecision && paintInSingleTransaction) {
      return true;
    }

    mManager->SetRepeatTransaction();
    return false;
  }

  // We're not repeating painting and we've not requested a repeat transaction,
  // so the paint is finished. If there's still a separate low precision
  // paint to do, it will get marked as unfinished later.
  aPaintData->mPaintFinished = true;
  return false;
}