Beispiel #1
0
static void
calibresult_validation( const adcontrols::MSCalibrateResult& res
                        , const adcontrols::MassSpectrum& centroid
                        , double threshold )
{
    const adcontrols::MSReferences& ref = res.references();
    const adcontrols::MSAssignedMasses& assigned = res.assignedMasses();
    
    std::ofstream of( "massassign.txt" );
    of << "#\tm/z(observed)\ttof(us)\tintensity\t\tformula,\tm/z(exact)\tm/z(calibrated)\terror(mDa)" << std::endl;
    
    adcontrols::MSReferences::vector_type::const_iterator refIt = ref.begin();
    for ( adcontrols::MSAssignedMasses::vector_type::const_iterator it = assigned.begin(); it != assigned.end(); ++it, ++refIt ) {
        const adcontrols::MSAssignedMass& a = *it;
        
        std::string formula = adportable::string::convert( a.formula() );
        of << std::setprecision(8)
           << std::setw(4) << a.idMassSpectrum() << "\t" // id
           << std::setw(15) << std::fixed << centroid.getMass( a.idMassSpectrum() ) << "\t"           // m/z(observed)
           << std::scientific << centroid.getTime( a.idMassSpectrum() ) << "\t"      // tof
           << std::fixed << std::setprecision( 0 ) << centroid.getIntensity( a.idMassSpectrum() ) << "\t" // intensity
           << formula << "\t"
           << std::setprecision(8) << std::fixed   << it->exactMass() << "\t"                             // mass(exact)
           << std::fixed   << a.mass() << "\t"                                    // m/z(calibrated)
           << std::setprecision(1) << ( a.mass() - it->exactMass() ) * 1000 << "\t"  // error(mDa)
           << ( it->enable() ? "used" : "not used" ) 
           << std::endl;
    }
    const std::vector<double>& coeffs = res.calibration().coeffs();
    
    of << "#--------------------------- Calibration coefficients: " << std::endl;
    for ( size_t i = 0; i < coeffs.size(); ++i )
        of << std::scientific << std::setprecision(14) << coeffs[i] << std::endl;
    
    of << "#--------------------------- centroid peak list (#,mass,intensity)--------------------------" << std::endl;
    
    adcontrols::MSReferences::vector_type::const_iterator it = res.references().begin();
    for ( size_t i = 0; i < centroid.size(); ++i ) {
        if ( centroid.getIntensity( i ) > threshold ) {
            
            double mq = adcontrols::MSCalibration::compute( res.calibration().coeffs(), centroid.getTime( i ) );
            double mass = mq * mq;
            
            double error = 0;
            if ( it != res.references().end() && std::abs( it->exactMass() - mass ) < 0.2 ) {
                error = ( it->exactMass() - mass ) * 1000; // mDa
                ++it;
            }
            of << i << "\t"
               << std::setprecision(8) << std::fixed << centroid.getMass( i ) << "\t"
               << std::setprecision(8) << mass << "\t"
                    << std::setprecision(1) << centroid.getIntensityArray()[i] << std::endl;
        }
    }
}
Beispiel #2
0
//virtual
bool
datafile::getSpectrum( int fcn, size_t pos, adcontrols::MassSpectrum& ms, uint32_t objId ) const
{
	(void)fcn;

	try {
		EDAL::IMSSpectrumCollectionPtr pSpectra = pAnalysis_->GetMSSpectrumCollection();
		EDAL::IMSSpectrumPtr pSpectrum = pSpectra->GetItem( long(pos) + 1 ); // 1-origin

		if ( pSpectrum->Polarity == EDAL::SpectrumPolarity::IonPolarity_Negative )
			ms.setPolarity( adcontrols::MS_POLARITY::PolarityNegative );
		else if ( pSpectrum->Polarity == EDAL::SpectrumPolarity::IonPolarity_Positive )
			ms.setPolarity( adcontrols::MS_POLARITY::PolarityPositive );
		else
			ms.setPolarity( adcontrols::MS_POLARITY::PolarityIndeterminate );

		adcontrols::MSProperty prop = ms.getMSProperty();
		prop.setTimeSinceInjection( static_cast< unsigned long >( pSpectrum->RetentionTime /* sec */ * 1.0e6 ) ); // usec
        ms.setMSProperty( prop ); // <- end of prop set

		_variant_t vMasses, vIntens;
        if ( objId <= 1 ) {
			pSpectrum->GetMassIntensityValues( EDAL::SpectrumType_Profile, &vMasses, &vIntens );
			ms.setCentroid( adcontrols::CentroidNone );  // profile
        } else { // objId should be 2
			pSpectrum->GetMassIntensityValues( EDAL::SpectrumType_Line, &vMasses, &vIntens );
			ms.setCentroid( adcontrols::CentroidNative );
		}

		SafeArray sa_masses( vMasses );
        ms.resize( sa_masses.size() );
        ms.setMassArray( reinterpret_cast< const double *>( sa_masses.p() ) );
    
		SafeArray sa_intensities( vIntens );
        ms.setIntensityArray( reinterpret_cast< const double *>( sa_intensities.p() ) );

        ms.setAcquisitionMassRange( ms.getMass( 0 ), ms.getMass( ms.size() - 1 ) );

		return true;
	} catch(_com_error& ex ) {
		ADERROR() << std::wstring( ex.ErrorMessage() );
		return false;
	}
	return false;
}
Beispiel #3
0
bool
MSChromatogramExtractor::impl::doMSLock( adcontrols::lockmass::mslock& mslock
                                       , const adcontrols::MassSpectrum& centroid
                                       , const adcontrols::MSLockMethod& m )
{
    // TODO: consider how to handle segmented spectrum -- current impl is always process first 
    adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() );

    for ( auto& msref : msrefs_ ) {
        size_t idx = find( centroid, msref.second );
        if ( idx != adcontrols::MSFinder::npos ) 
            mslock << adcontrols::lockmass::reference( msref.first, msref.second, centroid.getMass( idx ), centroid.getTime( idx ) );
    }

    if ( mslock.fit() ) {
        // mslock( centroid, true );
        return true;
    }
    return false;
}
Beispiel #4
0
adcontrols::translate_state
DataInterpreter::translate_profile( adcontrols::MassSpectrum& ms
                                    , const char * data, size_t dsize
                                    , const char * meta, size_t msize
                                    , const adcontrols::MassSpectrometer& spectrometer
                                    , size_t idData ) const
{
	(void)idData;
    adportable::debug(__FILE__, __LINE__) << "translate_profile( dsize=" << dsize << ", msize=" << msize << ")";
    import_profile profile;
    import_continuum_massarray ma;
    
    const batchproc::MassSpectrometer* pSpectrometer = dynamic_cast< const batchproc::MassSpectrometer * >( &spectrometer );
    if ( pSpectrometer == 0 )
        return adcontrols::translate_error;

    if ( adportable::bzip2::is_a( data, dsize ) ) {

        std::string ar;
        adportable::bzip2::decompress( ar, data, dsize );
        adportable::debug(__FILE__, __LINE__) << "translate_profile deserialize import_profile w/ decompress";
        if ( ! adportable::serializer< import_profile >::deserialize( profile, ar.data(), ar.size() ) )
            return adcontrols::translate_error;

    } else {
        adportable::debug(__FILE__, __LINE__) << "translate_profile deserialize import_profile w/o decompress";
        if ( ! adportable::serializer< import_profile >::deserialize( profile, data, dsize ) ) 
            return adcontrols::translate_error;
    }

    if ( meta && msize ) {
        if ( adportable::bzip2::is_a( meta, msize ) ) {
            std::string ar;
            adportable::bzip2::decompress( ar, meta, msize );
            if ( ! adportable::serializer< import_continuum_massarray >::deserialize( ma, ar.data(), ar.size() ) )
                return adcontrols::translate_error;
        } else {
            if ( ! adportable::serializer< import_continuum_massarray >::deserialize( ma, meta, msize ) )
                return adcontrols::translate_error;
        }
    }

    adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 3";
    const import_continuum_massarray& continuum_massarray = meta ? ma : pSpectrometer->continuum_massarray();
    
	ms.setMSProperty( profile.prop_ );
	ms.setPolarity( profile.polarity_ );
    ms.resize( profile.intensities_.size() );

    adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 4";
    ms.setMassArray( continuum_massarray.masses_.data() );
    auto intens = profile.intensities_.data();
    for ( size_t i = 0; i < ms.size(); ++i )
        ms.setIntensity( i, *intens++ );

    adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 5";
    ms.setAcquisitionMassRange( ms.getMass( 0 ), ms.getMass( ms.size() - 1 ) );

    adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 6";

    return adcontrols::translate_complete;
}
Beispiel #5
0
bool
QuanSampleProcessor::doMSLock( adcontrols::MSPeakInfo& pkInfo // will override
                               , adcontrols::MassSpectrum& centroid // will override
                               , const adcontrols::MSLockMethod& m
                               , const adcontrols::QuanCompounds& compounds )
{
    // find reference peak by mass window
    adcontrols::lockmass::mslock mslock;

    // TODO: consider how to handle segmented spectrum -- current impl is always process first 
    adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() );

    for ( auto& compound : compounds ) {
        if ( compound.isLKMSRef() ) {
            double exactMass = cformula_->getMonoIsotopicMass( compound.formula() );
            size_t idx = find( centroid, exactMass );
            if ( idx != adcontrols::MSFinder::npos ) {
                // add found peaks into mslock
                mslock << adcontrols::lockmass::reference( compound.formula(), exactMass, centroid.getMass( idx ), centroid.getTime( idx ) );
            }
        }
    }

    if ( mslock.fit() ) {
        mslock( centroid, true );
        mslock( pkInfo, true );
        return true;
    }
    return false;
}