static void calibresult_validation( const adcontrols::MSCalibrateResult& res , const adcontrols::MassSpectrum& centroid , double threshold ) { const adcontrols::MSReferences& ref = res.references(); const adcontrols::MSAssignedMasses& assigned = res.assignedMasses(); std::ofstream of( "massassign.txt" ); of << "#\tm/z(observed)\ttof(us)\tintensity\t\tformula,\tm/z(exact)\tm/z(calibrated)\terror(mDa)" << std::endl; adcontrols::MSReferences::vector_type::const_iterator refIt = ref.begin(); for ( adcontrols::MSAssignedMasses::vector_type::const_iterator it = assigned.begin(); it != assigned.end(); ++it, ++refIt ) { const adcontrols::MSAssignedMass& a = *it; std::string formula = adportable::string::convert( a.formula() ); of << std::setprecision(8) << std::setw(4) << a.idMassSpectrum() << "\t" // id << std::setw(15) << std::fixed << centroid.getMass( a.idMassSpectrum() ) << "\t" // m/z(observed) << std::scientific << centroid.getTime( a.idMassSpectrum() ) << "\t" // tof << std::fixed << std::setprecision( 0 ) << centroid.getIntensity( a.idMassSpectrum() ) << "\t" // intensity << formula << "\t" << std::setprecision(8) << std::fixed << it->exactMass() << "\t" // mass(exact) << std::fixed << a.mass() << "\t" // m/z(calibrated) << std::setprecision(1) << ( a.mass() - it->exactMass() ) * 1000 << "\t" // error(mDa) << ( it->enable() ? "used" : "not used" ) << std::endl; } const std::vector<double>& coeffs = res.calibration().coeffs(); of << "#--------------------------- Calibration coefficients: " << std::endl; for ( size_t i = 0; i < coeffs.size(); ++i ) of << std::scientific << std::setprecision(14) << coeffs[i] << std::endl; of << "#--------------------------- centroid peak list (#,mass,intensity)--------------------------" << std::endl; adcontrols::MSReferences::vector_type::const_iterator it = res.references().begin(); for ( size_t i = 0; i < centroid.size(); ++i ) { if ( centroid.getIntensity( i ) > threshold ) { double mq = adcontrols::MSCalibration::compute( res.calibration().coeffs(), centroid.getTime( i ) ); double mass = mq * mq; double error = 0; if ( it != res.references().end() && std::abs( it->exactMass() - mass ) < 0.2 ) { error = ( it->exactMass() - mass ) * 1000; // mDa ++it; } of << i << "\t" << std::setprecision(8) << std::fixed << centroid.getMass( i ) << "\t" << std::setprecision(8) << mass << "\t" << std::setprecision(1) << centroid.getIntensityArray()[i] << std::endl; } } }
//virtual bool datafile::getSpectrum( int fcn, size_t pos, adcontrols::MassSpectrum& ms, uint32_t objId ) const { (void)fcn; try { EDAL::IMSSpectrumCollectionPtr pSpectra = pAnalysis_->GetMSSpectrumCollection(); EDAL::IMSSpectrumPtr pSpectrum = pSpectra->GetItem( long(pos) + 1 ); // 1-origin if ( pSpectrum->Polarity == EDAL::SpectrumPolarity::IonPolarity_Negative ) ms.setPolarity( adcontrols::MS_POLARITY::PolarityNegative ); else if ( pSpectrum->Polarity == EDAL::SpectrumPolarity::IonPolarity_Positive ) ms.setPolarity( adcontrols::MS_POLARITY::PolarityPositive ); else ms.setPolarity( adcontrols::MS_POLARITY::PolarityIndeterminate ); adcontrols::MSProperty prop = ms.getMSProperty(); prop.setTimeSinceInjection( static_cast< unsigned long >( pSpectrum->RetentionTime /* sec */ * 1.0e6 ) ); // usec ms.setMSProperty( prop ); // <- end of prop set _variant_t vMasses, vIntens; if ( objId <= 1 ) { pSpectrum->GetMassIntensityValues( EDAL::SpectrumType_Profile, &vMasses, &vIntens ); ms.setCentroid( adcontrols::CentroidNone ); // profile } else { // objId should be 2 pSpectrum->GetMassIntensityValues( EDAL::SpectrumType_Line, &vMasses, &vIntens ); ms.setCentroid( adcontrols::CentroidNative ); } SafeArray sa_masses( vMasses ); ms.resize( sa_masses.size() ); ms.setMassArray( reinterpret_cast< const double *>( sa_masses.p() ) ); SafeArray sa_intensities( vIntens ); ms.setIntensityArray( reinterpret_cast< const double *>( sa_intensities.p() ) ); ms.setAcquisitionMassRange( ms.getMass( 0 ), ms.getMass( ms.size() - 1 ) ); return true; } catch(_com_error& ex ) { ADERROR() << std::wstring( ex.ErrorMessage() ); return false; } return false; }
bool MSChromatogramExtractor::impl::doMSLock( adcontrols::lockmass::mslock& mslock , const adcontrols::MassSpectrum& centroid , const adcontrols::MSLockMethod& m ) { // TODO: consider how to handle segmented spectrum -- current impl is always process first adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() ); for ( auto& msref : msrefs_ ) { size_t idx = find( centroid, msref.second ); if ( idx != adcontrols::MSFinder::npos ) mslock << adcontrols::lockmass::reference( msref.first, msref.second, centroid.getMass( idx ), centroid.getTime( idx ) ); } if ( mslock.fit() ) { // mslock( centroid, true ); return true; } return false; }
adcontrols::translate_state DataInterpreter::translate_profile( adcontrols::MassSpectrum& ms , const char * data, size_t dsize , const char * meta, size_t msize , const adcontrols::MassSpectrometer& spectrometer , size_t idData ) const { (void)idData; adportable::debug(__FILE__, __LINE__) << "translate_profile( dsize=" << dsize << ", msize=" << msize << ")"; import_profile profile; import_continuum_massarray ma; const batchproc::MassSpectrometer* pSpectrometer = dynamic_cast< const batchproc::MassSpectrometer * >( &spectrometer ); if ( pSpectrometer == 0 ) return adcontrols::translate_error; if ( adportable::bzip2::is_a( data, dsize ) ) { std::string ar; adportable::bzip2::decompress( ar, data, dsize ); adportable::debug(__FILE__, __LINE__) << "translate_profile deserialize import_profile w/ decompress"; if ( ! adportable::serializer< import_profile >::deserialize( profile, ar.data(), ar.size() ) ) return adcontrols::translate_error; } else { adportable::debug(__FILE__, __LINE__) << "translate_profile deserialize import_profile w/o decompress"; if ( ! adportable::serializer< import_profile >::deserialize( profile, data, dsize ) ) return adcontrols::translate_error; } if ( meta && msize ) { if ( adportable::bzip2::is_a( meta, msize ) ) { std::string ar; adportable::bzip2::decompress( ar, meta, msize ); if ( ! adportable::serializer< import_continuum_massarray >::deserialize( ma, ar.data(), ar.size() ) ) return adcontrols::translate_error; } else { if ( ! adportable::serializer< import_continuum_massarray >::deserialize( ma, meta, msize ) ) return adcontrols::translate_error; } } adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 3"; const import_continuum_massarray& continuum_massarray = meta ? ma : pSpectrometer->continuum_massarray(); ms.setMSProperty( profile.prop_ ); ms.setPolarity( profile.polarity_ ); ms.resize( profile.intensities_.size() ); adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 4"; ms.setMassArray( continuum_massarray.masses_.data() ); auto intens = profile.intensities_.data(); for ( size_t i = 0; i < ms.size(); ++i ) ms.setIntensity( i, *intens++ ); adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 5"; ms.setAcquisitionMassRange( ms.getMass( 0 ), ms.getMass( ms.size() - 1 ) ); adportable::debug(__FILE__, __LINE__) << "translate_profile checkpoint 6"; return adcontrols::translate_complete; }
bool QuanSampleProcessor::doMSLock( adcontrols::MSPeakInfo& pkInfo // will override , adcontrols::MassSpectrum& centroid // will override , const adcontrols::MSLockMethod& m , const adcontrols::QuanCompounds& compounds ) { // find reference peak by mass window adcontrols::lockmass::mslock mslock; // TODO: consider how to handle segmented spectrum -- current impl is always process first adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() ); for ( auto& compound : compounds ) { if ( compound.isLKMSRef() ) { double exactMass = cformula_->getMonoIsotopicMass( compound.formula() ); size_t idx = find( centroid, exactMass ); if ( idx != adcontrols::MSFinder::npos ) { // add found peaks into mslock mslock << adcontrols::lockmass::reference( compound.formula(), exactMass, centroid.getMass( idx ), centroid.getTime( idx ) ); } } } if ( mslock.fit() ) { mslock( centroid, true ); mslock( pkInfo, true ); return true; } return false; }