bool waveform::fft::lowpass_filter( adcontrols::MassSpectrum& ms, double freq ) { if ( ms.isCentroid() ) return false; size_t totalSize = ms.size(); (void)totalSize; size_t N = 32; while ( N < ms.size() ) N *= 2; const size_t NN = ms.size(); double sampInterval = ms.getMSProperty().getSamplingInfo().fSampInterval(); // seconds if ( sampInterval == 0 ) sampInterval = ( ms.getTime( ms.size() - 1 ) - ms.getTime( 0 ) ) / ms.size(); const double T = N * sampInterval; // time full scale in seconds. Freq = n/T (Hz) // power spectrum has N/2 points and is n/T Hz horizontal axis := data[N/2] = (N/2)/T Hz size_t cutoff = size_t( T * freq ); adportable::array_wrapper<const double> pIntens( ms.getIntensityArray(), N ); std::vector< std::complex<double> > spc( N ); std::vector< std::complex<double> > fft( N ); size_t n; for ( n = 0; n < N && n < NN; ++n ) spc[ n ] = std::complex<double>( pIntens[ n ] ); while ( n < N ) spc[ n++ ] = pIntens[ NN - 1 ]; adportable::fft::fourier_transform( fft, spc, false ); // appodization for ( size_t i = cutoff; i < N - cutoff; ++i ) fft[ i ] = 0; //adportable::fft::apodization( N/2 - N/16, N / 16, fft ); adportable::fft::fourier_transform( spc, fft, true ); std::vector<double> data( N ); for ( size_t i = 0; i < NN; ++i ) data[ i ] = spc[i].real(); ms.setIntensityArray( &data[0] ); return true; }
static void calibresult_validation( const adcontrols::MSCalibrateResult& res , const adcontrols::MassSpectrum& centroid , double threshold ) { const adcontrols::MSReferences& ref = res.references(); const adcontrols::MSAssignedMasses& assigned = res.assignedMasses(); std::ofstream of( "massassign.txt" ); of << "#\tm/z(observed)\ttof(us)\tintensity\t\tformula,\tm/z(exact)\tm/z(calibrated)\terror(mDa)" << std::endl; adcontrols::MSReferences::vector_type::const_iterator refIt = ref.begin(); for ( adcontrols::MSAssignedMasses::vector_type::const_iterator it = assigned.begin(); it != assigned.end(); ++it, ++refIt ) { const adcontrols::MSAssignedMass& a = *it; std::string formula = adportable::string::convert( a.formula() ); of << std::setprecision(8) << std::setw(4) << a.idMassSpectrum() << "\t" // id << std::setw(15) << std::fixed << centroid.getMass( a.idMassSpectrum() ) << "\t" // m/z(observed) << std::scientific << centroid.getTime( a.idMassSpectrum() ) << "\t" // tof << std::fixed << std::setprecision( 0 ) << centroid.getIntensity( a.idMassSpectrum() ) << "\t" // intensity << formula << "\t" << std::setprecision(8) << std::fixed << it->exactMass() << "\t" // mass(exact) << std::fixed << a.mass() << "\t" // m/z(calibrated) << std::setprecision(1) << ( a.mass() - it->exactMass() ) * 1000 << "\t" // error(mDa) << ( it->enable() ? "used" : "not used" ) << std::endl; } const std::vector<double>& coeffs = res.calibration().coeffs(); of << "#--------------------------- Calibration coefficients: " << std::endl; for ( size_t i = 0; i < coeffs.size(); ++i ) of << std::scientific << std::setprecision(14) << coeffs[i] << std::endl; of << "#--------------------------- centroid peak list (#,mass,intensity)--------------------------" << std::endl; adcontrols::MSReferences::vector_type::const_iterator it = res.references().begin(); for ( size_t i = 0; i < centroid.size(); ++i ) { if ( centroid.getIntensity( i ) > threshold ) { double mq = adcontrols::MSCalibration::compute( res.calibration().coeffs(), centroid.getTime( i ) ); double mass = mq * mq; double error = 0; if ( it != res.references().end() && std::abs( it->exactMass() - mass ) < 0.2 ) { error = ( it->exactMass() - mass ) * 1000; // mDa ++it; } of << i << "\t" << std::setprecision(8) << std::fixed << centroid.getMass( i ) << "\t" << std::setprecision(8) << mass << "\t" << std::setprecision(1) << centroid.getIntensityArray()[i] << std::endl; } } }
bool MSChromatogramExtractor::impl::doMSLock( adcontrols::lockmass::mslock& mslock , const adcontrols::MassSpectrum& centroid , const adcontrols::MSLockMethod& m ) { // TODO: consider how to handle segmented spectrum -- current impl is always process first adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() ); for ( auto& msref : msrefs_ ) { size_t idx = find( centroid, msref.second ); if ( idx != adcontrols::MSFinder::npos ) mslock << adcontrols::lockmass::reference( msref.first, msref.second, centroid.getMass( idx ), centroid.getTime( idx ) ); } if ( mslock.fit() ) { // mslock( centroid, true ); return true; } return false; }
bool assign_masses::operator()( adcontrols::MSAssignedMasses& assignedMasses , const adcontrols::MassSpectrum& centroid , const adcontrols::MSReferences& references , int mode , int fcn ) { using adportable::array_wrapper; using adcontrols::MSReferences; array_wrapper<const double> masses( centroid.getMassArray(), centroid.size() ); array_wrapper<const double> intens( centroid.getIntensityArray(), centroid.size() ); for ( MSReferences::vector_type::const_iterator it = references.begin(); it != references.end(); ++it ) { double exactMass = it->exact_mass(); array_wrapper<const double>::const_iterator lBound = std::lower_bound( masses.begin(), masses.end(), exactMass - tolerance_ ); array_wrapper<const double>::const_iterator uBound = std::lower_bound( masses.begin(), masses.end(), exactMass + tolerance_ ); if ( lBound != masses.end() ) { size_t lIdx = std::distance( masses.begin(), lBound ); size_t uIdx = std::distance( masses.begin(), uBound ); // find closest size_t cIdx = lIdx; for ( size_t i = lIdx + 1; i < uIdx; ++i ) { double d0 = std::abs( masses[ cIdx ] - exactMass ); double d1 = std::abs( masses[ i ] - exactMass ); if ( d1 < d0 ) cIdx = i; } // find highest array_wrapper<const double>::const_iterator hIt = std::max_element( intens.begin() + lIdx, intens.begin() + uIdx ); if ( *hIt < threshold_ ) continue; size_t idx = std::distance( intens.begin(), hIt ); adcontrols::MSAssignedMass assigned( uint32_t( std::distance( references.begin(), it ) ) , fcn , uint32_t(idx) // idMassSpectrum (index on centroid peak) , it->display_formula() , it->exact_mass() , centroid.getTime( idx ) , masses[ idx ] , it->enable() , false // flags , mode ); // duplicate assign check adcontrols::MSAssignedMasses::vector_type::iterator assignIt = std::find_if( assignedMasses.begin(), assignedMasses.end(), [&]( const adcontrols::MSAssignedMass& a ){ return a.idPeak() == idx && a.idMassSpectrum() == unsigned(fcn); }); if ( assignIt != assignedMasses.end() ) { // already assined to another refernce if ( std::fabs( assignIt->exactMass() - assignIt->mass() ) > std::fabs( assigned.exactMass() - assigned.mass() ) ) { *assignIt = assigned; // replace } } else assignedMasses << assigned; } } return true; }
bool QuanSampleProcessor::doMSLock( adcontrols::MSPeakInfo& pkInfo // will override , adcontrols::MassSpectrum& centroid // will override , const adcontrols::MSLockMethod& m , const adcontrols::QuanCompounds& compounds ) { // find reference peak by mass window adcontrols::lockmass::mslock mslock; // TODO: consider how to handle segmented spectrum -- current impl is always process first adcontrols::MSFinder find( m.tolerance( m.toleranceMethod() ), m.algorithm(), m.toleranceMethod() ); for ( auto& compound : compounds ) { if ( compound.isLKMSRef() ) { double exactMass = cformula_->getMonoIsotopicMass( compound.formula() ); size_t idx = find( centroid, exactMass ); if ( idx != adcontrols::MSFinder::npos ) { // add found peaks into mslock mslock << adcontrols::lockmass::reference( compound.formula(), exactMass, centroid.getMass( idx ), centroid.getTime( idx ) ); } } } if ( mslock.fit() ) { mslock( centroid, true ); mslock( pkInfo, true ); return true; } return false; }