Beispiel #1
0
static void addCoroutineSCCPasses(const PassManagerBuilder &Builder,
                                  legacy::PassManagerBase &PM) {
  PM.add(createCoroSplitPass());
}
Beispiel #2
0
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
                                      legacy::PassManagerBase &PM) {
  PM.add(createAddressSanitizerFunctionPass());
  PM.add(createAddressSanitizerModulePass());
}
Beispiel #3
0
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
  // Load sample profile before running the LTO optimization pipeline.
  if (!PGOSampleUse.empty()) {
    PM.add(createPruneEHPass());
    PM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Remove unused virtual tables to improve the quality of code generated by
  // whole-program devirtualization and bitset lowering.
  PM.add(createGlobalDCEPass());

  // Provide AliasAnalysis services for optimizations.
  addInitialAliasAnalysisPasses(PM);

  // Allow forcing function attributes as a debugging and tuning aid.
  PM.add(createForceFunctionAttrsLegacyPass());

  // Infer attributes about declarations if possible.
  PM.add(createInferFunctionAttrsLegacyPass());

  if (OptLevel > 1) {
    // Split call-site with more constrained arguments.
    PM.add(createCallSiteSplittingPass());

    // Indirect call promotion. This should promote all the targets that are
    // left by the earlier promotion pass that promotes intra-module targets.
    // This two-step promotion is to save the compile time. For LTO, it should
    // produce the same result as if we only do promotion here.
    PM.add(
        createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));

    // Propagate constants at call sites into the functions they call.  This
    // opens opportunities for globalopt (and inlining) by substituting function
    // pointers passed as arguments to direct uses of functions.
    PM.add(createIPSCCPPass());

    // Attach metadata to indirect call sites indicating the set of functions
    // they may target at run-time. This should follow IPSCCP.
    PM.add(createCalledValuePropagationPass());
  }

  // Infer attributes about definitions. The readnone attribute in particular is
  // required for virtual constant propagation.
  PM.add(createPostOrderFunctionAttrsLegacyPass());
  PM.add(createReversePostOrderFunctionAttrsPass());

  // Split globals using inrange annotations on GEP indices. This can help
  // improve the quality of generated code when virtual constant propagation or
  // control flow integrity are enabled.
  PM.add(createGlobalSplitPass());

  // Apply whole-program devirtualization and virtual constant propagation.
  PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));

  // That's all we need at opt level 1.
  if (OptLevel == 1)
    return;

  // Now that we internalized some globals, see if we can hack on them!
  PM.add(createGlobalOptimizerPass());
  // Promote any localized global vars.
  PM.add(createPromoteMemoryToRegisterPass());

  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant.
  PM.add(createConstantMergePass());

  // Remove unused arguments from functions.
  PM.add(createDeadArgEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  if (OptLevel > 2)
    PM.add(createAggressiveInstCombinerPass());
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);

  // Inline small functions
  bool RunInliner = Inliner;
  if (RunInliner) {
    PM.add(Inliner);
    Inliner = nullptr;
  }

  PM.add(createPruneEHPass());   // Remove dead EH info.

  // CSFDO instrumentation and use pass.
  addPGOInstrPasses(PM, /* IsCS */ true);

  // Optimize globals again if we ran the inliner.
  if (RunInliner)
    PM.add(createGlobalOptimizerPass());
  PM.add(createGlobalDCEPass()); // Remove dead functions.

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  PM.add(createArgumentPromotionPass());

  // The IPO passes may leave cruft around.  Clean up after them.
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);
  PM.add(createJumpThreadingPass());

  // Break up allocas
  PM.add(createSROAPass());

  // LTO provides additional opportunities for tailcall elimination due to
  // link-time inlining, and visibility of nocapture attribute.
  PM.add(createTailCallEliminationPass());

  // Run a few AA driven optimizations here and now, to cleanup the code.
  PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
  PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.

  PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
  PM.add(NewGVN ? createNewGVNPass()
                : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.

  // Nuke dead stores.
  PM.add(createDeadStoreEliminationPass());

  // More loops are countable; try to optimize them.
  PM.add(createIndVarSimplifyPass());
  PM.add(createLoopDeletionPass());
  if (EnableLoopInterchange)
    PM.add(createLoopInterchangePass());

  // Unroll small loops
  PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                    ForgetAllSCEVInLoopUnroll));
  PM.add(createLoopVectorizePass(true, !LoopVectorize));
  // The vectorizer may have significantly shortened a loop body; unroll again.
  PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                              ForgetAllSCEVInLoopUnroll));

  PM.add(createWarnMissedTransformationsPass());

  // Now that we've optimized loops (in particular loop induction variables),
  // we may have exposed more scalar opportunities. Run parts of the scalar
  // optimizer again at this point.
  addInstructionCombiningPass(PM); // Initial cleanup
  PM.add(createCFGSimplificationPass()); // if-convert
  PM.add(createSCCPPass()); // Propagate exposed constants
  addInstructionCombiningPass(PM); // Clean up again
  PM.add(createBitTrackingDCEPass());

  // More scalar chains could be vectorized due to more alias information
  if (SLPVectorize)
    PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.

  // After vectorization, assume intrinsics may tell us more about pointer
  // alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  // Cleanup and simplify the code after the scalar optimizations.
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);

  PM.add(createJumpThreadingPass());
}
static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
                                    legacy::PassManagerBase &PM) {
  PM.add(createBoundsCheckingPass());
}
Beispiel #5
0
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
  // Provide AliasAnalysis services for optimizations.
  addInitialAliasAnalysisPasses(PM);

  // Propagate constants at call sites into the functions they call.  This
  // opens opportunities for globalopt (and inlining) by substituting function
  // pointers passed as arguments to direct uses of functions.
  PM.add(createIPSCCPPass());

  // Now that we internalized some globals, see if we can hack on them!
  PM.add(createGlobalOptimizerPass());

  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant.
  PM.add(createConstantMergePass());

  // Remove unused arguments from functions.
  PM.add(createDeadArgEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);

  // Inline small functions
  bool RunInliner = Inliner;
  if (RunInliner) {
    PM.add(Inliner);
    Inliner = nullptr;
  }

  PM.add(createPruneEHPass());   // Remove dead EH info.

  // Optimize globals again if we ran the inliner.
  if (RunInliner)
    PM.add(createGlobalOptimizerPass());
  PM.add(createGlobalDCEPass()); // Remove dead functions.

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  PM.add(createArgumentPromotionPass());

  // The IPO passes may leave cruft around.  Clean up after them.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);
  PM.add(createJumpThreadingPass());

  // Break up allocas
  if (UseNewSROA)
    PM.add(createSROAPass());
  else
    PM.add(createScalarReplAggregatesPass());

  // Run a few AA driven optimizations here and now, to cleanup the code.
  PM.add(createFunctionAttrsPass()); // Add nocapture.
  PM.add(createGlobalsModRefPass()); // IP alias analysis.

  PM.add(createLICMPass());                 // Hoist loop invariants.
  if (EnableMLSM)
    PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
  PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.

  // Nuke dead stores.
  PM.add(createDeadStoreEliminationPass());

  // More loops are countable; try to optimize them.
  PM.add(createIndVarSimplifyPass());
  PM.add(createLoopDeletionPass());
  if (EnableLoopInterchange)
    PM.add(createLoopInterchangePass());

  PM.add(createLoopVectorizePass(true, LoopVectorize));

  // More scalar chains could be vectorized due to more alias information
  if (RunSLPAfterLoopVectorization)
    if (SLPVectorize)
      PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.

  // After vectorization, assume intrinsics may tell us more about pointer
  // alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  if (LoadCombine)
    PM.add(createLoadCombinePass());

  // Cleanup and simplify the code after the scalar optimizations.
  PM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, PM);

  PM.add(createJumpThreadingPass());
}
Beispiel #6
0
void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  MPM.add(createSROAPass());
  MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
  if (EnableGVNHoist)
    MPM.add(createGVNHoistPass());
  if (EnableGVNSink) {
    MPM.add(createGVNSinkPass());
    MPM.add(createCFGSimplificationPass());
  }

  // Speculative execution if the target has divergent branches; otherwise nop.
  MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
  MPM.add(createJumpThreadingPass());         // Thread jumps.
  MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  // Combine silly seq's
  if (OptLevel > 2)
    MPM.add(createAggressiveInstCombinerPass());
  addInstructionCombiningPass(MPM);
  if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
    MPM.add(createLibCallsShrinkWrapPass());
  addExtensionsToPM(EP_Peephole, MPM);

  // Optimize memory intrinsic calls based on the profiled size information.
  if (SizeLevel == 0)
    MPM.add(createPGOMemOPSizeOptLegacyPass());

  MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions

  // Begin the loop pass pipeline.
  if (EnableSimpleLoopUnswitch) {
    // The simple loop unswitch pass relies on separate cleanup passes. Schedule
    // them first so when we re-process a loop they run before other loop
    // passes.
    MPM.add(createLoopInstSimplifyPass());
    MPM.add(createLoopSimplifyCFGPass());
  }
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  if (EnableSimpleLoopUnswitch)
    MPM.add(createSimpleLoopUnswitchLegacyPass());
  else
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
  // FIXME: We break the loop pass pipeline here in order to do full
  // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
  // need for this.
  MPM.add(createCFGSimplificationPass());
  addInstructionCombiningPass(MPM);
  // We resume loop passes creating a second loop pipeline here.
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  addExtensionsToPM(EP_LateLoopOptimizations, MPM);
  MPM.add(createLoopDeletionPass());          // Delete dead loops

  if (EnableLoopInterchange)
    MPM.add(createLoopInterchangePass()); // Interchange loops

  // Unroll small loops
  MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                     ForgetAllSCEVInLoopUnroll));
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
  // This ends the loop pass pipelines.

  if (OptLevel > 1) {
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(NewGVN ? createNewGVNPass()
                   : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
  }
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  addInstructionCombiningPass(MPM);
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createJumpThreadingPass());         // Thread jumps
  MPM.add(createCorrelatedValuePropagationPass());
  MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());

  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
  // Clean up after everything.
  addInstructionCombiningPass(MPM);
  addExtensionsToPM(EP_Peephole, MPM);

  if (EnableCHR && OptLevel >= 3 &&
      (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
    MPM.add(createControlHeightReductionLegacyPass());
}
Beispiel #7
0
static void addInstructionCombiningPass(const PassManagerBuilder &Builder,
                                        legacy::PassManagerBase &PM) {
  PM.add(createInstructionCombiningPass());
}
Beispiel #8
0
void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  // Allow forcing function attributes as a debugging and tuning aid.
  MPM.add(createForceFunctionAttrsLegacyPass());

  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    addPGOInstrPasses(MPM);
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    else if (!GlobalExtensions->empty() || !Extensions.empty())
      MPM.add(createBarrierNoopPass());

    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  if (!DisableUnitAtATime) {
    // Infer attributes about declarations if possible.
    MPM.add(createInferFunctionAttrsLegacyPass());

    addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);

    MPM.add(createIPSCCPPass());          // IP SCCP
    MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
    // Promote any localized global vars.
    MPM.add(createPromoteMemoryToRegisterPass());

    MPM.add(createDeadArgEliminationPass()); // Dead argument elimination

    MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
    addExtensionsToPM(EP_Peephole, MPM);
    MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
  }

  if (!PerformThinLTO)
    /// PGO instrumentation is added during the compile phase for ThinLTO, do
    /// not run it a second time
    addPGOInstrPasses(MPM);

  if (EnableNonLTOGlobalsModRef)
    // We add a module alias analysis pass here. In part due to bugs in the
    // analysis infrastructure this "works" in that the analysis stays alive
    // for the entire SCC pass run below.
    MPM.add(createGlobalsAAWrapperPass());

  // Start of CallGraph SCC passes.
  if (!DisableUnitAtATime)
    MPM.add(createPruneEHPass()); // Remove dead EH info
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
  }
  if (!DisableUnitAtATime)
    MPM.add(createPostOrderFunctionAttrsLegacyPass());
  if (OptLevel > 2)
    MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args

  addFunctionSimplificationPasses(MPM);

  // If we are planning to perform ThinLTO later, let's not bloat the code with
  // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
  // during ThinLTO and perform the rest of the optimizations afterward.
  if (PrepareForThinLTO)
    return;

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  // Scheduling LoopVersioningLICM when inlining is over, because after that
  // we may see more accurate aliasing. Reason to run this late is that too
  // early versioning may prevent further inlining due to increase of code
  // size. By placing it just after inlining other optimizations which runs 
  // later might get benefit of no-alias assumption in clone loop. 
  if (UseLoopVersioningLICM) {
    MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
    MPM.add(createLICMPass());                  // Hoist loop invariants
  }

  if (!DisableUnitAtATime)
    MPM.add(createReversePostOrderFunctionAttrsPass());

  if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO)
    // Remove avail extern fns and globals definitions if we aren't
    // compiling an object file for later LTO. For LTO we want to preserve
    // these so they are eligible for inlining at link-time. Note if they
    // are unreferenced they will be removed by GlobalDCE later, so
    // this only impacts referenced available externally globals.
    // Eventually they will be suppressed during codegen, but eliminating
    // here enables more opportunity for GlobalDCE as it may make
    // globals referenced by available external functions dead
    // and saves running remaining passes on the eliminated functions.
    MPM.add(createEliminateAvailableExternallyPass());

  if (PerformThinLTO) {
    // Remove dead fns and globals. Removing unreferenced functions could lead
    // to more opportunities for globalopt.
    MPM.add(createGlobalDCEPass());
    MPM.add(createGlobalOptimizerPass());
    // Remove dead fns and globals after globalopt.
    MPM.add(createGlobalDCEPass());
    addFunctionSimplificationPasses(MPM);
  }

  if (EnableNonLTOGlobalsModRef)
    // We add a fresh GlobalsModRef run at this point. This is particularly
    // useful as the above will have inlined, DCE'ed, and function-attr
    // propagated everything. We should at this point have a reasonably minimal
    // and richly annotated call graph. By computing aliasing and mod/ref
    // information for all local globals here, the late loop passes and notably
    // the vectorizer will be able to use them to help recognize vectorizable
    // memory operations.
    //
    // Note that this relies on a bug in the pass manager which preserves
    // a module analysis into a function pass pipeline (and throughout it) so
    // long as the first function pass doesn't invalidate the module analysis.
    // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
    // this to work. Fortunately, it is trivial to preserve AliasAnalysis
    // (doing nothing preserves it as it is required to be conservatively
    // correct in the face of IR changes).
    MPM.add(createGlobalsAAWrapperPass());

  if (RunFloat2Int)
    MPM.add(createFloat2IntPass());

  addExtensionsToPM(EP_VectorizerStart, MPM);

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.
  if (EnableLoopDistribute)
    MPM.add(createLoopDistributePass());

  MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));

  // Eliminate loads by forwarding stores from the previous iteration to loads
  // of the current iteration.
  if (EnableLoopLoadElim)
    MPM.add(createLoopLoadEliminationPass());

  // FIXME: Because of #pragma vectorize enable, the passes below are always
  // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
  // on -O1 and no #pragma is found). Would be good to have these two passes
  // as function calls, so that we can only pass them when the vectorizer
  // changed the code.
  MPM.add(createInstructionCombiningPass());
  if (OptLevel > 1 && ExtraVectorizerPasses) {
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correllated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    MPM.add(createEarlyCSEPass());
    MPM.add(createCorrelatedValuePropagationPass());
    MPM.add(createInstructionCombiningPass());
    MPM.add(createLICMPass());
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
    MPM.add(createCFGSimplificationPass());
    MPM.add(createInstructionCombiningPass());
  }

  if (RunSLPAfterLoopVectorization) {
    if (SLPVectorize) {
      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
      if (OptLevel > 1 && ExtraVectorizerPasses) {
        MPM.add(createEarlyCSEPass());
      }
    }

    if (BBVectorize) {
      MPM.add(createBBVectorizePass());
      MPM.add(createInstructionCombiningPass());
      addExtensionsToPM(EP_Peephole, MPM);
      if (OptLevel > 1 && UseGVNAfterVectorization)
        MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
      else
        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies

      // BBVectorize may have significantly shortened a loop body; unroll again.
      if (!DisableUnrollLoops)
        MPM.add(createLoopUnrollPass());
    }
  }

  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createCFGSimplificationPass());
  MPM.add(createInstructionCombiningPass());

  if (!DisableUnrollLoops) {
    MPM.add(createLoopUnrollPass());    // Unroll small loops

    // LoopUnroll may generate some redundency to cleanup.
    MPM.add(createInstructionCombiningPass());

    // Runtime unrolling will introduce runtime check in loop prologue. If the
    // unrolled loop is a inner loop, then the prologue will be inside the
    // outer loop. LICM pass can help to promote the runtime check out if the
    // checked value is loop invariant.
    MPM.add(createLICMPass());
  }

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  MPM.add(createAlignmentFromAssumptionsPass());

  if (!DisableUnitAtATime) {
    // FIXME: We shouldn't bother with this anymore.
    MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

    // GlobalOpt already deletes dead functions and globals, at -O2 try a
    // late pass of GlobalDCE.  It is capable of deleting dead cycles.
    if (OptLevel > 1) {
      MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
      MPM.add(createConstantMergePass());     // Merge dup global constants
    }
  }

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  addExtensionsToPM(EP_OptimizerLast, MPM);
}
Beispiel #9
0
static void loadPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) {
  PM.add(new Hello());
}
Beispiel #10
0
static void
registerClangPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) {
    PM.add(new Scatter());
}
Beispiel #11
0
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
  // Provide AliasAnalysis services for optimizations.
  addInitialAliasAnalysisPasses(PM);

  if (ModuleSummary)
    PM.add(createFunctionImportPass(ModuleSummary));

  // Allow forcing function attributes as a debugging and tuning aid.
  PM.add(createForceFunctionAttrsLegacyPass());

  // Infer attributes about declarations if possible.
  PM.add(createInferFunctionAttrsLegacyPass());

  // Indirect call promotion. This should promote all the targets that are left
  // by the earlier promotion pass that promotes intra-module targets.
  // This two-step promotion is to save the compile time. For LTO, it should
  // produce the same result as if we only do promotion here.
  PM.add(createPGOIndirectCallPromotionPass(true));

  // Propagate constants at call sites into the functions they call.  This
  // opens opportunities for globalopt (and inlining) by substituting function
  // pointers passed as arguments to direct uses of functions.
  PM.add(createIPSCCPPass());

  // Now that we internalized some globals, see if we can hack on them!
  PM.add(createPostOrderFunctionAttrsLegacyPass());
  PM.add(createReversePostOrderFunctionAttrsPass());
  PM.add(createGlobalOptimizerPass());
  // Promote any localized global vars.
  PM.add(createPromoteMemoryToRegisterPass());

  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant.
  PM.add(createConstantMergePass());

  // Remove unused arguments from functions.
  PM.add(createDeadArgEliminationPass());

  // Reduce the code after globalopt and ipsccp.  Both can open up significant
  // simplification opportunities, and both can propagate functions through
  // function pointers.  When this happens, we often have to resolve varargs
  // calls, etc, so let instcombine do this.
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);

  // Inline small functions
  bool RunInliner = Inliner;
  if (RunInliner) {
    PM.add(Inliner);
    Inliner = nullptr;
  }

  PM.add(createPruneEHPass());   // Remove dead EH info.

  // Optimize globals again if we ran the inliner.
  if (RunInliner)
    PM.add(createGlobalOptimizerPass());
  PM.add(createGlobalDCEPass()); // Remove dead functions.

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  PM.add(createArgumentPromotionPass());

  // The IPO passes may leave cruft around.  Clean up after them.
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);
  PM.add(createJumpThreadingPass());

  // Break up allocas
  if (UseNewSROA)
    PM.add(createSROAPass());
  else
    PM.add(createScalarReplAggregatesPass());

  // Run a few AA driven optimizations here and now, to cleanup the code.
  PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
  PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.

  PM.add(createLICMPass());                 // Hoist loop invariants.
  if (EnableMLSM)
    PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
  PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.

  // Nuke dead stores.
  PM.add(createDeadStoreEliminationPass());

  // More loops are countable; try to optimize them.
  PM.add(createIndVarSimplifyPass());
  PM.add(createLoopDeletionPass());
  if (EnableLoopInterchange)
    PM.add(createLoopInterchangePass());

  if (!DisableUnrollLoops)
    PM.add(createSimpleLoopUnrollPass());   // Unroll small loops
  PM.add(createLoopVectorizePass(true, LoopVectorize));
  // The vectorizer may have significantly shortened a loop body; unroll again.
  if (!DisableUnrollLoops)
    PM.add(createLoopUnrollPass());

  // Now that we've optimized loops (in particular loop induction variables),
  // we may have exposed more scalar opportunities. Run parts of the scalar
  // optimizer again at this point.
  addInstructionCombiningPass(PM); // Initial cleanup
  PM.add(createCFGSimplificationPass()); // if-convert
  PM.add(createSCCPPass()); // Propagate exposed constants
  addInstructionCombiningPass(PM); // Clean up again
  PM.add(createBitTrackingDCEPass());

  // More scalar chains could be vectorized due to more alias information
  if (RunSLPAfterLoopVectorization)
    if (SLPVectorize)
      PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.

  // After vectorization, assume intrinsics may tell us more about pointer
  // alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  if (LoadCombine)
    PM.add(createLoadCombinePass());

  // Cleanup and simplify the code after the scalar optimizations.
  addInstructionCombiningPass(PM);
  addExtensionsToPM(EP_Peephole, PM);

  PM.add(createJumpThreadingPass());
}
static void registerAppendBogusCode(const PassManagerBuilder &, legacy::PassManagerBase &PM) {
    PM.add(new AppendBogusCode());
}
Beispiel #13
0
static void addCoroutineOptimizerLastPasses(const PassManagerBuilder &Builder,
                                            legacy::PassManagerBase &PM) {
  PM.add(createCoroCleanupPass());
}
Beispiel #14
0
static void registerCatPass (const PassManagerBuilder &, legacy::PassManagerBase &PM) {
  PM.add(new CatPass());
}
// Automatically enable the pass.
// http://adriansampson.net/blog/clangpass.html
static void registerTraversalPass(const PassManagerBuilder &,
                                  legacy::PassManagerBase &PM)
{
    PM.add(new TraversalPass());
}
Beispiel #16
0
void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  if (UseNewSROA)
    MPM.add(createSROAPass());
  else
    MPM.add(createScalarReplAggregatesPass(-1, false));
  MPM.add(createEarlyCSEPass());              // Catch trivial redundancies
  MPM.add(createJumpThreadingPass());         // Thread jumps.
  MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createInstructionCombiningPass());  // Combine silly seq's
  addExtensionsToPM(EP_Peephole, MPM);

  MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions
  if (PrepareForThinLTO) {
    MPM.add(createAggressiveDCEPass());        // Delete dead instructions
    MPM.add(createInstructionCombiningPass()); // Combine silly seq's
    return;
  }
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
  MPM.add(createLICMPass());                  // Hoist loop invariants
  MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
  MPM.add(createCFGSimplificationPass());
  MPM.add(createInstructionCombiningPass());
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  MPM.add(createLoopDeletionPass());          // Delete dead loops
  if (EnableLoopInterchange) {
    MPM.add(createLoopInterchangePass()); // Interchange loops
    MPM.add(createCFGSimplificationPass());
  }
  if (!DisableUnrollLoops)
    MPM.add(createSimpleLoopUnrollPass());    // Unroll small loops
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);

  if (OptLevel > 1) {
    if (EnableMLSM)
      MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(createGVNPass(DisableGVNLoadPRE));  // Remove redundancies
  }
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createJumpThreadingPass());         // Thread jumps
  MPM.add(createCorrelatedValuePropagationPass());
  MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
  MPM.add(createLICMPass());

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());
  if (!RunSLPAfterLoopVectorization) {
    if (SLPVectorize)
      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.

    if (BBVectorize) {
      MPM.add(createBBVectorizePass());
      MPM.add(createInstructionCombiningPass());
      addExtensionsToPM(EP_Peephole, MPM);
      if (OptLevel > 1 && UseGVNAfterVectorization)
        MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
      else
        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies

      // BBVectorize may have significantly shortened a loop body; unroll again.
      if (!DisableUnrollLoops)
        MPM.add(createLoopUnrollPass());
    }
  }

  if (LoadCombine)
    MPM.add(createLoadCombinePass());

  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
  MPM.add(createInstructionCombiningPass());  // Clean up after everything.
  addExtensionsToPM(EP_Peephole, MPM);
}
Beispiel #17
0
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
                                            legacy::PassManagerBase &PM) {
  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true));
  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true));
}
Beispiel #18
0
void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is 
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    else if (!GlobalExtensions->empty() || !Extensions.empty())
      MPM.add(createBarrierNoopPass());

    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  if (!DisableUnitAtATime) {
    addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);

    MPM.add(createIPSCCPPass());              // IP SCCP
    MPM.add(createGlobalOptimizerPass());     // Optimize out global vars

    MPM.add(createDeadArgEliminationPass());  // Dead argument elimination

    MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE
    addExtensionsToPM(EP_Peephole, MPM);
    MPM.add(createCFGSimplificationPass());   // Clean up after IPCP & DAE
  }

  // Start of CallGraph SCC passes.
  if (!DisableUnitAtATime)
    MPM.add(createPruneEHPass());             // Remove dead EH info
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
  }
  if (!DisableUnitAtATime)
    MPM.add(createFunctionAttrsPass());       // Set readonly/readnone attrs
  if (OptLevel > 2)
    MPM.add(createArgumentPromotionPass());   // Scalarize uninlined fn args

  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  if (UseNewSROA)
    MPM.add(createSROAPass(/*RequiresDomTree*/ false));
  else
    MPM.add(createScalarReplAggregatesPass(-1, false));
  MPM.add(createEarlyCSEPass());              // Catch trivial redundancies
  MPM.add(createJumpThreadingPass());         // Thread jumps.
  MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createInstructionCombiningPass());  // Combine silly seq's
  addExtensionsToPM(EP_Peephole, MPM);

  MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
  MPM.add(createLICMPass());                  // Hoist loop invariants
  MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
  MPM.add(createInstructionCombiningPass());
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  MPM.add(createLoopDeletionPass());          // Delete dead loops
  if (EnableLoopInterchange) {
    MPM.add(createLoopInterchangePass()); // Interchange loops
    MPM.add(createCFGSimplificationPass());
  }
  if (!DisableUnrollLoops)
    MPM.add(createSimpleLoopUnrollPass());    // Unroll small loops
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);

  if (OptLevel > 1) {
    if (EnableMLSM)
      MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(createGVNPass(DisableGVNLoadPRE));  // Remove redundancies
  }
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  MPM.add(createInstructionCombiningPass());
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createJumpThreadingPass());         // Thread jumps
  MPM.add(createCorrelatedValuePropagationPass());
  MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
  MPM.add(createLICMPass());

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());
  if (!RunSLPAfterLoopVectorization) {
    if (SLPVectorize)
      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.

    if (BBVectorize) {
      MPM.add(createBBVectorizePass());
      MPM.add(createInstructionCombiningPass());
      addExtensionsToPM(EP_Peephole, MPM);
      if (OptLevel > 1 && UseGVNAfterVectorization)
        MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
      else
        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies

      // BBVectorize may have significantly shortened a loop body; unroll again.
      if (!DisableUnrollLoops)
        MPM.add(createLoopUnrollPass());
    }
  }

  if (LoadCombine)
    MPM.add(createLoadCombinePass());

  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
  MPM.add(createInstructionCombiningPass());  // Clean up after everything.
  addExtensionsToPM(EP_Peephole, MPM);

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  if (RunFloat2Int)
    MPM.add(createFloat2IntPass());

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.
  if (EnableLoopDistribute)
    MPM.add(createLoopDistributePass());

  MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
  // FIXME: Because of #pragma vectorize enable, the passes below are always
  // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
  // on -O1 and no #pragma is found). Would be good to have these two passes
  // as function calls, so that we can only pass them when the vectorizer
  // changed the code.
  MPM.add(createInstructionCombiningPass());
  if (OptLevel > 1 && ExtraVectorizerPasses) {
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correllated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    MPM.add(createEarlyCSEPass());
    MPM.add(createCorrelatedValuePropagationPass());
    MPM.add(createInstructionCombiningPass());
    MPM.add(createLICMPass());
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
    MPM.add(createCFGSimplificationPass());
    MPM.add(createInstructionCombiningPass());
  }

  if (RunSLPAfterLoopVectorization) {
    if (SLPVectorize) {
      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
      if (OptLevel > 1 && ExtraVectorizerPasses) {
        MPM.add(createEarlyCSEPass());
      }
    }

    if (BBVectorize) {
      MPM.add(createBBVectorizePass());
      MPM.add(createInstructionCombiningPass());
      addExtensionsToPM(EP_Peephole, MPM);
      if (OptLevel > 1 && UseGVNAfterVectorization)
        MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
      else
        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies

      // BBVectorize may have significantly shortened a loop body; unroll again.
      if (!DisableUnrollLoops)
        MPM.add(createLoopUnrollPass());
    }
  }

  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createCFGSimplificationPass());
  MPM.add(createInstructionCombiningPass());

  if (!DisableUnrollLoops) {
    MPM.add(createLoopUnrollPass());    // Unroll small loops

    // LoopUnroll may generate some redundency to cleanup.
    MPM.add(createInstructionCombiningPass());

    // Runtime unrolling will introduce runtime check in loop prologue. If the
    // unrolled loop is a inner loop, then the prologue will be inside the
    // outer loop. LICM pass can help to promote the runtime check out if the
    // checked value is loop invariant.
    MPM.add(createLICMPass());
  }

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  MPM.add(createAlignmentFromAssumptionsPass());

  if (!DisableUnitAtATime) {
    // FIXME: We shouldn't bother with this anymore.
    MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

    // GlobalOpt already deletes dead functions and globals, at -O2 try a
    // late pass of GlobalDCE.  It is capable of deleting dead cycles.
    if (OptLevel > 1) {
      if (!PrepareForLTO) {
        // Remove avail extern fns and globals definitions if we aren't
        // compiling an object file for later LTO. For LTO we want to preserve
        // these so they are eligible for inlining at link-time. Note if they
        // are unreferenced they will be removed by GlobalDCE below, so
        // this only impacts referenced available externally globals.
        // Eventually they will be suppressed during codegen, but eliminating
        // here enables more opportunity for GlobalDCE as it may make
        // globals referenced by available external functions dead.
        MPM.add(createEliminateAvailableExternallyPass());
      }
      MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
      MPM.add(createConstantMergePass());     // Merge dup global constants
    }
  }

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  addExtensionsToPM(EP_OptimizerLast, MPM);
}
static void registerBlockMarker(const PassManagerBuilder &, legacy::PassManagerBase &PM) {
    PM.add(new BlockMarker());
}
Beispiel #20
0
void PassManagerBuilder::addInstructionCombiningPass(
    legacy::PassManagerBase &PM) const {
  bool ExpensiveCombines = OptLevel > 2;
  PM.add(createInstructionCombiningPass(ExpensiveCombines));
}
void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  MPM.add(createSROAPass());
  MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies
  if (EnableGVNHoist)
    MPM.add(createGVNHoistPass());
  if (EnableGVNSink) {
    MPM.add(createGVNSinkPass());
    MPM.add(createCFGSimplificationPass());
  }

  // Speculative execution if the target has divergent branches; otherwise nop.
  MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
  MPM.add(createJumpThreadingPass());         // Thread jumps.
  MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  // Combine silly seq's
  addInstructionCombiningPass(MPM);
  if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
    MPM.add(createLibCallsShrinkWrapPass());
  addExtensionsToPM(EP_Peephole, MPM);

  // Optimize memory intrinsic calls based on the profiled size information.
  if (SizeLevel == 0)
    MPM.add(createPGOMemOPSizeOptLegacyPass());

  MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
  MPM.add(createLICMPass());                  // Hoist loop invariants
  if (EnableSimpleLoopUnswitch)
    MPM.add(createSimpleLoopUnswitchLegacyPass());
  else
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
  MPM.add(createCFGSimplificationPass());
  addInstructionCombiningPass(MPM);
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  addExtensionsToPM(EP_LateLoopOptimizations, MPM);
  MPM.add(createLoopDeletionPass());          // Delete dead loops

  if (EnableLoopInterchange) {
    MPM.add(createLoopInterchangePass()); // Interchange loops
    MPM.add(createCFGSimplificationPass());
  }
  if (!DisableUnrollLoops)
    MPM.add(createSimpleLoopUnrollPass(OptLevel));    // Unroll small loops
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);

  if (OptLevel > 1) {
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(NewGVN ? createNewGVNPass()
                   : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
  }
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  addInstructionCombiningPass(MPM);
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createJumpThreadingPass());         // Thread jumps
  MPM.add(createCorrelatedValuePropagationPass());
  MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
  MPM.add(createLICMPass());

  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);

  if (RerollLoops)
    MPM.add(createLoopRerollPass());
  if (!RunSLPAfterLoopVectorization && SLPVectorize)
    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.

  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
  // Clean up after everything.
  addInstructionCombiningPass(MPM);
  addExtensionsToPM(EP_Peephole, MPM);
}
Beispiel #22
0
void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
  // is handled separately, so just check this is not the ThinLTO post-link.
  bool DefaultOrPreLinkPipeline = !PerformThinLTO;

  if (!PGOSampleUse.empty()) {
    MPM.add(createPruneEHPass());
    // In ThinLTO mode, when flattened profile is used, all the available
    // profile information will be annotated in PreLink phase so there is
    // no need to load the profile again in PostLink.
    if (!(FlattenedProfileUsed && PerformThinLTO))
      MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
  }

  // Allow forcing function attributes as a debugging and tuning aid.
  MPM.add(createForceFunctionAttrsLegacyPass());

  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    addPGOInstrPasses(MPM);
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
      MPM.add(createBarrierNoopPass());

    if (PerformThinLTO) {
      // Drop available_externally and unreferenced globals. This is necessary
      // with ThinLTO in order to avoid leaving undefined references to dead
      // globals in the object file.
      MPM.add(createEliminateAvailableExternallyPass());
      MPM.add(createGlobalDCEPass());
    }

    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);

    if (PrepareForLTO || PrepareForThinLTO) {
      MPM.add(createCanonicalizeAliasesPass());
      // Rename anon globals to be able to export them in the summary.
      // This has to be done after we add the extensions to the pass manager
      // as there could be passes (e.g. Adddress sanitizer) which introduce
      // new unnamed globals.
      MPM.add(createNameAnonGlobalPass());
    }
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  // For ThinLTO there are two passes of indirect call promotion. The
  // first is during the compile phase when PerformThinLTO=false and
  // intra-module indirect call targets are promoted. The second is during
  // the ThinLTO backend when PerformThinLTO=true, when we promote imported
  // inter-module indirect calls. For that we perform indirect call promotion
  // earlier in the pass pipeline, here before globalopt. Otherwise imported
  // available_externally functions look unreferenced and are removed.
  if (PerformThinLTO)
    MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
                                                     !PGOSampleUse.empty()));

  // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
  // as it will change the CFG too much to make the 2nd profile annotation
  // in backend more difficult.
  bool PrepareForThinLTOUsingPGOSampleProfile =
      PrepareForThinLTO && !PGOSampleUse.empty();
  if (PrepareForThinLTOUsingPGOSampleProfile)
    DisableUnrollLoops = true;

  // Infer attributes about declarations if possible.
  MPM.add(createInferFunctionAttrsLegacyPass());

  addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);

  if (OptLevel > 2)
    MPM.add(createCallSiteSplittingPass());

  MPM.add(createIPSCCPPass());          // IP SCCP
  MPM.add(createCalledValuePropagationPass());
  MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
  // Promote any localized global vars.
  MPM.add(createPromoteMemoryToRegisterPass());

  MPM.add(createDeadArgEliminationPass()); // Dead argument elimination

  addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
  addExtensionsToPM(EP_Peephole, MPM);
  MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE

  // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
  // call promotion as it will change the CFG too much to make the 2nd
  // profile annotation in backend more difficult.
  // PGO instrumentation is added during the compile phase for ThinLTO, do
  // not run it a second time
  if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
    addPGOInstrPasses(MPM);

  // Create profile COMDAT variables. Lld linker wants to see all variables
  // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
  if (!PerformThinLTO && EnablePGOCSInstrGen)
    MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));

  // We add a module alias analysis pass here. In part due to bugs in the
  // analysis infrastructure this "works" in that the analysis stays alive
  // for the entire SCC pass run below.
  MPM.add(createGlobalsAAWrapperPass());

  // Start of CallGraph SCC passes.
  MPM.add(createPruneEHPass()); // Remove dead EH info
  bool RunInliner = false;
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
    RunInliner = true;
  }

  MPM.add(createPostOrderFunctionAttrsLegacyPass());
  if (OptLevel > 2)
    MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args

  addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
  addFunctionSimplificationPasses(MPM);

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  if (RunPartialInlining)
    MPM.add(createPartialInliningPass());

  if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
    // Remove avail extern fns and globals definitions if we aren't
    // compiling an object file for later LTO. For LTO we want to preserve
    // these so they are eligible for inlining at link-time. Note if they
    // are unreferenced they will be removed by GlobalDCE later, so
    // this only impacts referenced available externally globals.
    // Eventually they will be suppressed during codegen, but eliminating
    // here enables more opportunity for GlobalDCE as it may make
    // globals referenced by available external functions dead
    // and saves running remaining passes on the eliminated functions.
    MPM.add(createEliminateAvailableExternallyPass());

  // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
  // for LTO and ThinLTO -- The actual pass will be called after all inlines
  // are performed.
  // Need to do this after COMDAT variables have been eliminated,
  // (i.e. after EliminateAvailableExternallyPass).
  if (!(PrepareForLTO || PrepareForThinLTO))
    addPGOInstrPasses(MPM, /* IsCS */ true);

  if (EnableOrderFileInstrumentation)
    MPM.add(createInstrOrderFilePass());

  MPM.add(createReversePostOrderFunctionAttrsPass());

  // The inliner performs some kind of dead code elimination as it goes,
  // but there are cases that are not really caught by it. We might
  // at some point consider teaching the inliner about them, but it
  // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
  // benefits generally outweight the cost, making the whole pipeline
  // faster.
  if (RunInliner) {
    MPM.add(createGlobalOptimizerPass());
    MPM.add(createGlobalDCEPass());
  }

  // If we are planning to perform ThinLTO later, let's not bloat the code with
  // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
  // during ThinLTO and perform the rest of the optimizations afterward.
  if (PrepareForThinLTO) {
    // Ensure we perform any last passes, but do so before renaming anonymous
    // globals in case the passes add any.
    addExtensionsToPM(EP_OptimizerLast, MPM);
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to export them in the summary.
    MPM.add(createNameAnonGlobalPass());
    return;
  }

  if (PerformThinLTO)
    // Optimize globals now when performing ThinLTO, this enables more
    // optimizations later.
    MPM.add(createGlobalOptimizerPass());

  // Scheduling LoopVersioningLICM when inlining is over, because after that
  // we may see more accurate aliasing. Reason to run this late is that too
  // early versioning may prevent further inlining due to increase of code
  // size. By placing it just after inlining other optimizations which runs
  // later might get benefit of no-alias assumption in clone loop.
  if (UseLoopVersioningLICM) {
    MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  }

  // We add a fresh GlobalsModRef run at this point. This is particularly
  // useful as the above will have inlined, DCE'ed, and function-attr
  // propagated everything. We should at this point have a reasonably minimal
  // and richly annotated call graph. By computing aliasing and mod/ref
  // information for all local globals here, the late loop passes and notably
  // the vectorizer will be able to use them to help recognize vectorizable
  // memory operations.
  //
  // Note that this relies on a bug in the pass manager which preserves
  // a module analysis into a function pass pipeline (and throughout it) so
  // long as the first function pass doesn't invalidate the module analysis.
  // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
  // this to work. Fortunately, it is trivial to preserve AliasAnalysis
  // (doing nothing preserves it as it is required to be conservatively
  // correct in the face of IR changes).
  MPM.add(createGlobalsAAWrapperPass());

  MPM.add(createFloat2IntPass());

  addExtensionsToPM(EP_VectorizerStart, MPM);

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.  This is
  // currently only performed for loops marked with the metadata
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
  MPM.add(createLoopDistributePass());

  MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));

  // Eliminate loads by forwarding stores from the previous iteration to loads
  // of the current iteration.
  MPM.add(createLoopLoadEliminationPass());

  // FIXME: Because of #pragma vectorize enable, the passes below are always
  // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
  // on -O1 and no #pragma is found). Would be good to have these two passes
  // as function calls, so that we can only pass them when the vectorizer
  // changed the code.
  addInstructionCombiningPass(MPM);
  if (OptLevel > 1 && ExtraVectorizerPasses) {
    // At higher optimization levels, try to clean up any runtime overlap and
    // alignment checks inserted by the vectorizer. We want to track correllated
    // runtime checks for two inner loops in the same outer loop, fold any
    // common computations, hoist loop-invariant aspects out of any outer loop,
    // and unswitch the runtime checks if possible. Once hoisted, we may have
    // dead (or speculatable) control flows or more combining opportunities.
    MPM.add(createEarlyCSEPass());
    MPM.add(createCorrelatedValuePropagationPass());
    addInstructionCombiningPass(MPM);
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
    MPM.add(createCFGSimplificationPass());
    addInstructionCombiningPass(MPM);
  }

  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
  // GVN, loop transforms, and others have already run, so it's now better to
  // convert to more optimized IR using more aggressive simplify CFG options.
  // The extra sinking transform can create larger basic blocks, so do this
  // before SLP vectorization.
  MPM.add(createCFGSimplificationPass(1, true, true, false, true));

  if (SLPVectorize) {
    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
    if (OptLevel > 1 && ExtraVectorizerPasses) {
      MPM.add(createEarlyCSEPass());
    }
  }

  addExtensionsToPM(EP_Peephole, MPM);
  addInstructionCombiningPass(MPM);

  if (EnableUnrollAndJam && !DisableUnrollLoops) {
    // Unroll and Jam. We do this before unroll but need to be in a separate
    // loop pass manager in order for the outer loop to be processed by
    // unroll and jam before the inner loop is unrolled.
    MPM.add(createLoopUnrollAndJamPass(OptLevel));
  }

  // Unroll small loops
  MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                               ForgetAllSCEVInLoopUnroll));

  if (!DisableUnrollLoops) {
    // LoopUnroll may generate some redundency to cleanup.
    addInstructionCombiningPass(MPM);

    // Runtime unrolling will introduce runtime check in loop prologue. If the
    // unrolled loop is a inner loop, then the prologue will be inside the
    // outer loop. LICM pass can help to promote the runtime check out if the
    // checked value is loop invariant.
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
  }

  MPM.add(createWarnMissedTransformationsPass());

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  MPM.add(createAlignmentFromAssumptionsPass());

  // FIXME: We shouldn't bother with this anymore.
  MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

  // GlobalOpt already deletes dead functions and globals, at -O2 try a
  // late pass of GlobalDCE.  It is capable of deleting dead cycles.
  if (OptLevel > 1) {
    MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
    MPM.add(createConstantMergePass());     // Merge dup global constants
  }

  // See comment in the new PM for justification of scheduling splitting at
  // this stage (\ref buildModuleSimplificationPipeline).
  if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
    MPM.add(createHotColdSplittingPass());

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
  // canonicalization pass that enables other optimizations. As a result,
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
  // result too early.
  MPM.add(createLoopSinkPass());
  // Get rid of LCSSA nodes.
  MPM.add(createInstSimplifyLegacyPass());

  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
  // flattening of blocks.
  MPM.add(createDivRemPairsPass());

  // LoopSink (and other loop passes since the last simplifyCFG) might have
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
  MPM.add(createCFGSimplificationPass());

  addExtensionsToPM(EP_OptimizerLast, MPM);

  if (PrepareForLTO) {
    MPM.add(createCanonicalizeAliasesPass());
    // Rename anon globals to be able to handle them in the summary
    MPM.add(createNameAnonGlobalPass());
  }
}
Beispiel #23
0
static void registerRMCPass(const PassManagerBuilder &,
                            legacy::PassManagerBase &PM) {
  if (DoRMC) { PM.add(new RealizeRMCPass()); }
}
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
                                     legacy::PassManagerBase &PM) {
  PM.add(createAddDiscriminatorsPass());
}
Beispiel #25
0
static void registerCleanupPass(const PassManagerBuilder &,
                               legacy::PassManagerBase &PM) {
  if (DoCleanupCopies) { PM.add(new CleanupCopiesPass()); }
}
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
                                   legacy::PassManagerBase &PM) {
  PM.add(createThreadSanitizerPass());
}
Beispiel #27
0
static void addCoroutineScalarOptimizerPasses(const PassManagerBuilder &Builder,
                                              legacy::PassManagerBase &PM) {
  PM.add(createCoroElidePass());
}